有序实数对课件

合集下载

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

人教版七年级数学下7.1.1有序实数对课件(共42张PPT)

人教版七年级数学下7.1.1有序实数对课件(共42张PPT)

(3)甲地距我市29km
如图,写出表示下列各点的有序数对:
如图,写出表示下列各点的有序数对:
或者老师说一个数对,请代表相应位置的人站起来。
如图,写出表示下列各点的有序数对:
下列关于有序数对的说法正确的是( )
5排8号 5排6号 在数轴上,确定一个点的位置需要几个数据呢?
问题⑴: 新学期开始,老师要重新调整学生的座位,老师如何描述才能让学生准确地找到自己的新座位呢?
的方式表示出图中“怪兽”经过的其他几个位置吗?
排5
(4,5) (5,5)
4
(5,4)
(7,4)
3
(3,3)
(4,3)
在生活中,确定物体的位置,还有
其他方法吗2? (1,2)(3,2)(7,3) (8,3)
1 (1,1)

1
2
3
4
5
6
7
8
如图( 1 , 3 )表示 第一列第三排,请用 彩笔把以下位置的五 角星涂上颜色。
(4 ,6)
(3 ,4)
(5 ,4)
设计图案
排 7 6
5
4
3
(2 ,2)
2
(4 ,2)
1
(6 ,2)
12
34
5
6
7列
神州飞船的发 射和回收都那么成 功 ,圆了几代中国 人的梦想,让全中 国人为之骄傲和自 豪!但是,同学们知 道我们的科学家是 怎样迅速地找到返 回舱着陆的位置的 吗?
神州飞船
这全依赖于 “GPS——卫星全球定位系统”
A.(7,4)
B.(4,7)
C.(7,5)
D.(7,6)
例1. 如图,点A表示3街与5大道的十字路口,点B 表示5街与3大道的十字路口,如果用(3,5)→(4,5) →(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么 你能用同样的方法写出由A到B的其他几条路径吗?

(最新)数学七年级下册第7章第1节《有序数对》省优质课一等奖教案

(最新)数学七年级下册第7章第1节《有序数对》省优质课一等奖教案

(最新)数学七年级下册第7章第1节《有序数对》省优质课⼀等奖教案《7.1.1 有序数对》教学设计教学模式:“探究式教学”是以⾃主探究为主的教学。

它是指教学过程是在教师的启发诱导下,以学⽣独⽴⾃主探究或合作讨论为前提,以现⾏教材为基本探究内容,以学⽣周围世界和⽣活实际为参照对象,为学⽣提供充分⾃由表达、质疑、探究、讨论问题的⼀种教学形式。

学⽣对当前教学内容中的主要知识点进⾏⾃主学习、深⼊探究并进⾏⼩组合作交流,以⾃我获取,⾃我求证的⽅式深化知识的理解和运⽤。

从⽽较好地达到课程标准中关于认知⽬标与情感⽬标要求的⼀种教学模式。

其中认知⽬标涉及与学科相关知识、概念、原理与能⼒的掌握;情感⽬标注重科学素养与道德品质的培养。

探究式教学的课程环节:创设情境——启发思考——⾃主探究——协作交流——总结提⾼课程设计:教学⽅法作为课堂的组织者、引导、启发者,教师要启发引导学⽣⾃主学习,结合教学⽬标,针对我校学⽣的知识⽔平、认知情况,借助多媒体课件、⽩板软件提⾼学⽣学习兴趣,利⽤教材插图引导学⽣发现问题、具体解决,增强课堂教学的趣味性和直观性,激发学⽣求知欲望,有效的渗透数形结合思想、⽅法,提⾼课堂教学效益。

