高等数学 对坐标的曲线积分
高等数学第十章曲线积分
du PdxQd , (yx, y)G—单连域.
四、两类曲线积分之间的联系
L P d Q x d L (P y co Q sco )ds .s
其中, 为有向曲线弧L在点(x, y) 处的切向量的方向角.
五、对坐标的曲线积分的解题方法
解题方法流程图
I LPdxQdy
Yes
积分与路径无关
代入,从而简化被积函数,然后再计算;对于积分L 2xyds,
由于L关于 y轴对称, 函数 2xy关于 x为奇函数, 故有
L 2xyds0.
解:由奇偶对称性可知 L 2xyds 0, 所以
(2xy3x24y2)ds (2xy12)ds
L
L
2L xyds12Lds
01a2 1a2
注:由于被积函数 f(x, y)定义在曲线 L上, 故 x, y满足曲线L
(0t2);
而
1
d sx2y2d t 2 a(1co t)2s d,(t0t2)
1
故
2
I yd sa (1 co t)s 2 a (1 co t)2d st
L
0
4a2
2
s
in3
t
dt8a2
s
in3 ud
u
0
2
0
16a2
2sin3 udu
32
a2.
0
2
【例2】计算曲线积分 L x2 y2 ds,其中L为圆周 x2 y2 ax.
f (x, y)ds f[(t) ,(t)]2 (t) 2 (t)dt
L
(2)直角坐标:若L:y(x)(x0 xX);则
f (x, y)ds Xf[x,(x)]12(x)dx
L
曲线积分与曲面积分
I2(2x yy2z)dx d2 y xyd x dd x(y 2x)d yy
1
D xy
a a2 x2
(3) I x2zdy d(xz2yz3)dz d(2xxy y2z)dxdy I1I2
2020/6/10
>> syms a x y z s r t >>P=x*z^2; >>Q=x^2*y-z^2; >>R=2*x*y+y^2*2; >>f=diff(P,z)+diff(Q,y)+diff(R,z); >>f=subs(f,{x,y,z},{'r*sin(s)*cos(t)',
逆时针方向。
2 、计算下列曲面积分
2020/6/10
(1) (2xy2x2xz)ds,其中Σ为平
(2) 面2x+2y+z=6在处一卦限中的部分.
(2) x2 y2zdxdy,其中Σ是球面x2+y2+z2=R2
的下半部分的下侧。
(3) xdydzydzdxzdx,d其y 中Σ是界于
z=0和z=3之间的圆柱体x2+y2≤9 的整个表面的外侧。
R[x(t),y(t),z(t)]z(t)}dt
[例2]计算∫Γx3dx+3zy2dy-x2ydz,其中 Γ是从点A(3,2,1)到点B(0,0,0)
的直线段 AB 。
2020/6/10
[解]直线段 AB 的方程为 x y z
321
x 3t
化为参数方程
y
2t
t:1→0
z t
x3dx3zy2dyx2ydz
y=rsint; (4)将曲面积分化为对r,t的二次积分
高等数学 第二节 对坐标的曲线积分
第十一章 第二节
9
定积分的定限原则:起点对下限,终点对上限, 下限不一定小于上限。 {P[(t) , (t)](t) Q[(t) , (t)] (t)}dt 其他情形
(1) L : y y( x) ( x : a b)
b
L Pdx Qdy a {P[x , y( x)] Q[x , y( x)]y( x)}dx
(可推广到空间曲线 上)
第十一章 第二节
16
L Pdx Qdy L(P cos Q cos )ds : x (t) , y (t) , z (t) (t : a b)
Γ 上点( x , y , z)处的切向量的方向角为 , ,
则 Γ Pdx Qdy Rdz Γ (P cos Q cos Rcos )ds
n
3) “求和” W P (k , ηk )Δxk Q(k , ηk ) Δyk
k1 n
4) “取极限” W
lim 0 k1
P (k , ηk )Δxk Q(k , ηk ) Δyk
为所有小弧段长度的最大值
第十一章 第二节
3
2 定义 设 L 为 xOy 平面内从 A 到 B 的一条有向 光滑弧,在 L 上定义了一个向量值函数
1 引例 变力沿曲线所作的功。 y L
B
设一质点受如下变力作用
F ( x , y) (P( x , y) , Q( x , y))
A
x
在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B ,
求移动过程中变力所作的功W。
常力沿直线所作的功
F W F AB cos
A
B F AB
第十一章 第二节
L
k
对积分域 的可加性
高数第十一章复习
曲线积分
习题课
高等数学
1
知识梳理 一、 两类曲线积分
定义 对弧长的曲线积分 ∫ f ( x, y)ds
L
对坐标的曲线积分
∫ P( x, y)dx = lim ∑P(ξ ,η )∆x λ
L →0
n
= lim∑ f (ξi ,ηi )∆Si
λ→0
i =1
n
∫ Q( x, y)dy = lim ∑Q(ξ ,η )∆y λ
(7)求 )
其中
是以 点 A(1,0) , B(0,1) , C(-1,0) 为 y
B (0,1)
顶点的三角形的正向边界曲线. 顶点的三角形的正向边界曲线 解 上式积分 =
C (-1,0) o
x
A(1,0)
由格林公式,得 由格林公式,
高等数学
13
例2.螺旋形弹簧一圈的方程为 螺旋形弹簧一圈的方程为
二、四个等价命题
条件:在单连通区域 内 条件:在单连通区域G内,函数P ( x , y ) , Q ( x , y ) 具有一阶 连续偏导数 以下四个命题等价: 以下四个命题等价: 内与路径无关; 1 曲线积分 ∫ Pdx + Qdy 在G 内与路径无关;
L
2
∫
∂Q ∂P 3 在 G 内恒成立 内恒成立; = ∂x ∂y 4 Pdx + Qdy = du( x , y ), 即Pdx + Qdy 为某一 u( x , y )的全微分 的全微分.
