专题3弧长和扇形面积(专项练习含答案

合集下载

部编数学九年级上册24.4弧长和扇形面积(13大题型)2023考点题型精讲(解析版)含答案

部编数学九年级上册24.4弧长和扇形面积(13大题型)2023考点题型精讲(解析版)含答案

24.4弧长和扇形面积弧长公式 半径为R的圆中,360°的圆心角所对的弧长(圆的周长)公式: n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)题型1:运用公式计算弧长1.已知一个扇形的圆心角是150°,半径是3,则该扇形的弧长为( )A.B.C.D.【分析】利用弧长公式直接计算即可.【解答】解:这个扇形的弧长==π,故选:A.【点评】本题考查弧长公式,解题的关键是记住弧长公式l=.【变式1-1】如图,AB是圆O的直径,CD是弦,CD∥AB,∠BCD=30°,AB=6,则弧BD的长为( )A.πB.4πC.2πD.45π【分析】求出圆心角∠BOD的度数,再根据弧长的计算公式进行计算即可.【解答】解:∠BOD=2∠BCD=2×30°=60°,由弧长公式得,弧BD的长为=π,故选:A.【点评】本题考查圆周角定理,弧长的计算,掌握弧长的计算公式是正确解答的前提,求出圆心角的度数是解决问题的关键.【变式1-2】如图,AB是⊙O的直径,AC是⊙O的弦,若∠A=20°,AB=6,则弧长为( )A.B.C.D.【分析】连结CO,根据AO=CO,得到∠A=∠C=20°,根据三角形内角和定理求出圆心角的度数,根据直径的长求出半径,根据弧长公式l=即可得出答案.【解答】解:如图,连结CO,∵AO=CO,∴∠A=∠C=20°,∴∠AOC=180°﹣∠A﹣∠C=140°,∵直径AB=6,∴半径r=3,∴长==,故选:C.【点评】本题考查了弧长的计算,掌握弧长公式l=是解题的关键.题型2:列方程求圆心角或半径2.已知一段弧长为9.42cm,该段弧所在的圆的半径为6cm,求这段弧所对的圆心角度数.【分析】根据弧长公式,即可求出弧所对的圆心角的度数.【解答】解:设圆心角的度数为n,根据题意得,=9.42=3π,∴n=3π×180°÷6π=90°.故这段弧所对的圆心角度数为:90°.【点评】本题考查了弧长的计算,牢记弧长公式是解题的关键.【变式2-1】如图,劣弧AB的长为6π,圆心角∠AOB=90°,求此弧所在圆的半径.【分析】根据弧长公式l=,代入求出r的值即可.【解答】解:由题意得,6π=,∴r=12.答:此弧所在圆的半径为12.【点评】本题考查了弧长的计算,关键是掌握弧长的计算公式.【变式2-2】已知圆上一段弧长为4πcm,它所对的圆心角为100°,求该圆的半径.【分析】设该圆的半径为R,根据弧长公式列出方程,解方程可得.【解答】解:设该圆的半径为Rcm,根据题意,得:=4π,解得:R=,答:该圆的半径为cm.【点评】本题考查了弧长公式:l=(n为弧所对的圆心角的度数,R为弧所在圆的半径).题型3:弧长计算中的最值问题(提升)3.如图,在扇形AOB中,∠AOB=120°,OB=2,点D为弦AB上一动点(不与A,B两点重合),连接OD并延长交于点C,当CD为最大值时,的长为( )A.B.C.D.π【分析】根据垂线段最短得出当OC⊥AB时,OD最短,此时CD最大,求出∠BOC的度数,再根据弧长公式求出即可.【解答】解:当OC⊥AB时,OD最短(垂线段最短),此时CD最大,∵∠AOB=120°,OD⊥AB,OD过圆心O,∴=,且弧的度数是60°,∴∠BOC=60°,∴的长为=,故选:B.【点评】本题考查了垂径定理,垂线段最短等知识点,能求出∠BOC的度数是解此题的关键【变式3-1】如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BC于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为( )A.B.C.D.【分析】利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′D最小,即:E′C+E′D=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长==,∴阴影部分周长的最小值为2+=.故选:C.【点评】本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.【变式3-2】如图,在扇形AOB中,∠AOB=90°,点C在上,且∠AOC=60°,点P是线段OB上一动点,若OA=2,则图中阴影部分周长的最小值是 .【分析】延长AO到D,使OD=AO,得到点A与点D关于OB对称,连接CD交OB于P′,当点P 与点P′重合时,图中阴影部分周长的值最小,根据等腰三角形的性质得到∠D=∠OCD=30°,过C 作CE⊥AO于E,根据直角三角形的性质即可得到结论.【解答】解:延长AO到D,使OD=AO,∵∠AOB=90°,∴点A与点D关于OB对称,连接CD交OB于P′,当点P与点P′重合时,图中阴影部分周长的值最小,∵∠AOC=60°,∴∠BOC=30°,∴∠DOC=120°,∵OD=OA=OC,∴∠D=∠OCD=30°,过C作CE⊥AO于E,∴∠CEO=90°,∴∠OCE=30°,∵OC=OA=2,∴OE=OC=1,∴DE=OE+OD=3,CE===,∴CD===2,∴AP′+CP′=2,∵的长==π,∴图中阴影部分周长的最小值是2+π,故答案为:2+π.【点评】本题考查了弧长的计算,勾股定理,含30°角的直角三角形的性质,正确地作出辅助线是解题的关键.题型4:弧长计算与实际应用问题4.有一段圆弧形公路,弯道半径为45米,请你计算,圆心角等于60°的圆弧形公路有多少米长?(精确到0.1米)【分析】根据弧长公式计算即可得.【解答】解:圆心角等于60°的圆弧形公路长为=15π≈47.1米,答:圆心角等于60°的圆弧形公路长47.1米.【点评】本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.【变式4-1】如图,已知中心线的两个半圆弧半径都为1000mm,两直管道的长度都为2000mm,求图中管道的展直长度(即图中虚线所表示的中心线的长度,精确到1mm)【分析】先计算出扇形的弧长再加上直管道的长度即可.【解答】解:图中管道的展直长度=2×+4000=2000π+4000≈10280(mm).【点评】主要考查了扇形的弧长公式,这个公式要牢记.弧长公式为:l=(弧长为l,圆心角度数为n,圆的半径为r).扇形面积公式 半径为R的圆中,360°的圆心角所对的扇形面积(圆面积)公式: n°的圆心角所对的扇形面积公式:题型5:应用公式计算扇形面积5.一个扇形的弧长是10πcm,其圆心角是150°,此扇形的面积为( )A.30πcm2B.60πcm2C.120πcm2D.180πcm2【分析】先根据题意可算出扇形的半径,再根据扇形面积公式即可得出答案.【解答】解:根据题意可得,设扇形的半径为rcm,则l=,即10π=,解得:r=12,∴S===60π(cm2).故选:B.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解是解决本题的关键.【变式5-1】已知一个扇形的圆心角的度数为120°,半径长为3,则这个扇形的面积为多少?(结果保留π)【分析】根据扇形的面积公式S=πR2直接计算即可.扇形=πR2=×π×32=3π,【解答】解:S扇形答:这个扇形的面积为3π.【点评】本题考查了扇形的面积公式,熟记公式和准确计算是解题的关键.【变式5-2】如图、A、B、C三点在半径为1的⊙O上,四边形ABCO是菱形,求扇形OAC的面积.【分析】连接OB,证明△AOB,△BOC都是等边三角形,得∠AOC=120°,利用扇形面积公式计算即可.【解答】解:如图,连接OB,∵四边形ABCO是菱形,∴OA=OC=AB=BC=OB,∴△AOB,△BOC都是等边三角形,∴∠AOC=120°,∴S==.扇形OAC【点评】本题考查扇形面积公式,菱形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.题型6:列方程求圆心角或半径6.已知扇形的圆心角为30°,面积为3πcm2,则扇形的半径为( )A.6cm B.12cm C.18cm D.36cm【分析】设扇形的半径为r,再根据扇形的面积公式求出r的值即可.【解答】解:设扇形的半径为r,∵扇形的圆心角为30°,面积为3πcm2,∴=3π,解得r=6(cm).故选:A.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.【变式6-1】已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是( )A.180°B.120°C.90°D.60°【分析】根据扇形和圆的面积公式列方程即可得到结论.【解答】解:根据题意得,=()2π,解得:n=90,故选:C.【点评】本题考查了扇形的面积公式,熟记扇形的面积公式是解题的关键.【变式6-2】已知⊙O的半径为2cm,扇形AOB的面积为πcm2,圆心角∠AOB是多少度?【分析】根据扇形的面积公式S=,得n=,代入数据计算即可.【解答】解:设∠AOB=n,∵⊙O的半径为2cm,扇形AOB的面积为πcm2,∴S===π,解得:n=90°,∴∠AOB是90°.【点评】本题考查了扇形的面积,熟记扇形的面积公式是解题的关键.题型7:扇形计算与实际应用问题7.如图,一扇形纸扇完全打开后,AB和AC的夹角为120°,AB长为30cm,贴纸部分的宽BD为18cm,求纸扇上贴纸部分的面积.【分析】先求出AD的长度,再根据扇形的面积公式分别求出扇形DAE和扇形BAC的面积即可.【解答】解:∵AB=30cm,BD=18cm,∴AD=AB﹣BD=30﹣18=12(cm),∴纸扇上贴纸部分的面积S=S扇形BAC ﹣S扇形DAE=﹣=300π﹣48π=252π(cm2).【点评】本题考查了扇形的面积公式,能熟记扇形的面积公式是解此题的关键,注意:半径为r,圆心角为n°的扇形的面积为.【变式7-1】某灯具厂生产一批台灯罩,如图的阴影部分为灯罩的侧面展开图.已知半径OA=24cm,OC =12cm,∠AOB=135°.(计算结果保留π)(1)若要在灯罩的上下边缘镶上花边(花边的宽度忽略不计),至少需要多长的花边?(2)求灯罩的侧面积(接缝处忽略不计).【分析】(1)主要是求阴影部分扇形环的外环和内环的弧长之和,即求优弧AB+优弧CD;直接利用弧长公式求解即可.(2)求扇环的面积,即S侧=S阴影=(π×242﹣S扇形OAB)﹣(π×122﹣S扇形OCD).【解答】解:(1)优弧的长为(cm),优弧的长为(cm),至少需要花边的长度为30π+15π=45π(cm);(2)灯罩的侧面积=S阴影=(π×242﹣S扇形OAB)﹣(π×122﹣S扇形OCD)=.【点评】主要考查了利用弧长公式和扇形的面积公式,通过面积差求扇形的面积.【变式7-2】如图,一只小羊被主人用绳子拴在长为5米,宽为2米的长方形水泥台的一个顶点上,水泥台的周围都是草地.(1)若绳子长为4米,求这只羊能吃到草的区域的最大面积.(结果保留π)(2)为了增加小羊吃草的范围,现决定把绳子的长度增加到6米,求这只羊现在能吃到草的区域的最大面积.(结果保留π)【分析】(1)先根据题意和扇形面积公式列出算式,再求出即可;(2)先根据题意和扇形面积公式列出算式,再求出即可.【解答】(1)解:当绳子长为4米时,这只羊能吃到草的区域的最大面积S=+=13π(平方米),答:这只羊能吃到草的区域的最大面积是13π平方米;(2)解:当绳子长为4米时,这只羊能吃到草的区域的最大面积S=++=(平方米),答:这只羊能吃到草的区域的最大面积是平方米.【点评】本题考查了矩形的性质和扇形的面积计算,能根据扇形公式列出算式是解此题的关键.题型8:求阴影部分面积-规则图形8(S阴=S扇-S△).如图,在Rt△ABC中,∠ABC=90°,AC=4,AB=2,以点B为圆心,AB为半径画弧,交AC于点D,交BC于点E,连接BD,则图中阴影部分面积为( )A.B.C.D.【分析】根据S阴=S扇形BAD﹣S△ABD计算即可.【解答】解:在Rt△ABC中,∵∠ABC=90°,AB=2,AC=4,∴cos A==,∴∠A=60°,∵BA=BD,∴△ABD是等边三角形,∴∠ABD=60°,∴S阴=S扇形BAD﹣S△ABD=﹣×22=π﹣,故选:B.【点评】本题考查扇形面积的计算,锐角三角函数,等边三角形的判定和性质,扇形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式8-1】(S阴=S大扇-S小扇)如图是2022年杭州亚运会徽标的示意图,若AO=5,BO=2,∠AOD=120°,则阴影部分面积为( )A.14πB.7πC.D.2π【分析】根据S阴影=S扇形AOD﹣S扇形BOC,求解即可.【解答】解:S阴影=S扇形AOD﹣S扇形BOC=﹣==7π,故选:B.【点评】本题考查扇形的面积,解题的关键是熟记扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长).【变式8-2】(化零为整)如图,分别以n边形的顶点为圆心,以2为半径画圆,则图中阴影部分面积之和为( )A.πB.2πC.3πD.4π【分析】由题意得到各顶点的扇形圆心角之和即为n边形外角和,利用扇形面积公式计算即可求出阴影部分面积.【解答】解:∵n边形的外角和为360°,半径为2,∴S 阴影==4πcm 2,故选:D .【点评】此题考查了扇形面积的计算,以及多边形的内角和与外角和,熟练掌握扇形面积公式是解本题的关键.【变式8-3】(S 阴=S △-S 扇)如图,正三角形ABC 的边长为8,点D ,E ,F 分别为BC ,CA ,AB 的中点,以A ,B ,C 三点为圆心,4为半径作圆,则图中阴影部分的面积为 16﹣8π .(结果保留π)【分析】连接AD ,根据等边三角形的性质得出AB =AC =BC =8,∠BAC =∠ABC =∠ACB =60°,求出圆的半径为4,再分别求出△ABC 的面积和三个扇形的面积即可.【解答】解:连接AD ,则BD =CD ,∵△ABC 是等边三角形,∴∠BAC =∠ABC =∠ACB =60°,AB =AC =BC =8,∴BD =CD =4,即三个圆的半径都是4,由勾股定理得:AD ===4,∴阴影部分的面积S =S △ABC ﹣3S 扇形BFD =﹣3×=16﹣8π,故答案为:16﹣8π.【点评】本题考查了等边三角形的性质,扇形的面积公式等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.题型9:求阴影部分面积-不规则图形9(割补法).如图,在正方形ABCD中有一点P,连接AP、BP,旋转△APB到△CEB的位置.(1)若正方形的边长是8,PB=4.求阴影部分面积;(2)若PB=4,PA=7,∠APB=135°,求PC的长.【分析】(1)根据旋转的性质得到△APB≌△CEB,则BP=BE,∠ABP=∠EBC;以B为圆心,BP 画弧叫AB于F点,如图,易得扇形BFP的面积=扇形BEQ,则图形ECQ的面积=图形AFP的面积,于是S阴影部分=S扇形BAC﹣S扇形BFQ,然后根据扇形的面积公式计算即可;(2)连PE,利用△APB≌△CEB得到BP=BE=4,∠ABP=∠EBC,PA=EC=7,∠BEC=∠APB=135°,易得△PBE为等腰直角三角形,则∠BEP=45°,PE=4,则∠PEC=135°﹣45°=90°,然后在Rt△PEC中根据勾股定理计算即可得到PC的长.