学⽣学法在教学过程中要可能多的给学⽣提供参与学习活动的时间和空间,让学⽣体会有序数对知识的产⽣过程,学会学习。

⾸先学⽣观察、分析后提出问题,之后学⽣通过个⼈思考和⼩组间的交流协作进⾏探究归纳,真正体会有序数对的含义,从中领悟知识的产⽣,归纳规律。

教材分析有序数对是新⼈教版七年级数学下册第七章《平⾯直⾓坐标系》第⼀节的内容,它是学习全章的基础,也是今后学习平⾯直⾓坐标系和研究函数的运动变化的基础。

学⽣在实际⽣活中⽤“数对”表⽰点或事物的位置有⼀定的基础只是谈到“有序”有些陌⽣。

本节内容有利于增强学⽣的数学符号感,是“数”向“形”的正式过渡,让学⽣充分认识到数学是描述解决实际⽣活中事物、问题的重要⼯具。

教学⽬标【知识与能⼒⽬标】理解有序数对的意义;【过程与⽅法⽬标】1.能⽤有序数对表⽰实际⽣活中物体的位置。

青岛版八年级数学下册《有序实数对与坐标平面上的点的关系》课件

青岛版八年级数学下册《有序实数对与坐标平面上的点的关系》课件

在数轴上,如何确定一个点的位置呢?
例如:
A
-3 -2
-1
0
1
2
B
3
4
A点记作-2,B点记作3.也就是说,
在直线上一般用一个数据就可以表示一个点的位置。
y
在平面内,两条互相垂直且有
公共原点的数轴组成平面直角坐标
系,如图所示。
5
4
3
2
1
O 1 2 3 4 5 6
水平方向的数轴称为x轴或横轴,垂直方向的数
们分别用直角坐标系中的点表示出来吗?你是怎样表示的?
(3)如果P是直角坐标系中任意一点,怎样写出这个点的坐标呢?
这个点的横、纵坐标都是实数吗?
(4)通过上面的讨论,你认为有序实数对与直角坐标系中的点应
当具有什么关系?
一、有序实数对与直角坐标系中的点的关系
把有序有理数对扩充到有序实数对后,每一
个有序实数对都可以用直角坐标系中唯一的一个
长为2,由勾股定理,得
DB= 2 − 2 = 22 − 12 = 3。
所以,点B的坐标为(-1, 3)。
例2 在直角坐标系中,已知点A( 2, 3)。
(1)分别作出与点A关于y轴成轴对称的点B,关于x
轴成轴对称的点D,并写出它们的坐标;
(2)如果A,B,D是矩形的三个顶点,写出第四个顶
点C的坐标;
(2)依次连接A,B,C,D,E,F,A,得到什么图形?
(3)在平面直角坐标系中,点与实数对之间有何关系?
y
B
C
【解】(1)如图所示。
(2)轴对称图形。
1
(3)在平面直角坐标系中, A
点来表示.反之,直角坐标系中的每一个点都表示

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

《实数》数学教学课件

《实数》数学教学课件

《实数》数学教学课件一、教学内容本节课选自《数学》教材第七章第四节“实数”。

详细内容包括实数的定义、分类及性质,特别是无理数的理解与运算规则。

着重讲解教材第7.4节中关于实数的性质,包括实数的封闭性、有序性以及运算法则。

二、教学目标1. 理解实数的概念,掌握实数的分类及性质。

2. 能够运用实数的性质解决实际问题,特别是涉及无理数的运算问题。

3. 培养学生的抽象思维能力和逻辑推理能力,形成对数学严谨性的认识。

三、教学难点与重点教学难点:实数的性质理解,特别是无理数的运算规则。

教学重点:实数的定义及其在数学运算中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:数学教材、练习本、计算器(含无理数计算功能)。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中遇到的无理数(如π的近似计算),引发学生对实数学习的兴趣。

2. 知识讲解(15分钟)详细讲解实数的定义、分类及性质,特别强调无理数的特点及运算规则。

3. 例题讲解(10分钟)选取典型例题,如无理数的开方运算、实数的混合运算等,讲解解题思路和步骤。

4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识,教师巡回指导。

5. 小组讨论(10分钟)学生分组讨论实数在实际生活中的应用,培养学生的实际应用能力。

六、板书设计1. 实数的定义2. 实数的分类3. 实数的性质4. 无理数的运算规则5. 例题解析七、作业设计1. 作业题目:(1)计算:√3 + √2,(√5 √3)²(2)判断题:实数可以分为有理数和无理数两大类。