此时不能用格林公式
2 xy − 3 y x 2 − 5x dx + 2 dy 解 ∫ 2 2 2 x +y L x + y 1 = 2 ∫ (2 xy − 3 y )dx + (x 2 − 5 x )dy a L 1 = 2 ∫∫ [(2 x − 5 ) − (2 x − 3 )]dxdy a x 2 + y 2 ≤a 2
高等数学第十章曲线积分与曲面积分(考研辅导班内部资料)
第十章 曲线积分与曲面积分曲线积分一 基本概念定义1 第一类曲线积分(对弧长的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d lim(,)nkkkL AB T k f x y s f sλξη→==∆∑⎰(2)空间曲线()L AB 的积分:()()01(,,)d lim(,,)nkkkk L AB T k f x y z s f s λξηζ→==∆∑⎰其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段曲线弧长的最大值,(,)k k ξη或(,,)k k k ξηζ是第k 段弧上的任意一点。
物理意义:第一类曲线积分表示物质曲线L 的质量,其中被积函数(,)f x y 或(,,)f x y z 表示曲线的线密度。
定义2 第二类曲线积分(对坐标的曲线积分) (1)平面曲线()L AB 的积分:()()01(,)d (,)d lim[(,)(,)]nkkkk k k L AB T k P x y x Q x y y f xf y λξηξη→=+=∆+∆∑⎰(2)空间曲线()L AB 的积分:()(,,)d (,,)d (,,)d L AB P x y z x Q x y z y R x y z z ++⎰()01lim[(,,)(,,)(,,)]nkkkk k k k k k k k k T k f x f y f z λξηζξηζξηζ→==∆+∆+∆∑其中()T λ表示分割曲线()L AB 的分法T 的细度,即n 段的最大弧长,(,)k k ξη是第k 段弧上的任意一点。
物理意义:第二类曲线积分表示变力F 沿曲线L 所作的功,被积函数(,),(,)P x y Q x y 或(,,),(,,),(,,)P x y z Q x y z R x y z 表示力F 在各坐标轴上的分量。
二 基本结论定理1 (第一类曲线积分的性质) (1)无向性()()(,)d (,)d L AB L BA f x y s f x y s =⎰⎰.(2)线性性质 (1)(,)d (,)d LLk f x y s k f x y s =⎰⎰;(2)[(,)(,)]d (,)d (,)d LLLf x yg x y s f x y s g x y s ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y s f x y s f x y s =+⎰⎰⎰.(4)弧长公式d Ls L =⎰(L 表示曲线L 的弧长).(5)恒等变换 积函数可用积分曲线方程作变换. (6)奇偶性与对称性 如果积分弧段()L AB 关于y 轴对称,()(,)d L AB f x y s ⎰存在,则()()0,(,)(,)d 2(,)d (,)L AB L OB f x y x f x y s f x y s f x y x ⎧⎪=⎨⎪⎩⎰⎰关于是奇函数,,关于是偶函数.其中O 点是曲线弧段()L AB 与y 轴的交点.定理2 (第二类曲线积分的性质) (1)有向性()()(,)d (,)d L AB L BA P x y x P x y x =-⎰⎰.(2)线性性质 (1)(,)d (,)d LLkf x y x k f x y x =⎰⎰;(2) [(,)(,)]d (,)d (,)d L L Lf x yg x y x f x y x g x y x ±=±⎰⎰⎰.(3)路径可加性 曲线L 分成两段1L 和2L (不重叠),则12(,)d (,)d (,)d LL L f x y x f x y x f x y x =+⎰⎰⎰.定理3 (第一类曲线积分与第二类曲线积分的关系)()()d d d d d d d d d d L AB L AB xy z P x Q y R z P Q R s ss s ⎛⎫++=++ ⎪⎝⎭⎰⎰()(cos cos cos )d L AB P Q R s αβγ=++⎰()d L AB =⋅⎰F s其中cos ,cos ,cos αβγ是曲线AB 上的点的切线的方向余弦,且d cos d ,d cos d ,d cos d x s y s z s αβγ===一般地,积分曲线的方向余弦是变量。
高等数学之对坐标的曲线积分
高 等 数 学 电 子 案
例1 计算 L xydx
,其中L为抛物线y2=x上从点A(1,-1)到点
y
B(1,1) o A(1,-1)
B(1,1)的一段弧.