【解答】解:(1)∵把△APB旋转到△CEB的位置,∴△APB≌△CEB,∴BP=BE,∠ABP=∠EBC,以B为圆心,BP画弧叫AB于F点,如图,∴扇形BFP的面积=扇形BEQ,∴图形ECQ的面积=图形AFP的面积,∴S阴影部分=S扇形BAC﹣S扇形BFQ=﹣=12π;(2)连PE,∴△APB≌△CEB,∴BP=BE=4,∠ABP=∠EBC,PA=EC=7,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴∠BEP=45°,PE=4,∴∠PEC=135°﹣45°=90°,∴PC===9.【点评】本题考查了扇形的面积公式:S=(其中n为扇形的圆心角的度数,R为半径).也考查了正方形和旋转的性质.【变式9-1】(等面积法)如图,A是半径为1的⊙O外的一点,OA=2,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC.则图中阴影部分面积等于( )A.B.C.D.【分析】△OBC与△BCA是同底等高,则它们的面积相等,因此阴影部分的面积实际是扇形OCB的面积;扇形OCB中,已知了半径的长,关键是圆心角∠COB的度数.在Rt△ABO中,根据OB、OA 的长,即可求得∠BOA的度数;由于OA∥BC,也就求得了∠OBC的度数,进而可在△COB中求出∠COB的度数,由此可根据扇形的面积公式求出阴影部分的面积.【解答】解:OB是半径,AB是切线,∵OB⊥AB,∴∠ABO=90°,∴sin A==,∴∠A=30°,∵OC=OB,BC∥OA,∴∠OBC=∠BOA=60°,∴△OBC是等边三角形,因此S阴影=S扇形CBO==.故选:A.【点评】本题利用了平行线的性质,同底等高的三角形面积相等,切线的概念,正弦的概念,扇形的面积公式求解.【变式9-2】(构造法)求阴影部分面积.【分析】构造图2,得到图1中的S1、S2、S3、S4,与图2中的S1、S2、S3、S4相等,易求得图2中S1+S2+S3+S4的值,得到图1中的阴影为﹣(S1+S2+S3+S4).【解答】解:如图:图1中的S1、S2、S3、S4,与图2中的S1、S2、S3、S4相等,由图2可知:S1+S2+S3+S4=(2a)2﹣πa2=4a2﹣πa2,图1中的阴影为﹣(S1+S2+S3+S4)=πa2﹣(4a2﹣πa2)=2πa2﹣4a2.【点评】本题考查了图形面积的计算,利用图形的等面积变换可以简化计算.圆锥的侧面积和全面积 连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线. 圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则 圆锥的侧面积2360l S rl p p =扇n =,圆锥的全面积.注意: 扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.题型10:求圆锥的侧面积(全面积)10.已知圆锥的底面半径为4,母线长为6,则它的侧面展开图的面积是( )A .24B .48C .12πD .24π【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,从而利用扇形的面积公式可计算圆锥的侧面积.【解答】解:它的侧面展开图的面积=×2π×4×6=24π.故选:D .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式10-1】一个圆锥的底面直径是8cm ,母线长为9cm ,则圆锥的全面积为( )A .36πcm 2B .52πcm 2C .72πcm 2D .136πcm 2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【解答】解:圆锥的全面积=π×42+×2π×4×9=52π(cm 2).故选:B .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式10-2】如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为 120°,求这个扇形的面积.【分析】首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.【解答】解:∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则=20π,解得:r=30,∴扇形的面积为πrl=π×10×30=300π,【点评】本题考查了圆锥的计算及扇形的面积的计算,解题的关键是牢记计算公式.题型11:计算底面半径或展开图圆心角11.圆锥的轴截面是一个等边三角形,则它的侧面展开图圆心角度数是( )A.60°B.90°C.120°D.180°【分析】易得圆锥的底面直径与母线长相等,那么根据圆锥的底面周长等于侧面展开图的弧长即可得到这个圆锥的侧面展开图的圆心角度数.【解答】解:设圆锥的底面半径为r,母线长为R,∵它的轴截面是正三角形,∴R=2r,∴2πr=,解得n=180°,故选:D.【点评】用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.【变式11-1】一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为( )A.5cm B.10cm C.20cm D.30cm【分析】设圆锥底面半径为rcm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据弧长公式得到2πr=,然后解方程即可.【解答】解:设圆锥底面半径为rcm,根据题意得2πr=,解得r=10,即圆锥底面半径为10 cm.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式11-2】如图,圆锥的侧面积恰好等于其底面积的2倍,求该圆锥侧面展开图所对应扇形圆心角的度数.【分析】设出母线长与底面半径,根据题意和圆的面积,扇形的面积公式求解.【解答】解:设母线长为R,圆锥侧面展开图所对应扇形圆心角的度数为n,底面半径为r.∴底面周长=2πr,底面面积=πr2,侧面积=×2πr×R=πRr=2×πr2,∴R=2r,∴=2πr=πR,∴n=180°.【点评】本题利用了扇形的面积公式,圆的面积公式,弧长公式,圆的周长公式求解.注意圆锥的侧面积=底面周长×母线长÷2.题型12:圆锥计算与实际应用问题12.用铁皮制作圆锥形容器盖,其尺寸要求如图所示.(1)求圆锥的高;(2)求所需铁皮的面积S(结果保留π).【分析】(1)根据勾股定理即可求出高;(2)根据圆锥的底面圆周长是扇形的弧长,圆锥的母线长是扇形的半径进行计算即可.【解答】解:(1)如图,在Rt△AOB中,根据勾股定理,AO===30(cm),∴圆锥的高为30cm;(2)80π×50=2000π(cm2),答:所需铁皮的面积为2000πcm2.【点评】本题考查的是圆锥的计算,正确理解圆锥与它的侧面展开图扇形之间的关系是解决本题的关键,要正确理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.【变式12-1】一个圆锥形沙堆,底面半径是5米,高是2.5米.(π取3)(1)求这堆沙子有多少立方米?(2)用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺多少米?(3)在(2)的条件下,一台压路机的前轮直径是1m,前轮宽度是2m.如果前轮每分钟转动6周,这台压路机压一遍这段路面大约需要多少分钟?(得数保留整数.)【分析】(1)根据圆锥的体积公式求出这堆沙子的立方米数;(2)根据体积相等列式计算;(3)根据压路机一分钟压的面积,进而求出需要的分钟数.【解答】解:(1)圆锥的体积=×π×52×2.5=π≈62.5(立方米),答:这堆沙子约有62.5立方米;(2)用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺的米数为:62.5÷(10×0.02)=312.5(米),答:用这堆沙子在10m宽的公路上铺2cm厚的路面,能铺312.5米;(3)压路机一分钟压的面积=π×1×2×6≈36(平方米),则这台压路机压一遍这段路面大约需要的时间=312.5×10÷36≈87(分).【点评】本题考查的是圆锥的计算,掌握圆锥的体积公式、圆的面积公式是解题的关键.【变式12-2】蒙古包是蒙古族牧民居住的一种房子,其外形可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面半径为4m,总高为4.5m,外围(圆柱)高为1.5m的蒙古包(不包含底面圆),至少需要多少m2的毛毡?【分析】由底面圆的半径=4米,由勾股定理求得母线长,利用圆锥的侧面面积公式,以及利用矩形的面积公式求得圆柱的侧面面积,最后求和.【解答】解:∵底面半径=4米,高为4.5m,外围(圆柱)高1.5m,∴圆锥高为:4.5﹣1.5=3(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×4×5=20π(平方米);圆锥的周长为:2π×4=8π(m),圆柱的侧面积=8π×1.5=12π(平方米).∴故需要毛毡:20×(20π+12π)=640π(平方米).【点评】此题主要考查了勾股定理,圆面积公式,扇形的面积公式,矩形的面积公式等,分别得出圆锥与圆柱侧面积是解题关键.题型13:圆锥与最短距离13.如图,AB为圆锥轴截面△ABC的一边,一只蚂蚁从B地出发,沿着圆锥侧面爬向AC边的中点D,其中AB=6,OB=3,请蚂蚁爬行的最短距离为 .【分析】先把圆锥侧面展开得到扇形CAC′,如图,设圆锥的侧面展开图的圆心角为n,利用弧长公式得到2π×3=,解得n=180,则∠CAB′=90°,利用勾股定理计算出B′D,然后根据两点之间线段最短求解.【解答】解:圆锥的侧面展开图为扇形CAC′,如图,设圆锥的侧面展开图的圆心角为n,根据题意得2π×3=,解得n=180,∴∠CAB′=90°,∵D为AC的中点,∴AD=3,在Rt△ADB′中,B′D==3,∴蚂蚁爬行的最短距离为3.故答案为3.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.【变式13-1】已知圆锥的底面半径是4cm,母线长为12cm,C为母线PB的中点,求从A到C在圆锥的侧面上的最短距离.【分析】最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.【解答】解:圆锥的底面周长是8π,则8π=,∴n=120°,即圆锥侧面展开图的圆心角是120度.∴∠APB=60°,∵PA=PB,∴△PAB是等边三角形,∵C是PB中点,∴AC⊥PB,∴∠ACP=90度.∵在圆锥侧面展开图中AP=12,PC=6,∴在圆锥侧面展开图中AC==6cm.最短距离是6cm.【点评】本题考查了圆锥的计算,需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.【变式13-2】圆锥的底面半径是3,母线长是9,P是底面圆周上一点:从点P拉一根绳子绕圆锥侧面一周,再回到P点,求这根绳子的最短长度.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.【解答】解:将圆锥侧面沿AB剪开展平,连BB′,则BB′就是所求绳子长.由2π×3=得n=120,作AC⊥BB',则∠2=60°BB'=2BC,∴∠3=30°∴AC=,BC=,∴BB′=9.【点评】本题主要考查圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.一、单选题1.如图,△ABC内接于⊙O,∠A=60°,OM⊥BC于点M,若OM=2,则BC的长为( )A .4πB .43πC .83πD .163π【答案】C 【解析】【解答】解:如图示,链接OC ,OB ,∵∠A =60°∴∠COB =120° ,∵OM ⊥BC , OM =2∴∠COM =60° , OC =OM cos60∘=212=4 ,∴BC =120∘×2×π×4360∘=83π ,故答案为:C【分析】链接OC ,OB ,利用圆周角定理可得 ∠COB =120° ,根据 OM ⊥BC , OM =2 ,可求出 OC =4 ,利用弧长公式即可求出 BC 的长度.2.扇形的圆心角为60°,面积为6π,则扇形的半径是( )A .3B .6C .18D .36【答案】B 【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【解答】扇形的面积=60πr 2360=6π.解得:r=6,故选:B .3.如图, AC ⊥BC , AC =BC =8 ,以BC 为直径作半圆,圆心为点O ;以点C 为圆心, BC 为半径作 AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20π3−8B .20π3C .−20π3D .+20π3【答案】A【解析】【解答】解:如图,连接CE.∵AC ⊥BC ,AC =BC =8,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =4,BC =CE =8.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在Rt △OEC 中,OC =4,CE =8,∴∠CEO =30°,∠ECB =60°,OE =4,∴S 阴影=S 扇形BCE −S 扇形BOD −S △OCE= 60π×82360−14×42π−12×4×= 20π3−8故答案为:A.【分析】如图,连接CE.图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =4,所以由扇形面积公式、三角形面积公式进行解答即可.4.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A .1534﹣ 32πB .1532 ﹣ 32πC .734﹣ π6D ﹣ π6【答案】A【解析】【解答】解:如图连接OD 、CD .∵AC 是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD ,∴△OCD 是等边三角形,∵BC 是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S 阴=S △ABC ﹣S △ACD ﹣(S 扇形OCD ﹣S △OCD )= 12 ×6×2 ﹣ 12 ×3× ﹣( 60π⋅32360 ﹣ 34×32)= ﹣ 32 π.故答案为:A .【分析】如图连接OD 、CD .根据圆周角定理及三角形内角和及同圆的半径相等得出△OCD 是等边三。