(3)应用题:某班有30名学生,将他们按照身高从矮到高排序,假设每个学生的身高都是一个实数,求他们身高的平均数。

2. 答案:(1)√3 + √2 = 1.732 + 1.414 ≈ 3.146(√5 √3)² = (2.236 1.732)² ≈ 0.728(2)正确(3)平均数≈ (1+30)/2 = 15.5八、课后反思及拓展延伸本节课学生对实数的定义和性质有了较深入的理解,但对无理数的运算还需加强练习。

实数ppt课件

实数ppt课件

化学
在化学中,实数可以用来 描述化学反应中的反应物 和生成物的比例关系。
在日常生活中的应用
金融与经济
在金融和经济活动中,实 数被广泛应用于财务计算 、成本分析、市场预测等 方面。
计算机科学
在计算机科学中,实数被 用于各种算法和数据结构 的实现,如浮点数运算、 排序算法等。
统计学
在统计学中,实数被用于 描述各种数据的分布特征 和规律,如平均数、中位 数、方差等。
数轴的表示
在数轴上,正实数表示为向右的箭头,负实数表示为向左的箭头,零表示为原点。实数的 序关系可以通过数轴上的位置关系来表示,例如a>b表示a在b的右侧。
数轴的应用
数轴是学习数学的重要工具之一,可以用于比较大小、计算距离、表示不等式等。通过数 轴可以直观地理解实数的性质和运算规则,帮助我们更好地掌握实数的知识。
实数的性质
01 02
实数的四则运算
实数可以进行加、减、乘、除四则运算,运算结果仍然属于实数集合。 实数的加法、减法和乘法满足交换律、结合律和分配律,除法满足除法 的可交换性、可结合性和除法的倒数关系。
实数的序关系
实数集合是有序的,可以比较大小。实数的序关系满足传递性、反对称 性和可比较性,使得实数可以进行大小比较和排序。
实数ppt课件
• 实数简介 • 实数的运算 • 实数的分类 • 实数的应用 • 实数的扩展知识
目录
Part
01
实数简介
实数的定义
实数定义
实数是包括有理数和无理数的所有数的集合,具有连续性和完备性。实数包括有理数和 无理数,有理数包括整数和分数,无理数则无法表示为两个整数的比值。
实数集合
实数集合在数学中常用字母R表示,是一个无限大的集合,包含了所有的有理数和无理数 。实数在数轴上表示为连续的点,具有稠密性。

《有序数对》PPT经典课件2

《有序数对》PPT经典课件2

新知小结
利用行、列定位法确定点的位置时,首先确 定平面内行、列的序号,然后写出表示平面上点 的位置的有序数对.
巩固新知
1 如图,甲处表示2街与5巷的十字路口,乙处表示5 街与2巷的十字路口. 如果用(2,5)表示甲处的位 置,那么“(2, 5) → (3,5)→(4,5)→(5,5)→(5, 4) →(5, 3)→(5, 2)”表示从甲处到乙处的一种路线. 请你用这种形式 写出几种从甲处到乙处的路线.
“请以下座位的同学今天放学后参加数学问题讨论: (1,5),(2,4),(4,2),(3,3),(5,6).”
思考 怎样确定教室里座位的位置?排数和列数的先后顺 序对位置有影响吗?假设我们约定“列数在前,排 数在后”,请你在图上标出被邀请参加讨论的同学 的座位.
新知小结
上面的问题都是通过像“9排7号”“第1列第5排” 这样含有两个数的表达方式来表示一个确定的位置, 其中两个数各自表示不同的含义,例如前边的表示 “排数”,后边的表示“号数”. 我们把这种有顺序 的两个数a与b组成的数对,叫做有序数对,记作(a, b).
人教版数学七年级下册
第七章
7.1.1 有序数对
学习目标
1.通过丰富的实例认识有序数对,感受它在 确定点的位置中的作用.
2.了解有序数对的概念,学会用有序数刘表 示点的位置.
复习导入
在数轴上,确定一个点的位置需要几个数据呢?
-2 -1 0 1 2 3
答:一个,例如: 若A点表示-2,B点表示3,则由-2和3就可以在 数轴上找到A点和B点的位置. 在直线上,确定一个点的位置一般需要一个数据.
解:(1)王明的座位位置是第1排第2列;陈帅的座位位置是 第5排第4列.
(2)(5,5)表示的位置是第5排第5列;王明的座位位置可 表示为(1,2),陈帅的座位位置可表示为(5,4).