解法一:把x作为参数,利用对x的定积分
x
来计算,把L分成AO和OB两段,被积函数
可用积分路线的方程来处理.
xydx
L
AO
xydx xydx
由于
xi xi xi 1 (ti ) (ti 1 ) xi ( i)ti
应用微分中值定理,有 其中 ti ti ti 1 , i 在 ti 1 与 t i 之间,于是
L
P( x, y )dx lim P ( i ), ( i ) ( i)ti
L 0 i 1 i i
n
i
为P(x,y)对坐标x的曲线积分; 当P=0 时,
Q( , )y Q( x, y)dy lim
L 0 i 1 i i
n
i
为Q(x,y)对坐标y的曲线积分.
高 等 上述定义可推广到空间曲线Γ的情况: 数 学 P( x, y, z)dx Q( x, y, z)dy R( x, y, z)dz 电 n 子 [P(i ,i , i )xi Q(i ,i , i )yi R(i ,i , i )zi ] 案 lim 0
P( x, y)dx 存在,并且有
L
P( x, y)dx P (t ), (t ) (t )dt
L
同理可证:
Q( x, y)dx Q (t ), (t ) (t )dt
L
高 等 (1)式推广到空间曲线,得到如下公式: 数 学 设 x x(t ), y y(t ), z z(t ), 则 电 子 Pdx Qdy Rdz 案
高等数学第一节对弧长的曲线积分第二节对坐标的曲线积分
(1)沿圆弧, (2)沿X轴.
解(1)沿圆 L1弧 :
Bo
x acos y asin
:0
L 1y 2 d x 0 a 2 s2 in a s in d
4 3
a
3
.
Ax
(2)沿X轴,
L2 :
x t y 0
t:a a.
L 2y2dxa a0dt0. 积分路径,积 不分 同值.不 24
例 8I L x 2 d x xy ,L 是 dy由 y x 抛 2 从 (0 ,0 物 )
两类曲线积分之间的关系 :
L F d L P d x Q d y R d z
前页公式:
d
t d
LF
t
d
第二类曲线积分
L F
t
d L P co Q c so R c so d s
zm 1 Lz(x,y,z)ds
m 10 2 k t a 2 k 2 t2 a 2 k 2dt
15
如果 L是平面(极 曲坐 线 ):标
r r ( )
则 xy rr(())csions
L
rd
dr d
d r
o
x
d ( r co r ss i ) 2 n ( r si r n c) o 2 ds
W 1 L y d x x d y ( x y z ) d z
终点B 起点A
0 2 y x x y (x y z )z d t
19
W1 0 2 0 2 (a y s x ti) x ( n y a s (x ti) n y (a c z )z to ) ( d a tc sto ) L : s x yz aa 2cc st in o tt
高等数学同济六版第十章10-2
取 F (ξ i ,η i ) = P (ξ i ,η i ) i + Q (ξ i ,η i ) j ,
∆Wi ≈ F (ξ i ,η i ) ⋅ M i −1 M i ,
y
F(ξi ,ηi )
B
L
A
M2 M1
Mi−1 x i ∆
一、对坐标的曲线积分的概念与性质
y
变力沿曲线所作的功
L : A → B,
F ( x , y) = P ( x , y)i + Q ( x, y) j
B
L
A
M2 M1
Mi−1 xi ∆
∆yi
Mi Mn−1
常力所作的功 W = F ⋅ AB . o
x
分割 A = M 0 , M 1 ( x1 , y1 ),⋯ , M n−1 ( x n−1 , y n−1 ), M n = B .
n
n
性质 (1) 如α 与β 是 常数 则 常数,则
∫L [α F 1 ( x , y ) + β F 2 ( x , y )] ⋅ d r = α ∫ F 1 ( x , y )d r + β ∫ F 2 ( x , y )d r L L
( 2) 若有向曲线弧 L可分成两段光滑的有向 曲线弧 L1和 L2 , 则
i =1
n
精确值
定义
设L为 xoy面内从点 A到点 B的一条有
向光滑曲线弧 , 函数 P ( x , y ), Q ( x , y )在 L 上有界 . 用 L上的点 M 1 ( x1 , y1 ), M 2 ( x2 , y2 ), ⋯ , M n−1 ( xn−1 , yn−1 )把 L分成 n个有向小弧段 M i −1 M i ( i = 1,2,⋯, n; M 0 = A, M n = B ). 设∆xi = xi − xi −1 , ∆yi = yi − yi −1 , 点( ξ i , ηi )为 M i −1 M i 上任意取定的点 . 如果当各小弧段 长度的最大值 λ → 0时 ,
《高等数学教学课件》2011 第二节 第二型曲线积分
x2(t) y2(t)
其中是 s 与x轴正向的夹角.