弧长以及扇形面积的计算-练习题含答案

弧长以及扇形面积的计算-练习题含答案

连接 OD、OE,先证明

是等边三角形,得出

求出
,再由弧长公式即可得出答案.
本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等 边三角形是解决问题的关键.
三、解答题(本大题共 1 小题,共分) 9. 如图,AB 为半圆 O 的直径,AC 是
的一条弦,D
为 的中点,作
,交 AB 的延长线于点 F,
弧长以及扇形面积的计算
副标题
题号 得分



总分
一、选择题(本大题共 3 小题,共分)
1. 如图,在
中,

,以 BC 的中
点 O 为圆心 为 A.
分别与 AB,AC 相切于 D,E 两点,则 的长
B.
C. D.
【答案】B
【解析】解:连接 OE、OD,
设半径为 r,
分别与 AB,AC 相切于 D,E 两点,
2. 一个扇形的弧长是
,面积是
,则此扇形的圆心角的度数是
A. 【答案】B
【解析】解:
B.
一个扇形的弧长是
C.
,面积是
D.

,即

解得:


解得:

故选 B 利用扇形面积公式 1 求出 R 的值,再利用扇形面积公式 2 计算即可得到圆心角度数. 此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.






【解析】 直接利用切线的判定方法结合圆心角定理分析得出
,即可得出答
案;
直接利用得出
,再利用
,求出答案.

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

中考数学精选汇编弧长与扇形面积---13道题目(含答案)

01已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr=,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr=,解得r=2,h==4,所以tanα==,圆锥的主视图的面积=×4×4=8,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.【点评】本题考查圆锥的有关知识,记住侧面展开图的弧长=2πr=,圆锥的表面积=πr2+πrl是解决问题的关键,属于中考常考题型.02如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S如图,是半径为1的圆弧,∠AOC 等于45°,D 是上的一动点,则四边形AODC 的面积s 的取值范围是 ( )A .42242+≤≤S B .42242+≤<S C .22222+≤≤S D .22222+<<S 答案:B 解析如图,过点C 作CF 垂直AO 于点F,过点D 作DE 垂直CO 于点E, ∵CO=AO=1,∠COA=45°所以CF=FO=22,∴S △AFC=22121⨯⨯42=则面积最小的四边形面积为D 无限接近点C 所以最小面积无限接近42但是不能取到∵△AOC 面积确定,∴要使四边形AODC 面积最大,则要使△COD 面积最大。

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)+答案解析

浙教新版九年级上册《3.8弧长及扇形的面积》2024年同步练习卷(3)一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A. B. C. D.2.如图,半径是1,A、B、C是圆周上的三点,,则劣弧的长是()A.B.C.D.3.如图是两个同心圆的一部分,已知,则的长是的长的()A.B.2倍C.D.4倍4.如图,在的正方形网格中,若将绕着点A逆时针旋转得到,则的长为()A.B.C.D.5.如图,内接于,,若,则的长为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

6.已知弧的长为,弧的半径为6cm ,则圆弧的度数为______.7.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B 点所经过的路径长度为______.8.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为2,则该莱洛三角形的周长为______.9.在半径为6cm 的圆中,的圆心角所对的弧长为______10.如图,在的正方形网格中,每个小正方形的边长为以点O 为圆心,4为半径画弧,交图中网格线于点A 、B ,则的长为______.11.已知一个半圆形工件,搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为6m ,则圆心O 所经过的路线长是______结果用表示三、计算题:本大题共1小题,共6分。

12.如图,已知四边形ABCD 内接于圆O ,连接BD ,,求证:;若圆O 的半径为3,求的长.四、解答题:本题共2小题,共16分。

解答应写出文字说明,证明过程或演算步骤。

13.本小题8分一段铁丝长,把它弯成半径为160cm的一段圆弧,求铁丝两端间距离.14.本小题8分如图,在矩形ABCD中,将矩形ABCD在直线l上按顺时针方向不滑动地每秒转动,转动3s后停止,则顶点A经过的路程为多长?答案和解析1.【答案】B【解析】解:弧长故选:根据弧长公式进行求解即可.本题考查了弧长的计算,解答本题的关键是掌握弧长公式:2.【答案】B【解析】解:连OB,OC,如图,,,劣弧的长故选连OB,OC,根据圆周角定理得到,然后根据弧长公式计算劣弧的长.本题考查了弧长公式:也考查了圆周角定理.3.【答案】A【解析】解:设,,则,,的长是的长的故选:利用弧长公式计算即可.本题考查了弧长公式:弧长为l,圆心角度数为n,圆的半径为熟记公式是解题的关键.4.【答案】A【解析】解:根据图示知,,的长为:故选根据图示知,所以根据弧长公式求得的长.本题考查了弧长的计算、旋转的性质.解答此题时采用了“数形结合”是数学思想.5.【答案】A【解析】【分析】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识,属于常考题.连接OB,OC,首先证明是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,,,,,的长为,故选:6.【答案】【解析】解:设圆心角为n,则即圆弧的度数的把数量关系对应代入弧长公式,即可求解.主要考查了弧长公式:本题是利用弧长公式作为相等关系求圆心角的度数,即弧度.7.【答案】【解析】解:从图中发现:B点从开始至结束所走过的路径长度为两段弧长即第一段,第二段故B点翻滚一周所走过的路径长度,三次一个循环,……1,若翻滚了40次,则B点所经过的路径长度为故答案为:B点翻滚一周所走过的路径长度为两段弧长,一段是以点C为圆心,BC为半径,圆心角为,第二段是以A为圆心,AB为半径,圆心角为的两段弧长,依弧长公式计算即可.本题考查了旋转的性质,等边三角形的性质,弧长公式等知识,求出两次旋转的角度是解题的关键.8.【答案】【解析】解:该莱洛三角形的周长故答案为:直接利用弧长公式计算即可.本题考查了弧长的计算,等边三角形的性质,熟练掌握弧长的计算公式是解题的关键.9.【答案】【解析】解:半径为6cm的圆中,的圆心角所对的弧长为:故答案为:直接利用弧长公式求出即可.此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.10.【答案】【解析】解:如图,,,,,的长,故答案为:如图,根据直角三角形的性质得到,根据三角形的内角和定理得到,根据弧长公式计算即可.本题考查了弧长的计算、解直角三角形等知识,解题的关键是正确寻找直角三角形解决问题,属于中考常考题型.11.【答案】【解析】解:由图形可知,圆心先向前走的长度即圆的周长,然后沿着弧旋转圆的周长,最后向右平移50米,所以圆心总共走过的路程为圆周长的一半即半圆的弧长加上50,由已知得圆的半径为3,设半圆形的弧长为l,则半圆形的弧长,故圆心O所经过的路线长故答案为:根据弧长的公式先求出半圆形的弧长,即根据弧长的公式先求出半圆形的弧长,即半圆作无滑动翻转所经过的路线长,把它与沿地面平移所经过的路线长相加即为所求.本题主要考查了弧长公式,同时考查了旋转的知识.解题关键是得出半圆形的弧长=半圆作无滑动翻转所经过的路线长.12.【答案】证明:四边形ABCD内接于圆O,,,,;解:连接OB、OC,,,由圆周角定理得,,的长【解析】根据圆内接四边形的性质求出,根据等腰三角形的判定定理证明;连接OB、OC,根据圆周角定理求出,根据弧长公式计算即可.本题考查的是圆内接四边形的性质、弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.【答案】解:设半径为160cm的一段圆弧的角度为n,则解得所以铁丝两端间距离为【解析】由半径为160cm的一段圆弧的长度为一段铁丝长,求得圆弧的角度,进一步利用勾股定理求得结论即可.此题考查弧长计算公式的运用,以及.勾股定理的运用,注意利用特殊的角度直接解决问题14.【答案】解:由勾股定理得矩形ABCD的对角线长为10,从A到,,路线长为;从到,,路线长为;从到,,路线长为;所以顶点A经过的路程为【解析】由勾股定理得矩形ABCD的对角线长为10,从A到是以B点为圆心AB为半径的弧,从到是以C为圆心AC为半径的弧,从到是以D为圆心AD为半径的弧,利用弧长公式即可求出顶点A经过的路线长.本题主要考查圆的弧长公式,旋转的性质以及勾股定理的运用,此题正确理解题意也很重要.。

2022年春北师大版九年级数学中考一轮复习《弧长及扇形面积》知识点分类训练(附答案)

2022年春北师大版九年级数学中考一轮复习《弧长及扇形面积》知识点分类训练(附答案)