七年级数学人教版下册第六章6.3.1实数及其分类课件

七年级数学人教版下册第六章6.3.1实数及其分类课件
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数



0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};

,∴
是有理数.∵

8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8

1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度

《实数的概念》课件

《实数的概念》课件
实数的除法运算可以通过乘法转换为乘法运算,即a/b=(a*1/数运算的基本性质
详细描述
实数的指数运算满足a^m*a^n=a^(m+n)和(a^m)^n=a^(mn)等基本性质。
03
实数与数轴
数轴的定义
实数轴
一条无限延伸的直线,每个点对应一个实数,实数轴上 的点是连续且稠密的。
在科学研究、工业生产和日常生活中,物理量的测量和计算都发挥着至关重要的作用。实数使 得这些测量和计算具有可靠性和准确性。
金融和统计数据的表示
金融和统计数据涉及到大量的数值计 算和表示,实数在其中扮演着重要的 角色。例如,股票价格、经济增长率 、人口数量等都是以实数表示的。
实数的精确性和可靠性使得金融和统 计数据的表示和分析更加准确,有助 于做出正确的决策和预测。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以通过加法转换为加法运算, 即a-b=a+(-b)。
乘法运算
总结词
乘法运算的基本性质
详细描述
实数的乘法运算满足交换律、结合律和分配律,即ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
除法运算
总结词
除法运算的基本性质
详细描述
定义方式
通常采用代数定义,即通过有理数和无理数来定义实数 。
数轴上的点与实数的关系
对应关系
每个实数都可以在数轴上找到一 个唯一的点与之对应,反之亦然 。
顺序关系
实数在数轴上按照大小关系排列 ,从小到大或从大到小。
数轴上的连续性和稠密性
连续性
实数轴上的点是连续不断的,没有间 断或空隙。
稠密性
在任意两个不同的实数之间,总可以 找到一个新的实数。

第六章实数复习(公开课)ppt课件

第六章实数复习(公开课)ppt课件

19世纪
数学家逐步完善实数理论 ,形成了完备的实数体系 ,为数学分析、连续函数 等研究奠定了基础。
减法运算
总结词
减法运算的基本性质
详细描述
实数的减法运算可以转化为加法运算,即a-b=a+(-b)。
总结词
减法运算的运算律
详细描述
减法运算同样满足交换律和结合律,即a-b=b-a和(ab)-c=a-(b+c)。
总结词
减法运算的运算性质
详细描述
减法的可逆性也是减法的一个重要性质,每一个数都有 唯一的相反数;另外,0是减法的单位元,任何数与0 相减都等于它本身。
总结词
加法运算的运算律
详细描述
加法运算还有一些特殊的运算律,例如,任何数与0相加 都等于它本身,即a+0=a;相反数相加等于0,即a+(a)=0。
总结词
加法运算的运算性质
详细描述
加法运算还有一些重要的运算性质,例如,加法的可逆性 ,即每一个数都有加法逆元,与它相加等于0;加法的单 位元,即有一个特殊的数0,任何数与它相加都等于它本 身。
实数在几何学中有着广泛的应用,例如在计算长度 、面积和体积时,需要使用实数表示测量值。
函数定义域与值域
实数可以用来定义各种数学函数,包括代数函数、 三角函数、指数函数和对数函数等,同时函数的值 域也由实数构成。
数学分析基础
实数对于数学分析来说是必不可少的基础,极限、 连续性和可微性的定义都离不开实数。
在物理中的应用
80%
测量与计算
在物理学中,实数常被用于表示 和计算各种物理量,如长度、时 间、质量、电荷等。
100%
物理定律的数学表达
许多物理定律可以用实数表示的 数学公式来描述,例如牛顿第二 定律 F=ma。