x2(t) y2(t)
cos sgn( )x(t) sin sgn( ) y(t) ;
x2(t) y2(t)
x2(t) y2(t)
其中是 s 与x轴正向的夹角. 由定义得:
P( x, y)dx Q( x, y)dy [P( x, y)cos Q( x, y)sin]ds
的切向量的方向余弦为cos ,cos ,cos ,则上的三个第
二型(对坐标的)曲线积分可定义为:
P( x, y, z)dx P( x, y, z)cosds
Q( x, y, z)dy Q( x, y, z)cos ds
R( x, y, z)dz R( x, y, z)cosds 即 P( x, y, z)dx Q( x, y, z)dy R( x, y, z)dz
若曲线L
:
x y
x(t ) ,
y(t )
t
则
f ( x, y)ds
f [ x(t ), y(t )]
x 2 (t ) y 2 (t )dt
L
使用上述计算方法应注意 :
(1).曲线L必须表示为参数方程的形式.
(2).定限后的下限一定小于上限 .
特别地,当曲线L可用显函数表示为L : y y( x), x [a, b]
定理、设L是光滑的有向曲线(从A到B), L可用参数方程
表示为:
L
:
x
y
x(t ) ,
y(t )
t由变化到 , 其中t 对应L的
起点A( x( ), y( )), t 对应于L的终点B( x( ), y( )),
函数x(t ), y(t )导数连续, 设向量值函数
高等数学《曲线积分与曲面积分》习题课
L( A,B)
b
f (x, y)
1 y2dx
a
曲顶柱体的表面积
如图曲顶柱体,
z z f (x, y)
S
(1
1
f2 x
f
2 y
)d
D
f ( x, y)ds L
o
y
x
D L
2
2
例 3 求柱面 x 3 y 3 1在球面 x2 y2 z 2 1内
的侧面积.
解 由对称性
S 8Lzds 1 x2 y2ds
2
解
z
y 1绕y轴旋转面方程为
x 0
y 1 z2 x2
(如下图)
欲求
I
(8
y
1) xdydz
2(1
2
y
)dzdx
4
yzdxdy
z
且有 I
* *
P Q R
*
(
x
y
z
)dxdydz
x
2
o1
*
y
3
(8 y 1 4 y 4 y)dxdydz dv
3
2
2
3
dxdz
D
8
a 0 dx (e x m) 0 0, OA 0
M
A(a,0) x
I
m a2 0 m a2.
AMOA OA
8
8
曲面面积的计算法
z
z f (x, y) S
z
z f (x, y)
o
Dxy
y
a
bo
A
s LB
y
x S dS
1
z
2 x
z
2 y
高等数学对坐标的曲面积分
cos
1 1 x2 y2
(z2 x)( x)dxdy
dS
1
z
2 x
z
2 y
dxdy
dxdy
cos
对坐标的曲面积分
(z2 x)dydz (z2 x)( x)dxdy
(z2 x)由dy对dz称性zdxdy
z 1(x2 y2)
[(z2 x14)x((xx2 )yz2 )]d2dxxddyy 0
Q( x, y, z)dzdx Q( x, y, z)cos dS
两类曲面积分之间的联系
Pdydz Qdzdx Rdxdy
(P cos Q cos Rcos )dS
其中cos、cos 、cos 是有向曲面Σ在点 ( x, y, z)
处的法向量的方向余弦. 不论哪一侧都成立.
对坐标的曲面积分
xyzdxdy xyzdxdy xyzdxdy
2
1
xy 1 x2 y2dxdy xy( 1 x2 y2 )dxdy
Dxy
Dxy
对坐标的曲面积分
Dxy : x2 y2 1( x 0, y 0)
xy 1 x2 y2dxdy xy( 1 x2 y2 )dxdy
对坐标的曲面积分 Mobius(1790--1868) 19世纪德国数学家
(2) 单侧曲面
莫比乌斯(Mobius)带.
它是由一张长方形纸条ABCD, 扭转一下,
将A、D粘在一起,B、C 粘在一起形成的环
行带.小毛虫在莫比乌斯带上,不通过边界可以
爬到任何一点去.
这在双侧曲面上是不能实现的.
