含绝对值的不等式解法(北师版)

合集下载

北师大版选修4-5 第1章 2.1 绝对值不等式

北师大版选修4-5 第1章  2.1 绝对值不等式

§2 含有绝对值的不等式2.1 绝对值不等式学习目标 1.进一步理解绝对值的意义.2.理解并掌握绝对值不等式|a +b|≤|a|+|b|的代数及几何解释.3.会用|a +b|≤|a|+|b|解决一些简单的绝对值不等式问题.知识点 绝对值不等式定理思考1 实数a 的绝对值|a|的几何意义是什么? 答案 |a|表示数轴上以a 为坐标的点A 到原点的距离. 思考2 代数式|x +2|+|x -3|的几何意义是什么? 答案 表示数轴上的点x 到点-2,3的距离之和.思考3 画画图,看看|x +2|+|x -3|与|(-2)-3|的关系. 答案由数轴可以看出数轴上的点x 到点-2,3的距离之和大于等于点-2到3的距离,即|x +2|+|x -3|≥|(-2)-3|.梳理 (1)实数的绝对值 |a|=⎩⎪⎨⎪⎧a ,a>0,0,a =0,-a ,a<0.由定义易得|ab|=|a|·|b|;⎪⎪⎪⎪⎪⎪a b =|a||b|(b ≠0);|a|2=a 2;a 2=|a|;-|a|≤a ≤|a|.(2)绝对值的几何意义设a 是任意一个实数,在数轴上:①|a|表示实数a 对应的点与原点O 的距离;②|x -a|表示实数x 对应的点与实数a 对应的点之间的距离; ③|x +a|表示实数x 对应的点与实数-a 对应的点之间的距离. (3)绝对值不等式(定理)对任意实数a 和b ,有|a +b|≤|a|+|b|. 拓展 ||a|-|b||≤|a±b|≤|a|+|b|.类型一 含绝对值不等式的证明例1 设函数f(x)=x 2-2x ,|x -a|<1. 求证:|f(x)-f(a)|<2|a|+3. 证明 ∵f(x)=x 2-2x ,且|x -a|<1, ∴|f(x)-f(a)|=|x 2-2x -a 2+2a| =|(x +a)(x -a)-2(x -a)|=|(x -a)(x +a -2)|=|x -a|·|x+a -2| <|x +a -2|=|(x -a)+(2a -2)| ≤|x -a|+|2a -2| <1+|2a|+|2|=2|a|+3, ∴|f(x)-f(a)|<2|a|+3.反思与感悟 两类含绝对值不等式的证明技巧一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明.另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.跟踪训练1 已知|A -a|<s 3,|B -b|<s 3,|C -c|<s3,求证:|(A +B +C)-(a +b +c)|<s.证明 ∵|(A +B +C)-(a +b +c)|=|(A -a)+(B -b)+(C -c)|≤|(A -a)+(B -b)|+|C -c|≤|A -a|+|B -b|+|C -c|,又∵|A -a|<s 3,|B -b|<s 3,|C -c|<s3,∴|A -a|+|B -b|+|C -c|<s 3+s 3+s3=s ,∴|(A +B +C)-(a +b +c)|<s. 类型二 利用绝对值不等式求最值例2 (1)求函数y =|x -3|-|x +1|的最大值和最小值;(2)如果关于x 的不等式|x -3|+|x -4|<a 的解集为空集,求参数a 的取值范围. 解 (1)∵||x -3|-|x +1||≤|(x -3)-(x +1)|=4, ∴-4≤|x -3|-|x +1|≤4, ∴y max =4,y min =-4.(2)只要a 不大于|x -3|+|x -4|的最小值,则|x -3|+|x -4|<a 的解集为空集,而|x -3|+|x -4|=|x -3|+|4-x|≥|x -3+4-x|=1,当且仅当(x -3)(4-x)≥0,即3≤x ≤4时等号成立. ∴当3≤x ≤4时,|x -3|+|x -4|取得最小值1. ∴a 的取值范围为(-∞,1].反思与感悟 (1)利用绝对值不等式求函数最值时,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键. 跟踪训练2 (1)已知x ∈R ,求f(x)=|x +1|-|x -2|的最值; (2)若|x -3|+|x +1|>a 的解集不是R ,求a 的取值范围. 解 (1)∵|f(x)|=||x +1|-|x -2||≤|(x +1)-(x -2)|=3, ∴-3≤f(x)≤3,∴f(x)min =-3,f(x)max =3. (2)∵|x -3|+|x +1|≥|(x -3)-(x +1)|=4, ∴|x -3|+|x +1|≥4.