人教版七年级下册数学《有序数对》说课教学复习课件

人教版七年级下册数学《有序数对》说课教学复习课件

知道哪些同学参加讨论吗?
“请以下座位的同学
今天放学后参加数学
问题讨论:
(1,5),(2,4),(4,
2),(3,3),(5,6).”
课程讲授
1
有序数对
想一想:怎样确定教室里座位的位置?排数和
列数的先后顺序对位置有影响吗?假设我们约
定“列数在前,排数在后”,请你在图上标出
被邀请参加讨论的同学的座位.
课程讲授
1
有序数对

(3)请说出(3,3)和(4,8)分别表示哪两位同学的座位
位置;
(3) (3,3)表示张军的座位位置;(4,8)表示夏凡的座位
位置.
课程讲授
1
有序数对

(4)(2,3)和(3,2)表示的位置相同吗?一般地,若
a≠b,(a,b)与(b,a)表示的位置相同吗?
(4) (2,3)表示的是第2排第3列的位置,(3,2)表示的是
解:(1)王明的座位位置是第1排第2列;陈帅的座
位位置是第5排第4列.
课程讲授
1
有序数对

(2)若用(3,2)表示第3排第2列的位置,那么(5,5)
表示什么位置?王明和陈帅的座位位置可以怎
样表示?
(2)(5,5)表示的位置是第5排第5列;王明的座位位置可
表示为(1,2),陈帅的座位位置可表示为(5,4).
B.第3组第1排
C.第2组第3排
D.第2组第2排
【答案】C
【详解】
解:某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是第2组第3排,所以C
选项是正确的.
练一练
2.根据下列表述,能确定位置的是()
A.天益广场南区

人教版九年级中考数学总复习课件第12课时 平面直角坐标系(共23张PPT)

人教版九年级中考数学总复习课件第12课时 平面直角坐标系(共23张PPT)

14.[变式]如图,动点 P 从(0,3)出发,沿所示的方向
运动,每当碰到矩形的边时反弹,反弹时反射角
等于入射角,当点 P 第 2018 次碰到矩形的边时,
点 P 的坐标为( C )
A.(1,4)
y
B.(5,0)
4P 3
C.(6,4)
2
D.(8,3)
1
O 1 2 3 4 5 6 7 8x
15.[变式]如图,在平面直角坐标系中,每个最小方格
移 (或( x a, y));
规 将点 (x, y) 向上(或向下)平移 b 个单位长度,可
律 以得到对应点坐标为 ( x, y b) (或( x, y b)).
关于 x 轴对称
P(a,b)关于 x 轴对称的点的坐标为 (a, b);
关于 y 轴对称
P(a,b)关于 y 轴对称的点的坐标为(a, b);
坐 各 象 点 P(x,y) 在第一象限 x 0,y 0;
标 平 面
限 内 点 P(x,y) 在第二象限 x 0,y 0;
点 坐
的 标
点 P(x,y) 在第三象限 x 0,y 0;
内 特征 点 P(x,y) 在第四象限 x 0,y 0.
点 的
坐 标 点 P(x,y) 在 x 轴上 y 0
的边长均为 1 个单位长度, P1 , P2 , P3 ,…,均在格
点上,其顺序按图中“→”方向排列,如:
P1 (0,0), P2 (0,1), P14
y
P15
P3 (1,1), P4 (1,1), P5 (1,1), P6 (1,2),
P10 P6
P2
P11 P7
P3
…,根据这个规律,
O P1