决定了侧的曲面称为 有向曲面.
i 1
2. 存在条件
当P( x, y, z),Q( x, y, z), R( x, y, z) 在有向光滑
高等数学下册第十一章习题答案详解
高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。
高等数学对坐标的曲面积分教案
n
大值 0 时
lim
0
i1
R(i
,i,
i
)(Si
讲练结合
教 学过 程
教法运用及 板书要点
一、对坐标的曲面积分的概念与性质
有向曲面 通常我们遇到的曲面都是双侧的 例如由方程 zz(x y) 表示
的曲面分为上侧与下侧 设 n(cos cos cos)为曲面上的法向量 在曲面
的上侧 cos0 在曲面的下侧 cos0 闭曲面有内侧与外侧之分
类似地 如果曲面的方程为 yy(z x)则曲面分为左侧与右侧 在曲面的
把曲面 分成 n 小块 S1 S2 Sn(Si 同时也代表第 i 小块曲面的 面积) 在 是光滑的和 v 是连续的前提下 只要Si 的直径很小 我们就可以 用Si 上任一点(i, i, i )处的流速
viv(i, i, i )P(i, i, i )iQ(i, i, i )jR(i, i, i )k 代替Si 上其它各点处的流速 以该点(i, i, i )处曲面 的单位法向量
nicosi icosi j cosi k 代替Si 上其它各点处的单位法向量 从而得到通过Si 流向指定侧的流量的近 似值为 viniS i (i1, 2, ,n) 于是 通过 流向指定侧的流量
n
vi niSi
i1
n
[P(i,i,i)cosi Q(i,i,i)cosi R(i,i,i)cos i]Si
时间
---------月---------日 星期-----------------
高等数学中的球面坐标与空间曲线积分
高等数学中的球面坐标与空间曲线积分在高等数学中,球面坐标和空间曲线积分是两个重要的概念。
球面坐标是一种在三维空间中描述点位置的坐标系统,而空间曲线积分则是一种计算曲线上向量场的积分的方法。
本文将分别介绍球面坐标和空间曲线积分的概念、性质和应用。
一、球面坐标球面坐标是一种常用于描述三维空间中点位置的坐标系统。
它由径向距离r、极角θ和方位角φ三个参数组成。
其中,径向距离r表示点到坐标原点的距离,极角θ表示点与正z轴的夹角,方位角φ表示点在xy平面上的投影与正x轴的夹角。
球面坐标的坐标轴为r、θ和φ轴。
球面坐标的转换公式为:x = r*sinθ*cosφy = r*sinθ*sinφz = r*cosθ球面坐标的优势在于它能够简洁地描述球对称问题,比如球体的体积、表面积等。
此外,球面坐标还常用于求解涉及球体的物理问题,如电场、磁场等。
通过转换到球面坐标系,可以简化问题的求解过程,提高计算效率。
二、空间曲线积分空间曲线积分是一种计算曲线上向量场的积分的方法。
它可以用于求解沿曲线的质量、电荷、能量等物理量的总量。
空间曲线积分的计算方法有两种:第一类曲线积分和第二类曲线积分。
第一类曲线积分是将向量场沿曲线的切向量方向进行积分。
它的计算公式为:∫C F·ds = ∫C (F·T) ds其中,C表示曲线,F表示向量场,ds表示曲线元素,T表示曲线的切向量。
第二类曲线积分是将向量场沿曲线的法向量方向进行积分。
它的计算公式为:∫C F·dS = ∫C (F·N) dS其中,C表示曲线,F表示向量场,dS表示曲线元素,N表示曲线的法向量。
空间曲线积分的应用非常广泛。
例如,在电磁学中,可以利用空间曲线积分来计算电场、磁场沿导线的总量。
在流体力学中,可以利用空间曲线积分来计算流体沿管道的质量流量。
在工程学中,可以利用空间曲线积分来计算力沿弯曲杆件的总量。
三、球面坐标与空间曲线积分的关系球面坐标和空间曲线积分之间存在着密切的关系。
高等数学之曲线积分的计算方法总结
⾼等数学之曲线积分的计算⽅法总结
在考研数学中,曲线积分数学⼀重要考点之⼀,每年必考,并且时常考⼀道⼤题和⼀道⼩题,因此⼀定要掌握其基本计算⽅法和技巧。
下⾯我总结第⼀类曲线积分和第⼆类曲线积分的⼀些基本的计算⽅法,供各位考⽣参考。
对弧长的线积分计算常⽤的有以下两种⽅法:
(1)直接法:
(2)利⽤奇偶性和对称性
平⾯上对坐标的线积分(第⼆类线积分)计算常⽤有以下四种⽅法:
(1)直接法
(2)利⽤格林公式
注:应⽤格林公式⼀定要注意以下两点:
a.P(x,y),Q(x,y)在闭区间D上处处有连续⼀阶偏导数
b.积分曲线L为封闭曲线且取正向。