∴当a <4时,|x -3|+|x +1|>a 的解集为R. 又∵|x -3|+|x +1|>a 的解集不是R ,∴a ≥4. ∴a 的取值范围是[4,+∞). 类型三 绝对值不等式的综合应用例3 设函数f(x)=⎪⎪⎪⎪⎪⎪x +1a +|x -a|(a >0). (1)证明:f(x)≥2;(2)若f(3)<5,求a 的取值范围. (1)证明 由a >0,可得f(x)=⎪⎪⎪⎪⎪⎪x +1a +|x -a|≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a+a ≥2,所以f(x)≥2.(2)解 f(3)=|3+1a |+|3-a|,当a >3时,f(3)=a +1a ,由f(3)<5,得3<a <5+212;当0<a ≤3时,f(3)=6-a +1a ,由f(3)<5,得1+52<a ≤3.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.反思与感悟 含绝对值的综合问题,综合性强,所用到的知识多,在解题时,要注意应用绝对值不等式的性质、推论及已知条件,还要注意配方等等价变形,同时在应用绝对值不等式放缩性质求最值时,还要注意等号成立的条件.跟踪训练3 设f(x)=ax 2+bx +c ,当|x|≤1时,恒有|f(x)|≤1,求证:|f(2)|≤7. 证明 因为当|x|≤1时,有|f(x)|≤1,所以|f(0)|=|c|≤1,|f(1)|≤1,|f(-1)|≤1, 又f(1)=a +b +c ,f(-1)=a -b +c , 所以|f(2)|=|4a +2b +c| =|3(a +b +c)+(a -b +c)-3c| =|3f(1)+f(-1)-3f(0)| ≤3|f(1)|+|f(-1)|+3|f(0)| ≤3+1+3=7,所以|f(2)|≤7.1.已知|x -m|<ξ2,|y -n|<ξ2,则|4x +2y -4m -2n|小于( )A .ξB.2ξC.3ξD.ξ2答案 C解析 |4x +2y -4m -2n|=|4(x -m)+2(y -n)| ≤4|x -m|+2|y -n|<4×ξ2+2×ξ2=3ξ.2.已知a 为实数,则“|a|≥1”是“关于x 的绝对值不等式|x|+|x -1|≤a 有解”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 B解析 由|a|≥1得a ≤-1或a ≥1.因为关于x 的不等式|x|+|x -1|≤a 有解,而|x|+|x -1|≥|x +1-x|=1,所以a ≥1.故“|a|≥1”是“关于x 的绝对值不等式|x|+|x -1|≤a 有解”的必要不充分条件. 3.已知|a|≠|b|,m =|a|-|b||a -b|,n =|a|+|b||a +b|,则m ,n 的大小关系是( )A .m >nB .m <nC .m =nD .m ≤n答案 D解析 m =|a|-|b||a -b|≤|a -b||a -b|=1.又n =|a|+|b||a +b|≥|a +b||a +b|=1,∴m ≤n.4.已知关于x 的不等式|x -1|+|x +a|≤8的解集不是空集,则a 的最小值是________. 答案 -9解析 ∵|x -1|+|x +a|≥|x -1-(x +a)|=|a +1|,且关于x 的不等式|x -1|+|x +a|≤8的解集不是空集,∴|a +1|≤8,解得-9≤a ≤7,即a 的最小值是-9.5.下列四个不等式:①|log x 10+lgx|≥2;②|a -b|<|a|+|b|;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1.其中恒成立的是________.(把你认为正确的序号都填上). 答案 ①③④解析 |log x 10+lg x|=⎪⎪⎪⎪⎪⎪1lg x +lg x =1|lg x|+|lg x|≥2,①正确;当ab ≤0时,|a -b|=|a|+|b|,②不正确; ∵ab ≠0,b a 与ab同号,∴|b a +a b |=|b a |+|ab|≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④正确.1.求含绝对值的代数式的最值问题的综合性较强,直接求|a|+|b|的最大值比较困难,可采用求|a +b|,|a -b|的最值,及ab ≥0时,|a|+|b|=|a +b|,当ab ≤0时,|a|+|b|=|a -b|的定理,达到目的. 2.