《实数》ppt课件

《实数》ppt课件

指数运算法则可以用于简化复杂的数 学表达式。
03
CATALOGUE
实数的分类
有理数和无理数
有理数
可以表示为两个整数之比的数, 包括整数、有限小数和无限循环 小数。
无理数
无法表示为两个整数之比的数, 常见于无限不循环小数,如π和 √2。
正数、负数和零
01
02
03
正数
大于零的实数,包括正整 数、正小数和正无理数。
其结果仍为实数。
详细描述
实数的加法运算与整数、有理 数类似,遵循交换律和结合律 ,即a+b=b+a, (a+b)+c=a+(b+c)。
总结词
正数与负数相加,结果的符号 取决于绝对值较大的数。
详细描述
如果a>0,b<0,则a+b=a-(b);如果a<0,b>0,则 a+b=b-(-a)。
减法运算
总结词
《实数》PPT课件
目 录
• 实数的基本概念 • 实数的运算 • 实数的分类 • 实数在生活实数的基本概念
实数的定义
实数的定义
实数是包括有理数和无理数在内的所有数的集合,即实数集。实数集可以用实数轴来表 示,实数轴上的每一个点都对应一个实数,每一个实数都可以在实数轴上找到一个点来
乘法运算
总结词
乘法运算在实数范围内具有封闭性, 即任何两个实数相乘,其结果仍为实 数。
详细描述
实数的乘法运算遵循交换律和结合律 ,即ab=ba,(ab)c=a(bc)。
总结词
正数与负数相乘得负数,负数与负数 相乘得正数。
详细描述
正数乘以正数得正数,如2*3=6;正 数乘以负数得负数,如2*(-3)=-6; 负数乘以负数得正数,如(-2)*(3)=6。

7-1-1有序数对-七年级下册人教版数学课件

7-1-1有序数对-七年级下册人教版数学课件
A.(5,6) B.(6,5) C.(6,8) D.(3,2)
2.如果七年级一班用(7,1)表示,那么八年级四班可表示成 _(__8_,__4_)___,(9,2)表示的含义是__九___年__级__二__班______.
课堂练习
3.如图7.1-5所示,写出表示下列各点的有序数对. A_______; B_______;C_______;D_______;E_______;F_______; G_______;H_______;I_______.
【答案】解:(1)先找第7排,再找11座和12座;(2)若分单号与双号 区,则李娜和王欣的座位没挨在一起;若没分单号与双号区,则李娜和王 欣的座位挨在一起;(3)(11,7)表示11排7座,(12,7)表示12排7 座.
课后习题
7.体育课上,七年级某班49名同学在操场上练习正方形方队,他 们站成7×7方队,每横队7人,每纵队7人,小敏在第2纵队的排 头,记为(1,2),小娟在第5纵队的队尾,则小娟的位置应记为 __(_7_,___5_)______.
图7.1-6
课堂练习
【答案】⑴兵(3,4),炮(8,3),马(4,3);⑵马下一步还可以走的位置 有5个,(2,2),(2,4),(5,5),(6,2),(6,4). 【讲评】考查用有序数对确定位置在日常生活中的应用.⑴因为“相”所 在的位置用有序数对(3,1)表示,“帅”所在的位置用有序数对(5,1)表 示,可知“行数在前,列数在后”,且每个正方形边长为一个单位长度, 根据“横前纵后中间逗,两边括号不能漏”来确定其他的棋子的位置.⑵ 根据中国象棋规定:马行“日”字,并注意到(3,1),(5,1)虽然符合马 行“日”字的规定,但因为这两个位置上有本方棋子,所以下一步不可能 走到这两的位置,可以得到马下一步还可以走的位置有5个.