(3)补线后⽤格林公式
若要计算的线积分的积分曲线不封闭,但直接法计算不⽅便时,此时可补⼀条曲线,使原曲线变成封闭曲线。
(4)利⽤线积分与路径⽆关性
题型⼀:对弧长的线积分(第⼀类线积分)
例1:
解法⼀:利⽤直⾓坐标⽅程计算
解法⼆:利⽤参数⽅程计算
题型⼆:对坐标的线积分(第⼆类曲线积分)计算
例2:
解题思路:本题中积分路径L为封闭曲线,⾸先考虑格林公式,容易验证被积函数在L围成区域上满⾜格林公式条件。
解:。
大学高等数学_18对坐标曲面积分_高斯公式_斯托克斯公式_习题课
•若
则有
P(x,
y,
z)d
ydz
Dyz
P(x( y,
z)
,
y, z) d y d z
(前正后负)
•若
则有
Q(x, y, z) d z d x Dzx Q (x, y(z, x), z )d z d x (右正左负)
机动 目录 上页 下页 返回 结束
例1. 计算 (x y) d y d z ( y z) d z d x (z x) d x d y
(z2 x) cos dS
(z2
x)
cos cos
d
xd
y
cos cos
oy x x 1 x2 y2 1 1 x2 y2
∴ 原式 = ( z2 x)(x) z d x d y
机动 目录 上页 下页 返回 结束
将
z
1 2
曲面分上侧和 下侧
机动 目录 上页 下页 返回 结束
• 指定了侧的曲面叫有向曲面, 其方向用法向量指向
表示 :
方向余弦 cos
cos
cos 封闭曲面
侧的规定 > 0 为前侧 > 0 为右侧 > 0 为上侧 外侧 < 0 为后侧 < 0 为左侧 < 0 为下侧 内侧
• 设 为有向曲面, 其面元 S 在 xoy 面上的投影记为
i z(i , i )
n
lim
0
i 1
R(i ,i ,
) ( i )xy
Dxy R(x, y, z(x,y)) d x d y
机动 目录 上页 下页 返回 结束
高等数学-对坐标的曲线积分
L
M ykk B
Mxk k1
A
x
则有
Wk F(k , k ) M k1M k F(x, y) (P(x, y), Q(x, y))
P(k , k )xk Q(k , k )yk
4
3) “近似和”
n
W P(k , k )xk Q(ξk , k )yk
k 1
4) “取极限”
n
W
lim
L
其中L :沿y x2从点O(0,0)到B(1,1)
解 : L中任一点(x, y)处切向量(沿OB向)
T {1,2x} 方向余弦
cos 1 , cos 2x .
1 4x2
1 4x2
x x
y
x2
P(x, y)dx Q(x, y)dy P(x, y) 2xQ(x, y) ds
xe
x
d
x
201
x
1e2x
d
x
1 2
e2
7
12
例2. 求
其中 从 z 轴正向看为顺时针方向.
解: 取 的参数方程
x cos t, y sin t, z 2 cost sin t ( t : 2 0)
z
(2 2cost sin t) cost
2 (1 4cos2 t) d t 2 0 13
F(x, y, z) (P(x, y, z), Q(x, y, z), R(x, y, z))
7
1).存在条件: 当P(x, y), Q(x, y)在光滑曲线弧 L 上连续时, 第二类曲线积分存在 .
2).组合形式
L P( x, y)dx LQ( x, y)dy
L P( x, y)dx Q( x, y)dy LF ds.
高等数学对坐标的曲面积分
z
体的整个表面的外侧.
解: 利用对称性.
O
y
原式 3 (z x) d x d y
x
的顶部
1
:
z
a 2
(x
a 2
,
y
a 2
)
取上侧
的底部
2
:
z
a 2
(x
a 2
,
y
a 2
)
取下侧
2 (z x) d x d y
( a x)d x dy Dxy 2
3a d x d y
2012.4
Dx y
lim
0
P(i
i 1
, i
,
i
) Si
y
z
Q(i , i , i ) Si z x
R(i , i , i ) Si x y
2012.4
22
性质: P d y d z Q d z d x R d x d y P d y d z Q d z d x R d x d y
向量形式 A d S A n d S
An A n ( A 在 n 上的投影)
An dS
2012.4
16
例4. 位于原点电量为 q 的点电荷产生的电场为
求E 通过球面 : r = R 外侧的电通量 .