求y =|x +m|+|x +n|和y =|x +m|-|x +n|的最值,其主要方法有 (1)借助绝对值的定义,即零点分段; (2)利用绝对值的几何意义; (3)利用绝对值不等式的性质定理.一、选择题1.已知h >0,a ,b ∈R ,命题甲:|a -b|<2h ;命题乙:|a -1|<h 且|b -1|<h ,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件 答案 B解析 “乙⇒甲”, ∵|a -1|<h ,|b -1|<h , ∴|a -1|+|b -1|<2h ,又|a -1|+|b -1|≥|(a -1)-(b -1)|=|a -b|, ∴|a -b|<2h.“甲⇏乙”.当a =b =5,h =1时,甲⇏乙.2.设|a|<1,|b|<1,则|a +b|+|a -b|与2的大小关系是( ) A .|a +b|+|a -b|>2 B .|a +b|+|a -b|<2 C .|a +b|+|a -b|=2 D .不能比较大小答案 B解析 当(a +b)与(a -b)同号或(a +b)(a -b)=0时, |a +b|+|a -b|=|(a +b)+(a -b)|=2|a|<2. 当(a +b)与(a -b)异号时,|a +b|+|a -b|=|(a +b)-(a -b)|=2|b|<2.3.对任意x ,y ∈R ,|x -1|+|x|+|y -1|+|y +1|的最小值为( ) A .1B .2C .3D .4 答案 C解析 ∵|x -1|+|x|+|y -1|+|y +1| ≥|(x -1)-x|+|()y -1-(y +1)|=3.4.设变量x ,y 满足|x -1|+|y -a|≤1,若2x +y 的最大值是5,则实数a 的值是( ) A .2B .1C .0D .-1 答案 B解析 由|x -1|+|y -a|≤1,得|x -1|≤1, ∴0≤x ≤2,且|x +y -1-a|≤1, ∴a ≤x +y ≤2+a , ∴2x +y ≤4+a , 又2x +y 的最大值为5, ∴4+a =5,∴a =1.5.已知不等式|x -m|<1成立的一个充分不必要条件是13<x <12,则实数m 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-43,12B.⎣⎢⎡⎦⎥⎤-12,43C.⎝ ⎛⎭⎪⎫-∞,-12D.⎣⎢⎡⎭⎪⎫43,+∞答案 B6.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5B .4C .8D .7 答案 A解析 由题意,得|x -2y +1|=|(x -1)-2(y -1)| ≤|x -1|+|2(y -2)+2|≤1+2|y -2|+2≤5, 即|x -2y +1|的最大值为5. 二、填空题7.若存在实数x 使|x -a|+|x -1|≤3成立,则实数a 的取值范围是________. 答案 [-2,4]解析 |x -a|+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.8.已知函数f(x)=|x -3|-|x -a|.若存在实数x ,使得不等式f(x)≥a 成立,则实数a 的取值范围为________. 答案 ⎝ ⎛⎦⎥⎤-∞,32解析 由不等式性质可知,f(x)=|x -3|-|x -a| ≤|(x -3)-(x -a)|=|a -3|,所以若存在实数x ,使得不等式f(x)≥a 成立, 则|a -3|≥a ,解得a ≤32,所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,32. 9.以下三个命题:①若|a -b|≤1,则|a|≤|b|+1; ②若a ,b ∈R ,则|a +b|-2|a|≤|a -b|; ③|x|<2,|y|>3,则⎪⎪⎪⎪⎪⎪x y <23.其中正确命题的序号为________. 答案 ①②③解析 因为|a|-|b|≤|a -b|≤1,所以|a|≤|b|+1,故①正确;因为|a +b|-2|a|=|a +b|-|2a|≤|(a +b)-2a|=|a -b|.故②正确;③显然正确.10.若不等式|2a -1|≤⎪⎪⎪⎪⎪⎪x +1x 对一切非零实数x 恒成立,则实数a 的取值范围是______.答案 ⎣⎢⎡⎦⎥⎤-12,32 解析 因为⎪⎪⎪⎪⎪⎪x +1x =|x|+1|x|≥2, 所以由已知得|2a -1|≤2, 即-2≤2a -1≤2, 解得-12≤a ≤32.11.