2022年春北师大版九年级数学中考一轮复习《弧长及扇形面积》知识点分类训练(附答案)一.弧长的计算1.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A.60°B.120°C.150°D.180°2.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.12πB.3πC.2πD.π3.一条弧所对的圆心角为135°,弧长等于半径为3cm的圆的周长的5倍,则这条弧的半径为()A.45cm B.40cm C.35cm D.30cm4.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在上,∠BAC=22.5°,则的长为.5.如图,在扇形BOC中,∠BOC=60°,点D为弧BC的中点,点E为半径OB上一动点,若OB=2,则阴影部分周长的最小值为()A.2+B.+C.+D.2+二.扇形面积的计算6.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为()A.8﹣πB.4﹣πC.2﹣D.1﹣7.如图,一根5m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.πm2B.πm2C.πm2D.πm28.如图,从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为dm2.9.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.10.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.B.C.D.11.如图扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C 为圆心,OA的长为直径作半圆交CE于点D,若OA=4,则图中阴影部分的面积为()A.3π﹣B.3π﹣2C.﹣2D.﹣12.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为4,∠CDF=15°,则阴影部分的面积为()A.16π﹣12B.16π﹣24C.20π﹣12D.20π﹣2413.如图,作⊙O的任意一条直径FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB、BC、CD、DE、EF、F A,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为.14.如图,在▱ABCD中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若∠BAC=60°,∠ABC=100°,BC=4,则扇形BEF的面积为.15.“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为平方厘米.(圆周率用π表示)16.如图,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C 为圆心、BC长为半径画弧交AC于点F,则图中阴影部分的面积是.17.如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是.(结果保留π)18.如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为.(结果保留π)19.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)20.如图所示,以AB为直径的半圆,绕点B顺时针旋转60°,点A旋转到点A',且AB=2,则图中阴影部分的面积是()A.B.C.2πD.21.如图,从直径为4的圆形纸片中,剪掉一个圆心角为90°的扇形ABC,点A、B、C在圆周上,则剩下部分(图中阴影部分)的面积为()A.2πB.4π﹣πC.4πD.6π22.如图,AB是⊙的直径,半径OA的垂直平分线交⊙O于C,D两点,∠C=30°,CD =2,则阴影部分的面积是()A.B.πC.D.2π23.如图,扇形AOB的圆心角是直角,半径为2,C为OB边上一点,将△AOC沿AC 边折叠,圆心O恰好落在弧AB上,则阴影部分面积为()A.3π﹣4B.3π﹣2C.3π﹣4D.2π24.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π﹣1B.π﹣3C.π﹣2D.4﹣π25.如图,⊙A,⊙B,⊙C两两不相交,且半径都等于2,则图中三个扇形(即阴影部分)的面积之和为.(结果保留π)26.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.以点C为圆心,CB长为半径画弧,分别交AC,AB于点D,E,则图中阴影部分的面积为(结果保留π).27.如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是.28.如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为.29.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA =2,则阴影部分的面积为.30.如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,且∠BCD=30°,CD=4,则图中阴影部分的面积为()A.2π﹣4B.C.D.﹣431.如图,点A、B、C在⊙O上,若∠BAC=45°,OC=2,则图中阴影部分的面积是()A.π﹣2B.π﹣4C.D.32.如图,在矩形ABCD中,AB=2,BC=4,以点A为圆心,AD长为半径画弧交BC 于点E,连接AE,则阴影部分的面积为()A.6﹣B.4﹣C.6﹣D.6﹣33.如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD的圆心C 是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于()A.B.C.π﹣1D.π﹣234.如图,△ABC中,∠C=90o,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为()A.B.πC.D.2π35.如图,将△ABC绕点C顺时针旋转120°得到△A'B'C,已知AC=3,BC=2,则线段AB扫过的图形(阴影部分)的面积为.36.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=2.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.2C.π﹣D.2参考答案一.弧长的计算1.解:设扇形圆心角为n°,根据弧长公式可得:=,解得:n=120°,故选:B.2.解:根据弧长公式:l==3π,故选:B.3.解:设弧所在圆的半径为rcm,由题意得,=2π×3×5,解得,r=40.故选:B.4.解:如图,圆心为O,连接OA,OB,OC,OD.∵OA=OB=OD=5,∠BOC=2∠BAC=45°,∴的长==.故答案为:.5.解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′D最小,即:E′C+E′D=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最小值为2+.故选:D.二.扇形面积的计算6.解:根据题意可知AC===1,则BE=BF=AD=AC=1,设∠B=n°,∠A=m°,∵∠ACB=90°,∴∠B+∠A=90°,即n+m=90,∴S阴影部分=S△ABC﹣(S扇形EBF+S扇形DAC)=﹣()=1﹣=1﹣,故选:D.7.解:大扇形的圆心角是90度,半径是5,所以面积==π(m2);小扇形的圆心角是180°﹣120°=60°,半径是1m,则面积==(m2),则小羊A在草地上的最大活动区域面积=π+=π(m2).故选:B.8.解:连接AC,∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=4dm,AB=BC(扇形的半径相等),∵AB2+BC2=22,∴AB=BC=2dm,∴阴影部分的面积是=2π(dm2).故答案为:2π.9.解:连接CD,∵CA=CB,∠ACB=90°,∴∠B=45°,∵点D为AB的中点,∴DC=AB=BD=1,CD⊥AB,∠DCA=45°,∴∠CDH=∠BDG,∠DCH=∠B,在△DCH和△DBG中,,∴△DCH≌△DBG(ASA),∴S四边形DGCH=S△BDC=S△ABC=AB•CD=×2×1=.∴S阴影=S扇形DEF﹣S△BDC=﹣=﹣.故答案为﹣.10.解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD==2,∴∠COD=60°,∴阴影部分的面积=﹣×2×2=π﹣2,故选:C.11.解:连接OE,如图所示:∵C为OA的中点,CE⊥OA且OA=4,∴OC=2,∴cos∠EOC==,CE==2,∴∠COE=60°.∵∠AOB=90°,∴∠BOE=30°,∴S阴影=S扇形AOB﹣S扇形ACD﹣S扇形BOE﹣S△COE=﹣﹣﹣×2×2=﹣2.故选:C.12.解:连接AD,OE∵AB为直径,∴∠ADB=∠ADC=90°,∴∠ADF+∠CDF=90°,∵DF⊥AC,∴∠AFD=90°,∴∠ADF+∠DAF=90°,∴∠CDF=∠DAC,∵∠CDF=15°,∴∠DAC=15°,∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=30°,∵OA=OE,∴∠OAE=∠OEA=30°,∴∠AOE=120°,作OH⊥AE于H,在Rt△AOH中,OA=4,∴OH=sin30°×OA=2,AH=cos30°×OA=6,∴AE=2AH=12,∴S阴影=S扇形OAE﹣S△AOE==16.故选:A.13.解:连接EB,AD,设⊙O的半径为r,⊙O的面积S=πr2,弓形EF,AF的面积与弓形EO,AO的面积相等,弓形CD,BC的面积与弓形OD,OB的面积相等,∴图中阴影部分的面积=S△EDO+S△ABO,∵OE=OD=AO=OB=OF=OC=r,∴△EDO、△AOB是正三角形,∴阴影部分的面积=×r×r×2=r2,∴⊙O的面积与阴影区域的面积的比值为,故答案为:.14.解:∵∠BAC=60°,∠ABC=100°,∴∠ACB=20°,又∵E为BC的中点,∴BE=EC=BC=2,∵BE=EF,∴EF=EC=2,∴∠EFC=∠ACB=20°,∴∠BEF=40°,∴扇形BEF的面积==,故答案为:.15.解:过A作AD⊥BC于D,∵AB=AC=BC=2厘米,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1厘米,AD=BD=厘米,∴△ABC的面积为BC•AD=(厘米2),S扇形BAC==π(厘米2),∴莱洛三角形的面积S=3×π﹣2×=(2π﹣2)厘米2,故答案为:(2π﹣2).16.解:连接BE,∵AB为直径,∴BE⊥AC,∵AB=BC=4,∠ABC=90°,∴BE=AE=CE,∴S弓形AE=S弓形BE,∴图中阴影部分的面积=S半圆﹣(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)=π×22﹣(﹣)﹣(﹣)=3π﹣6,故答案为3π﹣6.17.解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.18.解:在菱形ABCD中,有:AC=12,BD=16,∴,∵∠ABC+∠BCD+∠CDA+∠DAB=360°,∴四个扇形的面积,是一个以AB的长为半径的圆,∴图中阴影部分的面积=×12×16﹣π×52=96﹣25π,故答案为:96﹣25π.19.解:如图,设以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.20.解:由图可得,图中阴影部分的面积为:+﹣=π,故选:B.21.解:连接BC,由∠BAC=90°得BC为⊙O的直径,∴BC=4,在Rt△ABC中,由勾股定理可得:AB=AC=2,∴S扇形ABC==2π,∴S阴影=π•22﹣2π=2π,故选:A.22.解:连接OC,AD∵∠ACD=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∵AB⊥CD,∴OA平分CD,∴CE=DE=CD=,∵CD垂直平分OA,∴四边形ACOD是菱形,在Rt△ACE中,AC===2,∴阴影部分面积==π.故选:A.23.解:连接OD,∵△AOC沿AC边折叠得到△ADC,∴OA=AD,∠OAC=∠DAC,又∵OA=OD,∴OA=AD=OD,∴△OAD是等边三角形,∴∠OAC=∠DAC=30°,∵扇形AOB的圆心角是直角,半径为2,∴OC=2,∴阴影部分的面积是:(×2)=3π﹣4,故选:A.24.解:连接BD,EF,如图,∵正方形ABCD的边长为2,O为对角线的交点,由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.∵点E,F分别为BC,AD的中点,∴FD=FO=EO=EB=1,∴,OB=OD.∴弓形OB=弓形OD.∴阴影部分的面积等于弓形BD的面积.∴S阴影=S扇形CBD﹣S△CBD==π﹣2.故选:C.25.解:∵三个扇形的半径都是2,∴而三个圆心角的和是180°,∴图中的三个扇形(即三个阴影部分)的面积之和为=2π.故答案为:2π.26.解:连接CE,∵∠A=30°,∴∠CBA=90°﹣∠A=60°,∵CE=CB,∴△CBE为等边三角形,∴∠ECB=60°,BE=BC=2,∴S扇形CBE==π∵S△BCE=BC2=,∴阴影部分的面积为π﹣.故答案为:π﹣.27.解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.28.解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.29.解:作OE⊥AB于点F,∵在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.OA=2,∴∠AOD=90°,∠BOC=30°,OA=OB,∴∠OAB=∠OBA=30°,∴OD=OA•tan30°=×=2,AD=4,AB=2AF=2×2×=6,OF=,∴BD=2,∴阴影部分的面积是:S△AOD+S扇形OBC﹣S△BDO==+π,故答案为:+π.30.解:∵CD⊥AB,AB过O,CD=4,∴CE=DE=CD=2,∠CEB=90°,∵∠BCD=30°,∴∠CBO=90°﹣∠BCD=60°,BC=2BE,由勾股定理得:BC2=CE2+BE2,即(2BE)2=(2)2+BE2,解得:BE=2,∴BC=4,∵∠CBO=60°,OC=OB,∴△COB是等边三角形,∴OC=OB=BC=4,∴阴影部分的面积S=S扇形COB﹣S△COB=﹣=﹣4,故选:B.31.解:∵∠BOC=2∠BAC=90°,∴S阴=S扇形OBC﹣S△OBC=﹣×2×2=π﹣2,故选:A.32.解:∵四边形ABCD是矩形,AD=BC=4,∴∠B=∠DAB=90°,AD=AE=4,∵AB=2,∴cos∠BAE==,∴∠BAE=30°,∠EAD=60°,∴BE=AE=2,∴阴影部分的面积S=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×4﹣××2﹣=6﹣.故选:A.33.解:两扇形的面积和为:=π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:××=1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故选:D.34.解:在Rt△ACB中,∠C=90o,AC=BC=2,由勾股定理得:AB==2,∵将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,∴∠CAC1=90°,∴阴影部分的面积S=S+S﹣S△ACB﹣S=+2×2﹣2×2﹣=π,故选:B.35.解:∵△ABC绕点C旋转120°得到△A′B′C,∴△ABC≌△A′B′C,∴S△ABC=S△A′B′C,∠BCB′=∠ACA′=120°.∵AB扫过的图形的面积=S扇形ACA′+S△ABC﹣S扇形BCB′﹣S△A′B′C,∴AB扫过的图形的面积=S扇形ACA′﹣S扇形BCB′,∴AB扫过的图形的面积=﹣=.故答案为:.36.解:∵∠ABC=90°,∠BAC=30°,BC=2,∴AB=BC=2,AC=2BC=4,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′==2π﹣2,故选:B.。