【专题课件】人教版七年级下册第七章《平面直角坐标系》第一课:有序数对及平面直角坐标系

【专题课件】人教版七年级下册第七章《平面直角坐标系》第一课:有序数对及平面直角坐标系

合作与交流:
A
类似于利用数
C
轴确定直线上点的
位置,能不能找到
一种方法来确定平
面内的点的位置呢?
D B
一、平面直角坐标系的概念 y
5
在平面内画两条
互相垂直的数轴,
4
构成平面直角坐
3
标系.
2
1
-4 -3 -2 -1 O -1
x轴与y轴的交点叫平
-2
面直角坐标系的原点. -3
-4
竖直的叫y轴或纵轴; y轴取向上为正方向
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
当堂练习
1.请你根据下列各点的坐标判定它们分别在第 几象限或在什么坐标轴上?
A(-5,2)
第二象限
E(1,8)
第一象限
B (3,-2) C(0,4) D(-6,0)
第四象限 y轴的正半轴上 x轴的负半轴上
F(0,0) G(5,0) H(-6,-4) M (0,-3)
数对表示物体的位置. (重点、难点)
导入新课
情境引入
周末小明父子俩 去电影院看国产大 片《湄公河行动》 ,买了两张票去观 看,座位号分别是7 排9号和7排11号.怎 样才能既快又准地 找到座位?
讲授新课
有序数对的定义及应用
思考1 在班里老师想找一个学生,你知道是谁吗? 提示1 只给一个数据“第2列”,你能确定老师 要找的学生是谁吗? 提示2 给出两个数据“第2列,第3排”,你能 确定是谁了吗?
预祝
此 次 片区 活
(E,3) (E,1) (C,5) (D,4) (A,1) (D,3)
动圆
满成功 !

实数课件PPT

实数课件PPT

在工程学中的应用
测量和计算
01
在工程学中,实数被广泛应用于测量和计算,如长度、面积、
体积、角度等。
电路分析
02
在电路分析中,电压、电流、电阻等都是实数,通过实数的运
算可以分析电路的工作状态和性能。
建筑设计
03
在建筑设计中,实数被用于描述建筑物的尺寸、比例和位置等

在经济学中的应用
1 2
成本和收益计算
实数的表示方法可以根据需要进行转换,但不同的表示方 法可能会影响我们对实数的理解和应用。因此,在数学学 习和研究中,我们需要掌握各种实数的表示方法,以便更 好地理解和应用实数。
实数的性质
实数的性质包括有序性、连续性和完备性等。有序性是指实数可以按照大小关系 进行排列,连续性是指实数在数轴上没有间隙,完备性则是指实数具有完备的代 数性质和几何性质。
04
CATALOGUE
实数与数轴
数轴的定义
数轴
一条直线,每一个点对应 一个实数,每一个实数对 应数轴上的一个点。
定义方式
在数轴上,原点表示0,正 方向表示正数,负方向表 示负数。
单位长度
数轴上相邻两个点之间的 距离都相等,这个距离称 为单位长度。
数轴上的表示方法
整数
在数轴上,每一个整数都可以找 到一个唯一的点与之对应。
实数在实际生活中的应用
在物理学中的应用
描述物体运动轨迹
在物理学中,实数被广泛应用于描述物体的运动轨迹,如速度、 加速度和位移等。
计算物理量
物理量如力、能量、动量等都可以用实数表示,通过实数的运算可 以得出物理规律和公式。
电磁波的频率和振幅
在电磁波的描述中,频率和振幅都是实数,它们决定了电磁波的性 质和传播特性。

7.1.1 有序数对 课件 人教版数学七年级下册

7.1.1 有序数对 课件 人教版数学七年级下册
其次,我在工作中注重团队合作,积极与同事协作,共同完成 工作任务。我尊重团队成员,乐于倾听他们的意见和建议,与他们 保持良好的沟通和合作,确保团队工作的高效运转。
最后,我在工作中不断学习,提升自己的专业能力。我积极参 加各种培训和学习,不断提升自己的专业知识和技能,以更好地适 应工作的需要。
在今后的工作中,我将继续努力,不断提升自己的工作能力,
为公司的发展贡献自己的力量。希望领导能够对我的工作给予指导 和支持,让我能够更好地发挥自己的作用。
谢谢领导对我的关注和支持! 此致。 X
我是 XX 部门的 XX,现在向您提交我的述职报告。在过去的一 年里,我积极履行岗位职责,努力工作,取得了一定的成绩。现将 我在工作中的主要情况向您做一下汇报。
首先,我在工作中认真负责,努力完成各项任务。我按时完成 了领导交办的各项工作,并且在工作中积极主动,主动承担工作中 的困难和挑战,努力克服各种困难,确保工作任务的顺利完成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学组
探究一:
在教室内,确定一个座位一般需要 几个数据?为什么?
第2列 第3排
(2,3)
列数在排数
5
约定:列数在前排数在后
4
3
2
1这种由两个数如(2,3)组成的表示某一具体位置的,我们就称之为数对
1 第3列第2 2排应3 该怎样4表示讲台?5
6
7
8
有序数对:
我们把这种有顺序的两个 数 a与b组成的数对,叫做 有序数对。记做( a, b)
计一个用有序数 对描述的图形, 然后把这些有序 数对告诉给同学。
2、作业本(一) 习题6.1 第1、5、10题
方式表示出图中“怪兽”经过的其他 几个位置吗?