解: E d S
q。
E n d S
q r3
ቤተ መጻሕፍቲ ባይዱ
r
r r
d
S
q r2
dS
联系: P d y d z Q d z d x R d xdy P cos Q cos R cos dS
思考:
两类曲面积分的定义一个与 的方向无关, 一个与
对坐标的曲线积分的计算方法_高等数学(下册)_[共4页]
153 曲线积分第10章是定义在L 上的向量场,那么根据曲线积分的定义和物理意义易知:(,)d (,)d L P x y x Q x y y +∫()()d cos cos d L L P Q s αβ==++∫∫i F s i j i j ()cos cos d L P Q s αβ=+∫.即 (,)d (,)d L P x y x Q x y y +∫()cos cos d LP Q s αβ=+∫. 类似的,有 (,,)d (,,)d (,,)d P x y z x Q x y z y R x y z z Γ++∫()cos cos cos d P Q R s αβγΓ=++∫. 其中(,,)cos cos cos x y z αβγ=++i j k τ是有向曲线Γ上点(,,)x y z 处与Γ方向一致的单位切向量.4.对坐标的曲线积分的性质根据对坐标的曲线积分定义,容易推导出对坐标的曲线积分的如下性质. 性质1 设L 由1L 和2L 两段光滑有向曲线组成(记为L =12L L +),则1212d d d d d d L L L L P x Q y P x Q y P x Q y ++=+++∫∫∫. 性质2 设L 是有向曲线弧段, L −是与L 方向相反的有向曲线弧段,则d d d d L LP x Q y P x Q y −+=−+∫∫. 10.2.2 对坐标的曲线积分的计算方法定理10.2.1 设曲线L 的参数方程为()()x x t y y t =⎧⎨=⎩,当参数t 单调地从α变到β时,对应地点(,)M x y 从L 的起点A 沿L 移动到终点B ,其中函数()x t ,()y t 在以α和β为端点的闭区间上具有一阶连续导数,且22()()0x t y t ′′+≠,若函数(,)P x y ,(,)Q x y 在曲线L 上连续,则曲线积分(,)d (,)d L P x y x Q x y y +∫存在,且[][]{}(,)d (,)d (),()()(),()()d L P x y x Q x y y P x t y t x t Q x t y t y t t βα′′+=+∫∫.证 因为 (,)d (,)d d (,)d L L L P x y x Q x y y x y s +==∫∫∫i i τF s F ,其中 (,)(,)P x y Q x y =+F i j,d s t =.而曲线L 上点(,)x y 处与L 方向一致的单位切向量d (,)d x y s ′′==s j τ.因为点(,)x y 处的有向弧元素 ()d (,)d ()()d x y s x t y t t ′′==+s i j τ.故(,)d (,)d L P x y x Q x y y +∫()()d ()()d L P Q x t y t t βα′′==++∫∫i F s i j i j[][]{}(),()()(),()()d P x t y t x t Q x t y t y t t βα′′=+∫。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中Γ是由点A(1,1,1)到点B(2,3,4)的直线段.
L
8
O
x
对坐标的曲线积分与曲线的方向有关!
11.2.2 第二型曲线积分的计算
定理11.2 设 P( x, y ),Q( x, y ) 在有向曲线弧L上连续, x (t ) L的参数方程为 , 当参数 t由变到时, y (t ) 点M ( x, y)从L的起点A沿L运动到终点B,
BO
xydx ( y x )dy
5 1 2 3 3
15
(2) AO : y 0, dy 0.
y
1
O
1
A点对应 x 2, O点对应 x 0,
I xydx ( y x )dy
L
2
A
x
x 0dx 0 0
2
0
问题: 被积函数相同, 起点和终点也相同, 但路径不同, 积分结果也不同.
y起点为c , 终点为d
则
L P ( x , y )dx Q( x , y )dy d { P[ x ( y ), y ] x( y ) Q[ x ( y ), y ]}dy c
10
x (t ) (3) 对于空间曲线 : y ( t ), t起点 , 终点 z (t )
常力沿直线所作的功
W F AB
A M0
O
x
分割 A M 0 , M1 ( x1 , y1 ),, Mn1 ( xn1 , yn1 ), M n B
M i 1 M i (xi )i (yi ) j
1
取
F (i ,i ) P(i ,i )i Q(i ,i ) j
A
O
A点对应 t 0, B点对应 t
0
2
1
x
.
I 2 [(cos t sin t )( sin t ) (cos t sin t ) cos t ]dt
2 (cos 2t sin 2t )dt 1 0
17
(2) I ( x y )dx ( x y )dy
1
y
BO : y x, dy dx
1
O
B
B点对应 x 1, O点对应 x 0,
A
BO
0
xydx ( y x )dy
1
2
x
1 [ x x ( x x )]dx 1 3
I xydx ( y x )dy
L
AB
xydx ( y x )dy
L
其中 ds dxi dyj6 dzk (dx, dy, dz ).
对坐标的曲线积分具有下列性质: 设 A ( P ( x, y ), Q( x, y )), B ( P1 ( x, y ), Q1 ( x, y )) 沿平面曲线L的第二型曲线积分存在, 则
0
1
1
4 2 x dx 0 5
1
12
3 2
计算 xydx , 其中L为抛物线 y 2 x上从
L
A(1,1)到B(1,1)的一段弧.