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)

人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。

《弧长及扇形面积》练习题(含答案)

《弧长及扇形面积》练习题(含答案)

ED6题CBAC 71()题B AC 72()题B ACE D 8题BAEC D10题BA《弧长及扇形面积》练习题1.如图是排水管的横截面,此管道的半径为54㎝,水面以上部分的弓形的弧长为30π㎝,则这段弓形弧所对的圆心角度数为 。

2.阴影部分是某广告标志,已知两弧所在圆的半径为20cm 和10cm,∠AOB=120°,则S 阴= .3.某种商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,∠A=60°,是以A 为圆心,AB 长为半径的弧,是以B 为圆心,BC 长为半径的弧,则该商标图案的面积为 。

4.如图,四边形OABC 为菱形,点B ,C 在以O 为圆心的上,若OA=3,∠1=∠2,则S 扇形OEF = 。

5.如图,⊙O 2与⊙O 3外切于点C,⊙O 1分别与⊙O 2、⊙O 3内切于A 、B,若⊙O 1的半径为6,⊙O 2、⊙O 3的半径为2,则图中阴影部分的周界长为 ,阴影部分的面积为 。

6.如图,△ABC 中,∠C=90°,AB=12㎝,∠ABC=60°,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边上的点D 处,则AC 边扫过的图形(阴影部分) 的面积为 。

7.如图,Rt △ABC 中,∠C=90°,AC=3,BC=4,①若⊙C 与AB 相切,则图中阴影部分的面积为 。

②若⊙O 与三角形的三边都相切,则图中阴影部分的面积为 。

8.如图,Rt △ABC 中,∠C=90°,∠A=30°,BC=4,分别以A 、B 为圆心,AC 、BC 长为半径画弧交AB 于D 、E ,则阴影部分的面积为 。

9.如图,矩形ABCD 中,AB=2,BC=2 3 ,以BC 中点E 为圆心,作 切AD 于点H ,与AB 、CD交于M 、N ,则阴影部分的面积为 。

10.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE ,则五个扇形的面积之和为 。

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案

弧长与扇形面积试题及答案(共29页)-本页仅作为预览文档封面,使用时请删除本页-弧长与扇形面积一、选择题1.(2016·湖北十堰)如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2. (2016兰州,12,4分)如图,用一个半径为 5cm 的定滑轮带动重物上升,滑轮上一点 P 旋转了 108º,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()(A)πcm (B) 2πcm(C) 3πcm (D) 5πcm【答案】:C【解析】:利用弧长公式即可求解【考点】:有关圆的计算3.(2016福州,16,4分)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.4. (2016·四川资阳)在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC 的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣π B.4﹣π C.2﹣π D.π【考点】扇形面积的计算.【分析】根据点D为AB的中点可知BC=BD=AB,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC的长,根据S阴影=S△A B C﹣S扇形C B D即可得出结论.【解答】解:∵D为AB的中点,∴BC=BD=AB,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S阴影=S△A B C﹣S扇形C B D=×2×2﹣=2﹣π.故选A.5. (2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()A.12πcm2B.26πcm2C.πcm2D.(4+16)πcm2【考点】圆锥的计算.【专题】压轴题.【分析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面半径为4cm,则底面周长=8πcm,底面面积=16πcm2;由勾股定理得,母线长=cm,圆锥的侧面面积=×8π×=4πcm2,∴它的表面积=16π+4π=(4+16)πcm2,故选D.【点评】本题利用了勾股定理,圆的周长公式和扇形面积公式求解.6. (2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A.2π B.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot60°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.7.(2016吉林长春,7,3分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C. D.【考点】弧长的计算;切线的性质.【专题】计算题;与圆有关的计算.【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.【解答】解:∵PA、PB是⊙O的切线,∴∠OBP=∠OAP=90°,在四边形APBO中,∠P=60°,∴∠AOB=120°,∵OA=2,∴的长l==π,故选C【点评】此题考查了弧长的计算,以及切线的性质,熟练掌握弧长公式是解本题的关键.8.(2016·广东深圳)如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为( )A.42-πB.84-πC.82-πD.44-π 答案:A考点:扇形面积、三角形面积的计算。

小学数学扇形试题及答案

小学数学扇形试题及答案

小学数学扇形试题及答案1、计算扇形弧长和扇形面积已知扇形半径为r,圆心角为θ(度)扇形弧长= (θ/360) × 2πr扇形面积= (θ/360) × πr²2、练习题一小明制作了一个扇形,半径为5 cm,圆心角为60度。

请计算这个扇形的弧长和面积。

解答:弧长= (60/360) × 2π × 5 = π × 5 = 15.71 cm面积= (60/360) × π × 5² = 0.28π × 25 = 4.36 cm²3、练习题二小红画了一个扇形,半径为8 cm,扇形面积为50.24 cm²。

请计算这个扇形的圆心角和弧长。

解答:扇形面积= (θ/360) × π × 8² = (θ/360) × 64π因为扇形面积为50.24 cm²,所以有:(θ/360) × 64π = 50.24(θ/360) × π = 0.784θ/360 = 0.784/πθ ≈ 0.249 × 360 ≈ 89.64度 (约等于89度)弧长= (89/360) × 2π × 8 ≈ 12.57 c m4、练习题三小华在一张纸上画了一个扇形,扇形面积为28.26 cm²,圆心角为60度。

请计算这个扇形的半径和弧长。

解答:扇形面积= (60/360) × π × r² = (1/6) × π × r²因为扇形面积为28.26 cm²,所以有:(1/6) × π × r² = 28.26r² = (28.26 × 6) / πr² ≈ 53.79r ≈ √53.79 ≈ 7.34 cm弧长= (60/360) × 2π × 7.34 ≈ 7.71 cm5、练习题四小明画了一个扇形,扇形弧长为12.56 cm,圆心角为45度。

九年级数学:弧长及扇形的面积练习(含答案)

九年级数学:弧长及扇形的面积练习(含答案)

九年级数学:弧长及扇形的面积练习(含答案)1.如果扇形的半径为r ,圆心角为n °,扇形的弧长为l ,那么扇形的面积S 扇形=________=________.2.求不规则图形的面积采用“割补法”、“等积变形法”、“平移法”、“旋转法”等,把不规则图形转化为规则图形求解.A 组 基础训练1.一条弧所对的圆心角为90°,半径为R ,则这条弧所对的扇形面积为( ) A.πR 2 B.πR 22 C.πR 4 D.πR 242.已知⊙O 的半径OA =6,扇形OAB 的面积等于12π,则AB ︵所对的圆周角的度数是( ) A .120° B .90° C .60° D .30° 3.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( )A .4B .2C .4πD .2π 4.(内江中考)如图,点A ,B ,C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为( )第4题图A .π-4 B.23π-1 C .π-2 D.23π-25.已知扇形的面积是24πcm 2,弧长是8πcm ,则扇形的半径是________cm.6.若面积相等的两个扇形的圆心角分别是60°和45°,则这两个扇形的半径之比为________.7.如图,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为________个平方单位.第7题图8.(河北中考)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S 扇形=________cm 2.第8题图9.如图,一水平放置的圆柱形油桶的截面半径是R ,油面高为32R ,求截面上有油的弓形(阴影部分)的面积.第9题图10.如图,AB 为半圆O 的直径,C 、D 是AB ︵上的三等分点,若⊙O 的半径为2,E 是直径AB 上任意一点,求图中阴影部分的面积.第10题图B 组 自主提高8.在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ︵,如图,若AB =4,AC =2,S 1-S 2=π4,则S 3-S 4的值是( )第11题图A.29π4 B.23π4 C.11π4 D.5π412.(咸宁中考)如图,在扇形OAB 中,∠AOB =90°,点C 是AB ︵上的一个动点(不与A ,B 重合),OD ⊥BC ,OE ⊥AC ,垂足分别为D ,E.若DE =1,则扇形OAB 的面积为________.第12题图13.如图,以正三角形ABC 的AB 边为直径画⊙O ,分别交AC ,BC 于点D ,E ,AB =6cm ,求DE ︵的长及阴影部分的面积.第13题图C组综合运用14.已知点P是正方形ABCD内的一点,连结PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P′CB的位置,如图所示.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中,边PA所扫过区域的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.第14题图参考答案3.8 弧长及扇形的面积(第2课时)【课堂笔记】 1. n πr 2360 12lr【课时训练】 1-4. DCCC 5. 6 6. 3∶2 7. π 8. 49. 连结OA,OB.S 阴=S 扇形OAB 阴影+S △AOB ,∵∠AOB =120°,∴S 扇形OAB 阴影=240πR 2360,S △AOB =12×12R×3R,∴S 阴=23πR 2+34R 2.10. 连OC 、OD 、CD,∵AB 为半圆的直径,C 、D 为弧AB ︵的三等分点,∴∠AOC =∠COD=∠BOD =13×180°=60°,而OC =OD,∴△OCD 为等边三角形,∴∠OCD =60°,∴CD ∥AB,∴S △ECD =S △OCD ,∴阴影部分的面积=S 扇形OCD =60·πR 2360=16π·22=23π.11. D 12.π213. 连结OD,OE,AE,DE.第13题图∵△ABC 是等边三角形,AB 是直径,∴AE ⊥BC,BE =OB,∠B =60°,∴OE 平行且等于AD,OA =OE,∴四边形OADE 是菱形,∴∠DOE =∠AOD=∠OBE=60°,∵AB =6cm ,∴OD =OE =BE =3cm ,∴AE =62-32=33(cm ),∴△OBE 中底边BE 上的高以及△AOD 中底边OD 上的高都为:332cm ,∴弧DE 的长=60180π·3=π(cm ),S 阴影=S △OBE +S △AOD +S扇形ODE=12×3×332+12×3×332+60π·9360=(932+32π)cm 2. 14.(1)根据旋转变换,AP 扫过的面积为扇形BAC 与扇形BPP′的差,∴S =90πa 2360-90πb 2360=π4(a 2-b 2); (2)连结PP′,则PP′=BP 2+BP′2=42,∵BP =BP′,∠PBP ′=90°,∴∠BP ′P =45°,∵∠BP ′C =∠BPA=135°,∴∠PP ′C =90°,∴△PP ′C 是Rt △,∴PC =PP′2+P′C 2=6.。

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题一、选择题1、已知扇形的圆心角为120°,半径为3cm,则扇形的面积是()A 3π cm²B 9π cm²C 6π cm²D 12π cm²2、若扇形的弧长是 16cm,面积是 56cm²,则它的半径是()A 7cmB 8cmC 7cm 或 8cmD 14cm3、一个扇形的半径为 8cm,弧长为16π/3 cm,则扇形的圆心角为()A 60°B 120°C 150°D 180°4、已知一个扇形的面积为12π,圆心角为 120°,则此扇形的半径为()A 6B 9C 12D 155、扇形的圆心角扩大到原来的 2 倍,半径缩小到原来的一半,此时扇形的面积是原来扇形面积的()A 2 倍B 4 倍C 1/2D 1/4二、填空题1、若扇形的半径为 6cm,圆心角为 60°,则扇形的弧长为______cm,面积为______cm²。