已知函数f(x)=|x -3|-2,g(x)=-|x +1|+4,若函数f(x)-g(x)≥m +1的解集为R ,则m 的取值范围是________. 答案 (-∞,-3]解析 f(x)-g(x)=|x -3|+|x +1|-6, 因为x ∈R ,由绝对值不等式,得f(x)-g(x)=|x -3|+|x +1|-6=|3-x|+|x +1|-6 ≥|(3-x)+(x +1)|-6=4-6=-2, 于是有m +1≤-2,得m ≤-3, 即m 的取值范围是(-∞,-3]. 三、解答题12.求证:(1)|a +b|+|a -b|≥2|a|; (2)|a +b|-|a -b|≤2|b|.证明 (1)∵|a +b|+|a -b|≥|(a +b)+(a -b)|=|2a|=2|a|, ∴|a +b|+|a -b|≥2|a|.(2)∵|a +b|-|a -b|≤|(a +b)-(a -b)|=|2b|=2|b|, ∴|a +b|-|a -b|≤2|b|.13.设a ∈R ,函数f(x)=ax 2+x -a(-1≤x ≤1). (1)若|a|≤1,证明:|f(x)|≤54.(2)求使函数f(x)有最大值178的实数a 的值.(1)证明 ∵|x|≤1,|a|≤1,∴|f(x)|=|a(x 2-1)+x|≤|a||x 2-1|+|x|≤|x 2-1|+|x|=1-|x|2+|x|=-⎝ ⎛⎭⎪⎫|x|-122+54≤54.(2)解 当a =0时,f(x)=x ;当-1≤x ≤1时,f(x)的最大值为f(1)=1不可能满足题设条件,∴a ≠0. 又f(1)=a +1-a =1,f(-1)=a -1-a =-1,故f(±1)均不是最大值.∴f(x)的最大值为178,应在其对称轴上,即顶点位置取得.∴a<0,∴命题等价于⎩⎪⎨⎪⎧-1<-12a<1,f ⎝ ⎛⎭⎪⎫-12a =178,a<0,得⎩⎪⎨⎪⎧a<-12,(a +2)⎝ ⎛⎭⎪⎫a +18=0,即⎩⎪⎨⎪⎧a<-12,a =-2或a =-18.∴a =-2. 四、探究与拓展14.设x ,y ∈R ,求证:|2x-x|+|2y -y|+|x +y|≥212x y++.证明 由绝对值三角不等式,得|2x -x|+|2y-y|≥|2x+2y-(x +y)|≥|2x+2y|-|x +y|, ∴|2x-x|+|2y-y|+|x +y|≥|2x+2y |. 而|2x+2y|=2x+2y≥22x·2y=22x+y=2·22x y +=212x y++,∴|2x-x|+|2y-y|+|x +y|≥212x y++.15.已知a ,b ∈R 且a ≠0,求证:|a 2-b 2|2|a|≥|a|2-|b|2.证明 (1)若|a|>|b|,左边=|a +b||a -b|2|a|=|a +b||a -b||a +b +a -b|≥|a +b||a -b||a +b|+|a -b|=11|a +b|+1|a -b|.∵1|a +b|≤1|a|-|b|,1|a -b|≤1|a|-|b|, ∴1|a +b|+1|a -b|≤2|a|-|b|, ∴左边≥|a|-|b|2=右边.(2)若|a|<|b|,左边>0,右边<0, ∴原不等式显然成立.(3)若|a|=|b|,原不等式显然成立. 综上可知,原不等式成立.。

新北师大版高中数学高中数学选修4-5第二章《重要的不等式》检测(有答案解析)(3)

新北师大版高中数学高中数学选修4-5第二章《重要的不等式》检测(有答案解析)(3)

一、选择题1.已知a 、b R ∈,224a b +=,求32a b +的最大值为( )A .B .C .D .42.函数y =的最小值是( )A B 1C .11+D .3.已知a ,0b >,5a b += )A .18B .9C .D .4.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .9-B .9C .10D .05.m 个互不相同的正偶数与n 个互不相同的正奇数的和为117,对所有这样的m 与n,3m+2n 的最大值是( ) A .35 B .37 C .38D .416.已知空间向量(1,0,0),(1,1,0),(0,0,1),OA OB OC === 向量,OP xOA yOB zOC =++且424x y z ++=,则OP 不可能是 A .12B .1C .32D .47.y=x 的最大值是 ( )A .1B .2C D .48.已知1=,则以下式子成立的是 A .221a b +> B .221a b += C .221a b +<D .221a b =9.