5
4
3
2
列 1 123 456 78
5
(4,5) (5,5)
4
(5,4)
(7,4)

3
(3,3) (4,3)
(7,3) (8,3)
2 (1,2)
(3,2)
1 (1,1)
1 2 3 4 列5 6 7 8
你能举例在生活中用有 序数对表示位置的例子吗?
士将 9
(4 , 5 )
E点是
G
( 5, 1 ) F点是
(11,1)
G点是
(13 ,7 )
3
2
1
B
A
E
F
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.如图,在方格纸上用两种方式表示出梅花
的每个花瓣上的黑色的位置
14
B点是
13
(6 , 1 )
12
C点是
11
C
10
9
8
7
6 5
D
5
E点是
4
3
E
2
B
(4,2 )
F
F点是
(10 ,2 )
A1
G点是
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (11,7)
(2)图中五枚黑棋子的位置如何表示? (3)图中(6,1),(10,8)位置上
分别是什么物体?
14
13
12
11 10
C
98ຫໍສະໝຸດ 76 5D
4
C点是
(9,10 ) D点是
57 57 57 57
一排 8 6 4 2 1 3 5 7
(2)如果将“6排3号”简记作(6,3),
那么“3排6号”如何表示(?3,6)
(5,6)表示什么含义?(6,5)呢?
比一比数对你有什么结论?
“怪兽吃豆豆”是一种计算机游戏,图 中的●标志表示“怪兽”先后经过的
例 几个位置,如果用(1,2)表示“怪兽” 题 经过的第2个位置,那么你能用同样的
假设我们约定“列数在前,排数在后”,
“请以下座位的同学放学后参加学雷锋做好事活动: (1,5),(2,4),(4,2),(3,3),(5,6).” (1)请你在图上标出参加活动的同学的座位。 (2)问(2,4)和(4,2)在同一位置上吗?
(1,5)
(5,6)
(2,4) (3,3)
(4,2)
探究二:
在电影院内如何找到电影票 上指定的位置?
双号
六 排
单号
3
六 排
(1)在电影票上“6排3号”与“3排6号”
中的“6”的含义有什么不同?
八排 8 6 4 2 1 3 5 7
七排 六排
8 8
6 6
42 42
13 13
57 57
五排 四排 三排 二排
8 8 8 8
6
6 6 6
42 42 42 42
13 13 13 13
8
7車

6


5

4

3
2


1

炮 1 2 34 5 6
卒 相 78
馬 (2,5) 馬 (6,4) 車 (4,6) 炮 (5,0) 車 (0,7)
2、(1)图中五角星五个顶点的位置如何表示?
14
13
12
C
11
A点是 (0,0) B点是
10
9
8
D
7
(2,1) C点是
G
( 7,10 ) D点是
6
( 3,7 )
( 8,9 ) D点是 (4, 5 )
E点是 (11,2 )
F F点是
4
(12 ,6 )
3
2
1
B
E
A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3.如图
(1) 用适当的方式表示“将”和“帅”的位置 (2)在图上标出“马3进4”(即第3列的马前
进到第4列)后的位置
10
9车
8
士帅


(1)“将”的位置可表示 为(5,2),“帅”的位置 表示为(5,10)
7
6

楚河
5
兵 汉界马

(2)马应该到(4,8)的 位置
4
3



2
将炮
1
2
3
4
5
6
7
8
9
本节课你有什么收获?
1.有序数对的概念.
2.有序数对记作(a,b).
3.有序数对可以表示平面内物体的位 置.
1、自由创意 在方格纸上设
相关文档
最新文档