(2) 取 y为积分变量
y
B(1,1) y2 x
x y 2 , dx 2 ydy , y从 1到1
2 xy d x y L y 2 ydy 1 1
i 1 n
O
M2 M1 A M0
L
xi
yi
M n1
x
近似值
[ P ( i ,i ) xi Q( i ,i ) yi ]
i 1
n i 1
精确值
[ P ( i ,i ) xi Q( i ,i ) yi ] 取极限 W lim 0
L
n
n
0
i 1
称 Q ( x , y ) 在有向曲线弧 L上对坐标y 的曲线积分.
积分弧段
被积函数
4
在应用中常出现组合形式
L P ( x , y )dx L Q( x , y )dy P ( x , y )dx Q( x , y )dy L
或向量“点积”形 式 P ( x , y )dx Q( x , y )dy A ds
11
例 计算
L
xydx , 其中L为抛物线 y 2 x上从
A(1,1)到B(1,1)的一段弧.
解 (1) 取 x为积分变量
y
y x
⌒ xydx L xydx ⌒ xydx OB
AO
B(1,1) y2 x
O
x
A(1,1)
x ( x )dx 0 x xdx
且它们的方向相应地一致, 则
y
L L1
L2
O
L2
L Pdx Qdy
有向曲线, 则
x
L1
Pdx Qdy Pdx Qdy
y
(3) 有向性: 设L是有向曲线, L是与L方向相反的
L
L
LP ( x, y)dx Q( x, y )dy
P ( x , y )dx Q( x , y )dy
P ( x , y, z )dx Q( x , y, z )dy R( x , y, z )dz
{ P[ ( t ), ( t ), ( t )] ( t ) Q[ ( t ), ( t ), ( t )] ( t )
R[ ( t ), ( t ), ( t )] ( t )}dt
或
W lim P ( i ,i )xi lim Q( i ,i )yi
0
i 1
2
n
n
0
i 1
定义11.2 设L为xOy面内从点A到点B的一条有向光滑 曲线弧, 函数P( x, y ), Q( x, y )在L上有界. 用L上的点
A M0 , M1 ( x1 , y1 ),, Mn1 ( xn1 , yn1 ), Mn B
(1) 线性性质: k1 A k2 B 沿曲线L的第二型曲线
积分存在, 且 ( k1 A k 2 B ) d s k1 A d s k 2 B d s
L L L
其中 k1 , k 2 为任意常数.
7
(2) 可加性: 如果把L分成L1和L2 ,
16
例 计算 I L ( x y )dx ( x y )dy, 其中
(1) L为从点 A(1,0)沿上半单位圆至点B(0,1); ( 2) L为折线段 AOB, 从点 A(1,0)到点O(0,0)至 点B(0,1).
y B 1
x cos t 解 (1) L的参数方程为 , y sin t
n
P ( x , y )在有向曲线弧 L上对坐标x的曲线积分,
或称第二型曲线积分. 记作 P ( x , y )dx , 即
L
P ( i , i )xi L P ( x , y )dx lim 0 i 1
类似地定义 Q ( x , y )dy lim Q( i , i )yi
在OB上, x 0, y 从0到1,
虽然路径不同, 但积分结果相同.
18
( x y )dx ( x y )dy 例 计算 I , 其中L为圆周 2 2 L x y
x 2 y 2 a 2 (a 0) 沿逆时针方向绕行一周 .
解 L的参数方程为
x a cos t , (0 t 2 ) y a sin t
y
解 (1) L AB BO,
AB : y 2 x, dy dx.
1
B
O x 2 , A点对应 B点对应 x 1,
A
1
2
x
AB
xydx ( y x )dy
5 [ x(2 x ) (2 x x )(1)]dx 2 3 14
AO
I ( x y )dx ( x y )dy
L
( x y )dx ( x y )dy
OB
y 1 B
在 AO 上, y 0, x从1到 0,
A
0 1
AO
( x y )dx ( x y )dy
1
1 xdx 2
O
1
x
1 OB ( x y)dx ( x y)dy 0 ydy 2 1 1 I 1 2 2 问题: 被积函数相同, 起点和终点也相同,
L L
L
其中 A P( x, y)i Q( x, y) j ( P( x, y),Q( x, y)),
ds dxi dyj (dx, dy)
沿闭曲线L的曲线积分记作
5
L
Pdx Qdy .
物理意义 变力F P( x, y)i Q( x, y) j 沿平面曲线L所做 的功为
M i 1 M i (xi )i (yi ) j
F ( i , i ) B M n M
i
取近似 Wi F ( i ,i ) M i 1 M i y
即 Wi P( i ,i )xi Q( i ,i )yi
n
M i 1
求和 W Wi
W P ( x , y )dx Q( x , y )dy L F ds ds (dx, dy )