已知a +b +c =1,且a , b , c >0,则 222a b b c a c+++++ 的最小值为( ) A .1B .3C .6D .910.若实数a ,b ,c 均大于0,且a +b +c =3,则的最小值为( )A .3B .1C D 11.已知,,(0,1)a b c ∈,且1ab bc ac ++=,则111111a b c++---的最小值为( )A B C .62- D12.若a <b <c ,x <y <z ,则下列各式中值最大的一个是( ) A .ax+cy+bz B .bx+ay+cz C .bx+cy+azD .ax+by+cz二、填空题13.若222494x y z ++=,则+3x y z +的最大值为______. 14.已知a ,b ,c 均为非负数,且494a b c ++=,则111111a b c +++++的最小值为______.15.已知x,y,z ∈R,有下列不等式: ①x 2+y 2+z 2+3≥2(x+y+z);x y2+≥②③|x+y|≤|x -2|+|y+2|; ④x 2+y 2+z 2≥xy+yz+zx.其中一定成立的不等式的序号是_____16.若实数1x y z ++=,则22223x y z ++的最小值为__________. 17.函数2910,122y x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪-⎝⎭⎝⎭的最小值为________18.若正数,,a b c 满足41a b c ++=,_________ 19.设,x y R ∈,则222211()(4)x y y x++的最小值为________.20.已知,(0,)x y ∈+∞<恒成立,利用柯西不等式可求得实数k 的取值范围是________.三、解答题21.已知f (n )=1+312+313+314++31n ,()g n =32-212n,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g(n )的大小关系; (2)猜想f (n )与g(n )的大小关系,并给出证明. 22.已知,x y R ∈,且1x y +=. (1)求证:22334x y +≥; (2)当0,0x y >>时,不等式221111|2||1|a a x y ⎛⎫⎛⎫--≥-++ ⎪ ⎪⎝⎭⎝⎭恒成立,求a 的取值范围.23.已知函数()31f x x x =+++. (1)求不等式()4f x ≤的解集;(2)设函数()f x 的最小值为n ,若正实数,,a b c ,满足a b c n ++=,证明4118a b c++≥. 24.若正数,,a b c 满足1a b c ++=,求111323232a b c +++++的最小值. 25.已知222x y +=,且x y ≠,求()()2211x y x y ++-的最小值.26.已知函数()2f x m x =-+,m R ∈,且()20f x -≥的解集为[]3,3-. (1)求m 的值;(2)若a ,b ,c 是正实数,且23++=a b c m ,求证:111323a b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用柯西不等式可求得32a b +的最大值. 【详解】224a b +=,由柯西不等式可得()()()222223232a b a b ++≥+,即()23213452a b +≤⨯=,32a b ∴-+≤当且仅当a =b =时,32a b +取得最大值.因此,32a b +的最大值为 故选:B. 【点睛】本题考查利用柯西不等式求最值,解答的关键在于对代数式进行合理配凑,考查计算能力,属于基础题.2.B解析:B 【分析】将y =y =不等式求得2y 的最小值,从而可求出y 的最小值.【详解】y ==根据柯西不等式,得222(1)2(3)5y x x =-++-++22(1)2(3)52[(1)(3)x x x x ≥-++-++--2[(1)(3)]2511x x =-+-++++当且仅当13x x -=-,即13x =时等号成立.此时,min 1y ==,故选:B. 【点睛】本题主要考查利用柯西不等式求最小值的问题,属于基础题.3.C解析:C 【分析】. 【详解】由题意,()()2111318a b ≤++++=,=∴当72a =,32b =时,故选:C. 【点睛】本题考查了函数的最值,考查柯西不等式的运用,正确运用柯西不等式是关键.