2、一个扇形的弧长是20π cm,面积是240π cm²,则扇形的圆心角是______度。

3、扇形的圆心角为 150°,弧长为20π cm,则扇形的半径为______cm,面积为______cm²。

4、已知扇形的半径为 3cm,面积为9π/2 cm²,则扇形的弧长为______cm,圆心角为______度。

5、若扇形的面积为3π,弧长为2π,则扇形的半径为______,圆心角为______度。

三、解答题1、已知扇形的圆心角为 120°,面积为300π,求扇形的半径和弧长。

2、一个扇形的弧长为10π,面积为25π,求扇形的圆心角和半径。

3、扇形的半径为 8,弧长为12π,求扇形的面积和圆心角。

4、已知扇形的面积为18π,圆心角为 60°,求扇形的弧长和半径。

5、扇形的弧长为20π,面积为240π,求扇形的半径和圆心角。

中考数学复习《圆的弧长和图形面积的计算》练习题含答案

中考数学复习《圆的弧长和图形面积的计算》练习题含答案

中考数学复习 圆的弧长和图形面积的计算一、选择题1.扇形的半径为30 cm ,圆心角为120°,此扇形的弧长是( A ) A .20π cm B .10π c m C .10 cm D .20 cm【解析】弧长=120π×30180=20π(cm),故选A.2.如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC 的长等于( A ) A.2π3 B.π3 C.23π3 D.3π3【解析】如图,连结OB ,OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为60π×2180=2π3.,第2题图) ,第3题图)3.如图,在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( B )A .60π cm 2B .65π cm 2C .120π cm 2D .130π cm 2【解析】∵在Rt △ABC 中,AC =5 cm ,BC =12 cm ,∠ACB =90°,∴由勾股定理得AB=13 cm ,∴圆锥的底面周长=10π cm ,∴几何体的侧面积=12×10π ×13=65π (cm 2) .故选B.4.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连结OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .π B.32π C .2π D .3π【解析】根据圆内接四边形对角互补可得∠BCD +∠A =180°,由圆周角定理可得∠BOD =2∠A ,再由∠BOD =∠BCD 可得2∠A +∠A =180°,所以∠A =60°,即可得∠BOD =120°,所以BD ︵的长=120π×3180=2π;故选C.,第4题图) ,第5题图)5.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为( A )A .π-332B .π-3 3 C.332 D .π-334【解析】如图,设AB 的中点P ,连结OA ,OP ,AP ,△OAP 的面积是:34×12=34,扇形OAP 的面积是:S 扇形=π6,AP 直线和AP 弧面积:S 弓形=π6-34,阴影面积:3×2S 弓形=π-332. 二、填空题6.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30 cm ,求则BC ︵的长为__20π_cm __.(结果保留π)【解析】根据弧长公式l =n πr 180可得:弧BC 的长=n πr 180=120×π×30180=20π (cm).7.120°的圆心角所对的弧长是6π,则此弧所在圆的半径是__9__.【解析】根据弧长的公式l =n πr 180,得到6π=120πr180,解得r =9.8.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__25__.【解析】扇形ABD 的弧长DB ︵=BC +DC =10,扇形ABD 的半径为正方形的边长5,∴S扇形ABD =12×10×5=25.9.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为__π__.【解析】如图连结OE ,OF ,∵CD 是⊙O 的切线,∴OE ⊥CD ,∴∠OED =90°,∵四边形ABCD 是平行四边形,∠C =60°,∴∠A =∠C =60°,∠D =120°,∵OA =OF ,∴∠A =∠OF A =60°,∴∠DFO =120°,∴∠EOF =360°-∠D -∠DFO -∠DEO =30°,FE ︵的长=30π×6180=π.故答案为π.三、解答题10.如图,AB 切⊙O 于点B ,OA =2,∠OAB =30°,弦BC ∥OA .求劣弧BC 的长.(结果保留π)解:连结OC ,OB ,∵AB 为圆O 的切线,∴∠ABO =90°,在Rt △ABO 中,OA =2,∠OAB =30°,∴OB =1,∠AOB =60°,∵BC ∥OA ,∴∠OBC =∠AOB =60°,又OB=OC ,∴△BOC 为等边三角形,∴∠BOC =60°,∴劣弧BC 长为60π×1180=π311.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(-1,3),(-4,1),(-2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1,△A 2B 2C 2;(2)求出在这两次变换过程中,点A 经过点A 1到达A 2的路径总长.解:(1)如图,△A 1B 1C 1,△A 2B 2C 2即为所作(2)OA 1=42+42=42,点A 经过点A 1到达A 2的路径总长=52+12+90π×42180=26+22π12.如图,AB 与⊙O 相切于点C ,OA ,OB 分别交⊙O 于点D ,E ,CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =43,OA =4,求阴影部分的面积.解:(1)连结OC ,则OC ⊥AB.∵CD ︵=CE ︵,∴∠AOC =∠BOC.在△AOC 和△BOC 中, ⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠OCA =∠OCB =90°,∴△AOC ≌△BOC (ASA ),∴OA =OB(2)由(1)可得AC =BC =12AB =23,∴在Rt △AOC 中,OC =2,∴∠AOC =∠BOC =60°,∴S △BOC =12BC· OC =12×23×2=23,S 扇形EOC =60°×π×22360°=23π,∴S 阴影=S △BOC -S 扇形EOC =23-23π13.如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上点F 处,点C 落在点A 处.再将线段AF 绕点F 顺时针旋转90°得线段FG ,连结EF ,CG .(1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的,与线段CG 所围成的阴影部分的面积.解:(1)在正方形ABCD 中,AB =BC =AD =2,∠ABC =90°,∵△BEC 绕点B 逆时针旋转90°得到△ABF ,∴△ABF ≌△CBE ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =EC ,∴∠AFB +∠FAB =90°,∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,∴∠CFG =∠FAB =∠ECB ,∴EC ∥FG ,∵AF =EC ,AF =FG ,∴EC =FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG(2)∵AD =2,E 是AB 的中点,∴FB =BE =12AB =12×2=1,∴AF =AB 2+BF 2=22+12=5,由平行四边形的性质,△FEC ≌△CGF ,∴S △FEC =S △CGF ,∴S 阴影=S 扇形BAC+S △ABF +S △FGC -S 扇形FAG =90·π·22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4。

中考真题测试题弧长与扇形面积 (含答案)

中考真题测试题弧长与扇形面积 (含答案)

弧长与扇形面积1. (2014•广西贺州)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.解答:解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.2.(2014·台湾)如图,、、、均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C、E在AG上,若AC=EG,OG =1,AG=2,则与两弧长的和为()A.πB.4π3C.3π2D.8π5解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×60°360°+2π(1+a)×60°360°=π6(3﹣a+1+a)=4π3.故选B.3. (2014·浙江金华)一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是【】A.5:4B.5:2C2D【答案】A.【解析】故选A.4.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm2解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.5. (2014•海南)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()cm cm cmr=r=cm6. (2014•黑龙江龙东)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B. 10cm C. 5πcm D.5cm解答:解:由题意可得出:OA=OA′=10cm,==5π,解得:n=90°,∴∠AOA′=90°,∴AA′==10(cm),故选:B.7.(2014•莱芜)如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()D8.(2014•浙江绍兴)如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()πBπC Dr==∴r=,∴圆锥的底面周长为9.(2014•浙江)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积和为6cm2.解答:解:如图作△DBF的轴对称图形△HAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△HAG,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴==,在RT△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在RT△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为6.10.(2014•广安)如图,在直角梯形ABCD中,∠ABC=90°,上底AD为,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为﹣π(不取近似值).AD=BD=2,OF=BC=4,=﹣﹣﹣=﹣=﹣11.(2014•绵阳)如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π),=.故答案为:.12.(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)解答:解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,∴∠AOB=120°,AC==2,即AB=2AC=4,则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.故答案为:4﹣.13. (2014•黑龙江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.第2题图解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.14. (2014•荆门)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.第3题图解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.15.(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F 处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.=×====×1+﹣=﹣.16.(2014·昆明)如图,在△ABC 中,∠ABC =90°,D 是边AC 上的一点,连接BD ,使∠A =2∠1,E 是BC 上的一点,以BE 为直径的⊙O 经过点D .(1)求证:AC 是⊙O 的切线;(2)若∠A =60°,⊙O 的半径为2,求阴影部分的面积.(结果保留根号和π)第22题图17. (2014年钦州)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.解答:(1)证明:连接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四边形ABDC为平行四边形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半径,∴AC是⊙O的切线;(2)解:由(1)知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.18.(2014•贵州)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)第1题图解答:(1)证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.19、(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)BF=,,=×﹣20、(2013•新疆)如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.AC==4AC=4=8..=+4=+4+4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题3.24 弧长和扇形面积(专项练习1)一、单选题知识点一、求弧长1.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2,⊙P =60°,则AB 的长为( )A .23πB .πC .43πD .53π 2.如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A .43πB .83πC .D .2π 3.如图,半径为1的⊙O 与正五边形ABCDE 相切于点A ,C ,则劣弧AC 的长度为( )A .25π B .23π C .34π D .45π 知识点二、求半径4.一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为( )A .6厘米B .12厘米C .厘米D 厘米 5.若扇形的圆心角为90︒,弧长为3π,则该扇形的半径为( )A B .6 C .12 D .,圆心角是150,则它的半径长为()6.已知一个扇形的弧长为5cmA.6cm B.5cm C.4cm D.3cm 知识点三、求圆心角7.已知扇形半径为3,弧长为π,则它所对的圆心角的度数为()A.120°B.60°C.40°D.20°8.圆锥的地面半径为10cm.它的展开图扇形半径为30cm,则这个扇形圆心角的度数是()A.60°B.90°C.120°D.150°9.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°知识点四、求点的运动路径长10.如图,在边长为1的正方形组成的网格中,⊙ABC的顶点都在格点上,将⊙ABC绕点C 顺时针旋转60°,则顶点A所经过的路径长为()A.10πBC D.π11.如图,四个三角形拼成一个风车图形,若AB=2,当风车转动90°时,点B运动路径的长度为()A.πB.2πC.3πD.4π12.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm知识点五、求扇形面积13.如图,AB 为半圆的直径,其中4AB =,半圆绕点B 顺时针旋转45︒,点A 旋转到点A '的位置,则图中阴影部分的面积为( )A .πB .2πC .2πD .4π14.如图,AB 是⊙O 的直径,CD 是弦,⊙BCD=30°,OA=2,则阴影部分的面积是( )A .3πB .23πC .πD .2π15.如图,等边三角形ABC 内接于O ,若O 的半径为2,则图中阴影部分的面积等于( )A .3πB .23πC .43πD .2π知识点六、求旋转扫过的面积16.如图,C 是半圆⊙O 内一点,直径AB 的长为4cm ,⊙BOC =60°,⊙BCO =90°,将⊙BOC 绕圆心O 逆时针旋转至⊙B′OC′,点C′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为( )A .43πB .πC .4πD 17.在⊙ABC 中,⊙C=90°,BC=4cm ,AC=3cm ,把⊙ABC 绕点A 顺时针旋转90°后,得到⊙A 1B 1C 1(如图所示),则线段AB 所扫过的面积为( )A .2B .254πcm 2C .252πcm 2D .5πcm 218.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π知识点七、求弓形的面积19.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.2πB .πC .22π- D .2π-20.如图,阴影表示以直角三角形各边为直径的三个半圆所组成的两个新月形,若127S S +=,且8AC BC +=,则AB 的长为( )A .6B .7C .8D .1021.如图,某商标是由三个半径都为R 的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是( )A .(√3﹣12π)R 2B .(√3+12π)R 2C .(√32﹣π)R 2D .(√32+π)R 2知识点八、求不规则图形面积22.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A .3πB .2πC .9π-D .6π 23.如图,直径6AB =的半圆,绕B 点顺时针旋转30︒,此时点A 到了点A ',则图中阴影部分的面积是( ).A .2πB .34πC .πD .3π24.如图,菱形ABCD 的边长为4cm ,⊙A =60°,弧BD 是以点A 为圆心,AB 长为半径的弧,弧CD 是以点B 为圆心,BC 长为半径的弧,则阴影部分的面积为( )A .2cm 2B .2C .4cm 2D .πcm 2二、填空题 知识点一、求弧长25.如图,边长为的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为_____cm .26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.如图,在66⨯的方格纸中,每个小方格都是边长为1的正方形,其中A 、B 、C 为格点,作ABC 的外接圆,则BC 的长等于_____.知识点二、求半径28.已知扇形的圆心角为120°,弧长为6π,则它的半径为________.29.若扇形的圆心角为120°,弧长为18πcm ,则该扇形的半径为_____cm .30.如图,⊙O 的半径为6cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB=OA ,动点P 从点A 出发,以π cm/s 的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为______时,BP 与⊙O 相切.知识点三、求圆心角31.一个扇形的弧长是20cm π,面积是2240cm π,则这个扇形的圆心角是___度. 32.如图,点A 、B 、C 在半径为9的⊙O 上,AB 的长为,则⊙ACB 的大小是___.33.若一个扇形的弧长是2πcm ,面积是26πcm ,则扇形的圆心角是__________度.知识点四、求点的运动路径长34.如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A O B '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)35.将边长为2的正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,当α最小时,点A 运动的路径长为_____.36.如图,在扇形铁皮AOB中,OA=10,⊙AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为_____.知识点五、求扇形面积37.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.38.一个扇形的半径为3cm,面积为 2cm,则此扇形的圆心角为______.39.如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC=2,则图中阴影部分的面积为_____.(结果保留π)知识点六、求旋转扫过的面积40.如图,在⊙ABC 中,⊙ABC =45°,⊙ACB =30°,AB =2,将⊙ABC 绕点C 顺时针旋转60°得⊙CDE ,则图中线段AB 扫过的阴影部分的面积为_____.41.如图,在⊙ABC 中,AB =5,AC =3,BC =4,将⊙ABC 绕点A 逆时针旋转30°后得到⊙ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为________.42.如图,将ABC 绕点A 逆时针旋转120︒得ADE ,已知4AB =,1AC =,那么图中阴影部分的面积是________.(结果保留π)知识点七、求弓形的面积43.如图,⊙O 的半径为2,点A ,B 在⊙O 上,⊙AOB =90°,则阴影部分的面积为________.44.如图,点A 、B 、C 在⊙O 上,若⊙BAC =45°,OB =2,则图中阴影部分的面积为_____.45.如图,点C 是以AB 为直径的半圆O 的三等分点,2AC = ,则图中阴影部分的面积是 _______.知识点八、求不规则图形面积46.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)47.如图,AB 是O 的直径,点E 是BF 的中点,过点E 的切 线分别交AF AB ,的延长线于点D C ,,若C 30∠=,O 的半径是2,则图形中阴影部分的面积是_______.48.如图所示的扇形AOB 中,920,OA B OB AO ∠===︒,C 为AB 上一点,30AOC ∠=︒,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为_______.三、解答题知识点一、求弧长49.如图,PC是⊙O的直径,PA切⊙O于点P,OA交⊙O于点B,连结BC.已知⊙O的半径为2,⊙C=35°(1)求⊙A的度数;(2)求BC的长.知识点二、求半径50.在⊙O中,弦AB所对的圆周角为30°,且5cmAB=,求AB的长.嘉琪的解法如下:⊙弦AB所对的圆周角是30°,AB∴的长为3055(cm) 1806ππ⨯=.请问嘉琪的解法正确吗?如果不正确,请给出理由.知识点三、求圆心角51.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.知识点四、求点的运动路径长52.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.知识点五、求扇形面积53.如图,AB是O的直径,点D是AB延长线上的一点,点C在O上,且AC=CD,=.∠︒120ACD()求证:CD是O的切线;1()若O的半径为3,求图中阴影部分的面积.2知识点六、求旋转扫过的面积54.如图所示,在平面直角坐标系中,Rt⊙ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将⊙ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的⊙A1B1C;(2)图中⊙ABC外接圆的圆心的坐标是,⊙ABC外接圆的面积是平方单位长度.知识点七、求弓形的面积55.如图,以AB为直径的⊙O经过AC的中点D,DE⊙BC于点E.(1)求证:DE是⊙O的切线;(2)当AB=⊙C=30°时,求图中阴影部分的面积(结果保留根号和π).知识点八、求不规则图形面积56.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分⊙DAB;(2)若BE=3,参考答案1.C【解析】试题解析:⊙P A、PB是⊙O的切线,⊙⊙OBP=⊙OAP=90°,在四边形APBO中,⊙P=60°,⊙⊙AOB =120°,⊙OA =2,⊙AB 的长l =12024=1803ππ⨯. 故选C.2.B【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可.【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B . 【点拨】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l π=是解题的关键.3.D【分析】连接OA 、OC ,如图,根据正多边形内角和公式可求出⊙E 、⊙D ,根据切线的性质可求出⊙OAE 、⊙OCD ,从而可求出⊙AOC ,然后根据圆弧长公式即可解决问题.【详解】连接OA 、OC ,如图.⊙五边形ABCDE 是正五边形, ⊙⊙E =⊙D =(52)1805︒-⨯=108°.⊙AE 、CD 与⊙O 相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5﹣2)×180°﹣90°﹣108°﹣108°﹣90°=144°,⊙劣弧AC 的长为144141805ππ⨯=. 故选D .【点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、圆弧长公式等知识,求出圆弧所对应的圆心角是解决本题的关键.4.A【解析】 l=180n R π⨯, 由题意得,2π=60180R π⨯, 解得:R=6cm .故选A .故选A .【点睛】运用了弧长的计算公式,属于基础题,熟练掌握弧长的计算公式是关键. 5.B 【分析】根据弧长公式180n r l π=可以求得该扇形的半径的长度. 【详解】 解:根据弧长的公式180n r l π=,知 180180390l r n πππ⨯===6, 即该扇形的半径为6.故选:B .【点拨】本题考查了弧长的计算.解题时,主要是根据弧长公式列出关于半径r 的方程,通过解方程即可求得r 的值.6.A【分析】设扇形半径为rcm ,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm , 则150180r π=5π,解得r =6cm . 故选A.【点拨】本题主要考查扇形弧长公式.7.B【解析】【详解】解:根据l=3180180n r n ππ⨯==π, 解得:n=60°,故选B .【点拨】本题考查弧长公式,在半径为r 的圆中,n°的圆心角所对的弧长为l=180n r π. 8.C【解析】【分析】根据圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长得到圆锥的展开图扇形的弧长=2π•10,然后根据扇形的弧长公式l =180n R π 计算即可求出n . 【详解】解:设圆锥的展开图扇形的圆心角的度数为n .⊙圆锥的底面圆的周长=2π•10=20π,⊙圆锥的展开图扇形的弧长=20π,⊙20π=30180n π⋅⋅, ⊙n =120°.故答案选:C .【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长,母线长等于扇形的半径.也考查了扇形的弧长公式.9.C【分析】根据弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),代入即可求出圆心角的度数.【详解】解:由题意得,2π=2180n π⨯, 解得:n =180.即这条弧所对的圆心角的度数是180°.故选C .【点拨】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.10.C【详解】如图所示:在Rt⊙ACD 中,AD=3,DC=1,根据勾股定理得:又将⊙ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为=. 故选C.11.A【分析】B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长,然后根据圆的周长公式即可得到B 点的运动路径长度为π.【详解】解:⊙B 点的运动路径是以A 点为圆心,AB 长为半径的圆的14的周长, ⊙9022360,故选:A .【点拨】本题考查了弧长的计算,熟悉相关性质是解题的关键.12.C【分析】点D 所转过的路径长是一段弧,是一段圆心角为180°,半径为OD 的弧,故根据弧长公式计算即可.【详解】解:BD=4, ⊙OD=2⊙点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点拨】本题主要考查了弧长公式:180n r l π=. 13.B【分析】由旋转的性质可得:AB A B BAA S S S S ''+=+阴影半圆半圆扇形,从而可得BAA S S '=阴影扇形,利用扇形面积公式计算即可.【详解】解:半圆AB 绕点B 顺时针旋转45︒,点A 旋转到A '的位置, AB A B S S '∴=半圆半圆,45ABA '∠=︒.AB A B BAA S S S S ''+=+阴影半圆半圆扇形,BAA S S '∴=阴影扇形24542360ππ⨯==. 故选B . 【点拨】本题考查的是旋转的性质,扇形面积的计算,掌握以上知识是解题的关键. 14.B【分析】根据圆周角定理可以求得⊙BOD 的度数,然后根据扇形面积公式即可解答本题.【详解】⊙⊙BCD=30°,⊙⊙BOD=60°,⊙AB 是⊙O 的直径,CD 是弦,OA=2,⊙阴影部分的面积是:236236020ππ⨯⨯=, 故选B .【点拨】本题考查扇形面积的计算、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.C【分析】连接OC ,如图,利用等边三角形的性质得120AOC ∠=,AOB AOC SS =,然后根据扇形的面积公式,利用图中阴影部分的面积AOC S =扇形进行计算.【详解】解:连接OC ,如图, ABC 为等边三角形,120AOC ∠∴=,AOB AOC S S =,∴图中阴影部分的面积212024.3603AOC S 扇形ππ⋅⨯===故选C .【点拨】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.16.B【解析】【分析】根据直角三角形的性质求出OC 、BC ,根据扇形面积公式:2360n r S π=计算即可. 【详解】解:⊙⊙BOC=60°,⊙BCO=90°,⊙⊙OBC=30°,⊙OC=12OB=1,则边BC 扫过的区域的面积为:2212021120111136023602ππ⨯⨯+-- =πcm 2.故答案为B .【点拨】本题主要考查扇形面积公式,三角形的性质.正确计算扇形面积是解题的关键. 17.B【解析】【分析】首先求出AB ,然后根据扇形面积公式计算即可.【详解】解:,⊙线段AB 所扫过的面积为:290525=3604ππ⋅⋅, 故选:B.【点拨】本题主要考查扇形面积计算,熟练掌握扇形面积计算公式是解题关键. 18.A【详解】试题分析:根据题意可得:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB 为直径的半圆的面积=扇形ABB′的面积=26066360ππ⨯=,故选A . 考点:图形旋转的性质、扇形的面积.19.D【分析】根据圆周角定理得出⊙AOB=90°,再利用S 阴影=S 扇形OAB -S ⊙OAB 算出结果.【详解】解:⊙⊙C=45°,⊙⊙AOB=90°,⊙OA=OB=2,⊙S阴影=S扇形OAB-S⊙OAB=29021223602π⋅⋅-⨯⨯=2π-,故选D.【点拨】本题考查了圆周角定理,扇形面积计算,解题的关键是得到⊙AOB=90°.20.A【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,AC2+BC2=AB2,⊙S1+S2=7,⊙12×π×(2AC)2+12×π×(2BC)2+12×AC×BC−12×π×(2AB)2=7,⊙AC×BC=14,AB6,故选:A.【点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.A【解析】【分析】由题意知,得到的如图三角形是等边三角形,边长也为R,阴影的部分的面积等于等边三角形的面积减去三个弓形的面积.而一个弓形的面积等于圆心角为60度的半径为R 的扇形的面积减去边长为R的等边三角形的面积.【详解】解:边长为R的等边三角形的面积SΔ=12×sin60°R2=√34R2;半径为R的扇形的面积S扇形=60πR2360=πR26;⊙一个弓形的面积S扇形=πR26−√34R2,⊙阴影的部分的面积=√34R 2−3×(πR 26−√34R 2)=(√3−12π)R 2. 故选:A .【点拨】本题考查了等边三角形的性质和面积的求法,及扇形,弓形的面积的求法. 22.A【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【详解】连接AC ,⊙四边形ABCD 是菱形,⊙6AB BC ==,⊙60B ∠=,E 为BC 的中点,⊙3CE BE CF ===,ABC ∆是等边三角形,//AB CD ,⊙60B ∠=,⊙180120BCD B ∠=-∠=,由勾股定理得:AE ==⊙11622AEB AEC AFC S S S ∆∆∆==⨯⨯==,⊙阴影部分的面积212033360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形, 故选A .【点拨】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.23.D【分析】由半圆A′B 面积+扇形ABA′的面积-空白处半圆AB 的面积即可得出阴影部分的面积.【详解】解:⊙半圆AB,绕B点顺时针旋转30°,⊙S阴影=S半圆A′B+S扇形ABA′-S半圆AB= S扇形ABA′=2630 360π⋅=3π故选D.【点拨】本题考查了扇形面积的计算以及旋转的性质,熟记扇形面积公式和旋转前后不变的边是解题的关键.24.B【解析】【分析】连接BD,判断出⊙ABD是等边三角形,根据等边三角形的性质可得⊙ABD=60°,再求出⊙CBD=60°,DB=BC=AD,从而确定S扇形BDC=S扇形ABD,然后求出阴影部分的面积=S扇形BDC -(S扇形ABD-S⊙ABD)=S⊙ABD,计算即可得解.【详解】解:如图,连接BD,⊙四边形ABCD是菱形,⊙AB=AD=BC,⊙⊙A=60°,⊙⊙ABD是等边三角形,⊙⊙ADB=60°,AD=DB=BC=4又⊙菱形的对边AD⊙BC,⊙⊙CBD=⊙ADB=60°,⊙S扇形BDC=S扇形ABD⊙S阴影=S扇形BDC-(S扇形ABD-S⊙ABD)=S⊙ABD24cm2.故选B.【点拨】本题考查了菱形的性质,等边三角形的性质和面积,熟记性质并作辅助线构造出等边三角形是解题的关键.25.10π【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.【详解】解:连接OD,OC.⊙⊙DOC=60°,OD=OC,⊙⊙ODC是等边三角形,⊙OD=OC=DC=cm),⊙OB⊙CD,⊙BC=BD cm),⊙OB=3(cm),⊙AB=17cm,⊙OA=OB+AB=20(cm),⊙点A在该过程中所经过的路径长=9020180π⋅⋅=10π(cm),故答案为:10π.【点拨】本题考查了正六边形的性质及计算,扇形弧长的计算,熟知以上计算是解题的关键.26.2π【解析】分析:根据弧长公式可得结论. 详解:根据题意,扇形的弧长为1203180π⨯=2π, 故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27 【分析】由AB 、BC 、AC 长可推导出⊙ACB 为等腰直角三角形,连接OC ,得出⊙BOC =90°,计算出OB 的长就能利用弧长公式求出BC 的长了.【详解】⊙每个小方格都是边长为1的正方形,⊙AB =AC ,BC ,⊙AC 2+BC 2=AB 2,⊙⊙ACB 为等腰直角三角形,⊙⊙A =⊙B =45°,⊙连接OC ,则⊙COB =90°,⊙OB⊙BC 的长为:90180π⋅=2.【点拨】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形三边长通过勾股定理逆定理得出⊙ACB 为等腰直角三角形.28.9【分析】根据弧长公式L =180n R π求解即可. 【详解】 ⊙L =180n R π, ⊙R =1806120ππ⨯=9. 故答案为9.【点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L =180n R π. 29.27【解析】【分析】根据弧长公式即可得解.【详解】解:设扇形的半径为r (cm ),则18π=120180r π⨯⨯, 解得:r=27.故答案为27.【点拨】本题考查扇形的弧长公式,l=180n r π,l 是弧长,n 是圆心角的度数,r 是半径. 30.2或10【分析】根据切线的判定与性质进行分析即可.若BP 与⊙O 相切,则⊙OPB=90°,又因为OB=2OP ,可得⊙B=30°,则⊙BOP=60°;根据弧长公式求得弧AP 长,除以速度,即可求得时间.【详解】连接OP⊙当OP⊙PB 时,BP 与⊙O 相切,⊙AB=OA ,OA=OP ,⊙OB=2OP ,⊙OPB=90°;⊙⊙B=30°;⊙⊙O=60°;⊙OA=6cm ,弧AP=606180π⨯=2π, ⊙圆的周长为:12π,⊙点P 运动的距离为2π或12π-2π=10π;⊙当t=2秒或10秒时,有BP 与⊙O 相切.故答案为:2或10【点拨】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.31.150【分析】根据弧长公式计算.【详解】 根据扇形的面积公式12S lr =可得: 1240202r ππ=⨯, 解得r =24cm , 再根据弧长公式20180n r l cm ππ==, 解得150n =︒.故答案为:150.【点拨】本题考查了弧长的计算及扇形面积的计算,要记熟公式:扇形的面积公式12S lr =,弧长公式180n r l π=. 32.20°. 【分析】连接OA 、OB ,由弧长公式的92180n ππ⨯⨯=可求得⊙AOB ,然后再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB.【详解】解:连接OA、OB,由弧长公式的92180nππ⨯⨯=可求得⊙AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得⊙ACB=20°.故答案为:20°【点拨】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键.33.60【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积=12lr=6π,解得:r=6,又⊙6180nlπ⨯==2π,⊙n=60.故答案为:60.【点拨】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.34.4π.【分析】根据弧长公式,此题主要是得到⊙OBO′的度数.根据等腰三角形的性质即可求解.【详解】解:根据题意,知OA=OB.又⊙AOB=36°,⊙⊙OBA=72°.⊙点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π. 【点拨】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.35.23π . 【详解】试题分析:根据题意α最小值是60°,然后根据弧长公式即可求得.⊙正六边形ABCDEF 绕中心O 顺时针旋转α度与原图形重合,α最小值是60°, ⊙点A 运动的路径长=60221803. 故答案为23π. 考点:轨迹;旋转对称图形.36.60π.【解析】【分析】点O 所经过的路线是2段弧和一条线段,一段是以点B 为圆心,10为半径,圆心 角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】当OA 第1次落在l 上时:点O 所经过的路线长为:90π1036π1090π10216π1012π.180180180180⨯⨯⨯⨯++== 则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π.故答案是:60π.【点拨】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.37.6【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:⊙正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,⊙2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.【点拨】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.38.40°.【详解】解:根据扇形的面积计算公式可得:23360n=π,解得:n=40°,即圆心角的度数为40°.考点:扇形的面积计算.39.4π【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,⊙BAO和⊙EDO的度数,从而可以解答本题.【详解】解:⊙四边形ABCD是矩形,⊙OA=OC=OB=OD,⊙AB=AO,⊙⊙ABO是等边三角形,⊙⊙BAO=60°,⊙⊙EDO =30°,⊙AC =2,⊙OA =OD =1,⊙图中阴影部分的面积为:22601301+=3603604ππ⨯⨯⨯⨯π, 故答案为:4π. 【点拨】本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键.40.3【分析】作AF ⊙BC 于F ,解直角三角形分别求出AC 、BC ,根据扇形面积公式、三角形面积公式计算即可.【详解】作AF ⊙BC 于F ,⊙⊙ABC =45°,⊙AF =BF =2AB 在Rt⊙AFC 中,⊙ACB =30°,⊙AC =2AF =FC =tan ∠AF ACF , 由旋转的性质可知,S ⊙ABC =S ⊙EDC ,⊙图中线段AB 扫过的阴影部分的面积=扇形DCB 的面积+⊙EDC 的面积﹣⊙ABC 的面积﹣扇形ACE 的面积=扇形DCB 的面积﹣扇形ACE 的面积﹣260360π⨯,.【点拨】本题考查的是扇形面积计算,掌握扇形面积公式S=2360n Rπ是解题的关键.41.25 12π【解析】【详解】由题意得,S⊙AED=S⊙ABC,由题图可得,阴影部分的面积= S⊙AED+S扇形ABD-S⊙ABC,⊙阴影部分的面积= S扇形ABD=2 30525π36012π⨯=.故答案为25 12π.42.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形DAB的面积-扇形EAC的面积,利用扇形的面积公式即可求解.【详解】解:⊙将ABC绕点A逆时针旋转120︒得ADE,⊙S⊙ABC= S⊙ADE,⊙阴影部分的面积=扇形DAB的面积+S⊙ADE-扇形EAC的面积-S⊙ABC=扇形DAB的面积-扇形EAC的面积⊙阴影部分的面积221205 12041360360πππ⨯⨯⨯=-=⨯,故答案为:5π.【点拨】本题考查了旋转的性质以及扇形的面积公式,根据旋转的性质推出:阴影部分的面积=扇形DAB的面积-扇形EAC的面积是解题关键.43.π-2【解析】【分析】先求出扇形面积,再求三角形面积,阴影面积=扇形面积-三角形面积.【详解】由已知可得,S 阴影=S 扇形OAB -S ⊙OAB =290212223602ππ-⨯⨯=-. 故答案为π-2【点睛】本题考核知识点:扇形面积. 解题关键点:熟记扇形面积公式,用求差法得到阴影面积.44.π﹣2【分析】先根据圆周角定理证得⊙BOC=90°,从而得出⊙OBC 是等腰直角三角形,然后根据S 阴影=S 扇形OBC -S ⊙OBC 即可求得.【详解】解:⊙⊙BAC=45°,⊙⊙BOC=90°,⊙⊙OBC 是等腰直角三角形,⊙OB=2,⊙S 阴影=S 扇形OBC -S ⊙OBC =14π×22-12×2×2=π-2. 故答案为π﹣2【点拨】本题考查的是圆周角定理及扇形的面积公式,熟记扇形的面积公式是解答此题的关键.45.43π【解析】【分析】连接OC,用扇形OBC 的面积减去OBC 的面积即可.【详解】如图:连接OC,点C 是以AB 为直径的半圆O 的三等分点,60,120,AOC BOC ∴∠=∠=,OA OC =OAC ∴是等边三角形,60,2,A OA OC AC ∴∠====S 扇形OBC 2120π24π.3603⨯== 1111122tan 603,22222OBC ABC S S AC BC ==⨯⋅=⨯⨯⨯=则阴影部分的面积为:43π故答案为43π 【点拨】考查不规则图形面积的计算,掌握扇形的面积公式是解题的关键.46.π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点拨】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键.472π3- 【分析】先根据已知条件证明四边形AOEF 为菱形,再得到ΔEOB 为等边三角形,求出AE 的长,得到弓形的面积,再利用ΔFDE S S S =-阴弓即可求解.【详解】解:连接OE EF ,连接OF 交AE 与点G .连接BE⊙点E 是BF 的中点即=EF BE ,C 30∠=︒.⊙EF BE DAB 60∠==︒,又OF AO =⊙AEC 90ΔAFO ∠=︒,为等边三角形⊙AF AO OE EF ===,即四边形AOEF 为菱形,⊙EF AO ,从而DFE FAO 60∠∠==︒⊙AB 为直径⊙AEB 90∠=︒又⊙CD 为切线⊙OE CD ⊥⊙EOC 60∠=︒又OE OB =,⊙ΔEOB 为等边三角形.⊙BE 2=,EBA 60∠=︒,⊙AEsin EBA sin60AB ∠=︒=,即AE AB sin604=⋅︒==.2AOE AOEF 114π2S S S π22323=-=⨯-⨯⨯=-弓EF 扇菱形即2πS 3=弓在RT⊙FDE 中,DEsin DFE sin60EF ∠=︒=即ED EFsin6022=︒=⨯=⊙DF 1==⊙ΔFDE 12π2πS S S 12323⎛=-=⨯=- ⎝阴弓.2π3-.【点拨】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据图形的特点求出弓形的面积是解题的关键.48.232π- 【分析】先根据题目条件计算出OD ,CD 的长度,判断BOC 为等边三角形,之后表示出阴影面积的计算公式进行计算即可.【详解】在Rt COD 中,30,2AOC OC OA ︒∠===⊙1,CD OD ==⊙90AOB ︒∠=⊙60BOC ︒∠=⊙OB OC =⊙BOC 为等边三角形⊙BOC =COD BOC S S S S +-△△阴影扇形221602122360π⨯=+-232π=-故答案为:232π-【点拨】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键. 49.(1)⊙A =20°;(2)119π.【分析】(1)根据圆周角定理求出⊙AOP ,根据切线的性质计算,得到答案;(2)根据弧长公式计算即可.【详解】解:(1)由圆周角定理得,⊙AOP =2⊙C =70°⊙P A 切⊙O 于点P ,⊙⊙APO =90°,⊙⊙A =20°;(2)⊙BOC =180°﹣⊙AOP =110°, ⊙1102180BA π==119π. 【点拨】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.50.嘉琪的解法不正确,见解析【分析】连接AO ,OB ,根据圆周角定理可得60AOB ∠=︒,进而得到OAB ∆是等边三角形,然后根据弧长计算公式可得答案.【详解】解:嘉琪的解法不正确,理由如下:如图,连接AO ,OB ,AB 所对的圆周角为30,60AOB ∴∠=︒,AO BO =,OAB ∴∆是等边三角形,5AB cm =,∴AB 的长为:6055()1803cm ππ⨯=. 【点拨】此题主要考查了圆周角定理和弧长计算公式,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意:弧长公式。

相关文档
最新文档