属于较易题.4.B解析:B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy=时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.5.B解析:B 【解析】 【分析】由题意结合数列求和的问题将原问题转化为柯西不等式的问题,然后利用柯西不等式求解最值即可,注意等号成立的条件. 【详解】由题意可得:()()135212462117n m ⎡⎤++++-+++++≤⎣⎦,结合等差数列前n 项和公式有:22117n m m ++≤,配方可得:22146924n m ⎛⎫++≤ ⎪⎝⎭,结合柯西不等式有:()2222213232322n m n m ⎡⎤⎛⎫⎛⎫+++≥++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,即:23469231324n m ⎛⎫++≤⨯ ⎪⎝⎭,据此可得:32337.541642n m +≤≈, 由于23n m +为整数,故2337n m +≤,事实上,1+2+3+4+5+6+7+8+10+11+12+14+16+18=117 此时5个奇数,9个偶数,得到5×2+9×3=37,故3m +2n 的最大值是37. 本题选择B 选项. 【点睛】柯西不等式有代数形式和向量形式两种不同的形式.从解决问题的角度看,受思维特点和知识熟悉程度影响,不同的人会喜欢不同的处理方式.从柯西不等式的地位与作用看,由于柯西不等式是经典不等式,向量形式只是其中一种,利用代数形式研究一些相对复杂的问题更让人们所习惯.同时需要注意综合各个部分知识的应用和等号成立的条件.6.A解析:A 【分析】由题求得OP 的坐标,求得OP ,结合424x y z ++=可得答案.【详解】(),,x y y z =+ ,()222OP x y y z =+++利用柯西不等式可得()()()22222224214216x y y z x y z ⎡⎤⎡⎤+-++++≥++=⎣⎦⎣⎦21621OP ∴≥. 故选A. 【点睛】本题考查空间向量的线性坐标运算及空间向量向量模的求法,属基础题.7.C解析:C 【解析】 【分析】首先求得平方的最大值,然后确定y 的最大值即可. 【详解】函数有意义,则210x -≥,即11x -≤≤, 且()()22222211211222x x y x x ⎡⎤+-⎢⎥=+-≤+=⎢⎥⎣⎦, 则y =x 21x +-2 当且仅当221x x =-,即2x =时等号成立. 本题选择C 选项. 【点睛】本题主要考查函数最值的求解,均值不等式的应用等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【解析】由柯西不等式可得(()()2222222111111b aa ab b ⎡⎤⎡⎤=--≤+--+=⎣⎦⎣⎦, 2211b a-=-时,上式取等号,所以2211ab a b =--()()222211a b a b =--,故221a b +=.故选B .9.D解析:D 【解析】2221,a b c a b b c c a ++=∴+++++()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).10.D解析:D 【解析】()()()22222221111119,3a b c a b c a b c ++++≥⨯+⨯+⨯=∴++≥,1a b c ===时等号成立,故选D. 11.D解析:D 【解析】21110,,1,()3()33,()111a b c a b c ab bc ca a b c a b c<<∴++≥++=∴++≥++---(1a -+11)b c -+-2111111[(1)(1)(1)]9,111111a b c a b c a b c-+-+-=∴++≥------9(111)a b c -+-+-≥=D.,故选 【点睛】本题考查柯西不等式,涉及转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于中档题.本题想用基本不等式公式求得a b c ++≥利用柯西不等式公式求得111()(111)111a b c a b c++-+-+----9,≥从而求得1119111(111)a b c a b c ++≥≥=----+-+- 12.D解析:D 【解析】试题分析:根据条件:a <b <c ,x <y <z ,结合排序不等式:反序和≤乱序和≤同序和,即可得出同序和ax+by+cz 最大. 解:∵a <b <c ,x <y <z ,排序不等式:反序和≤乱序和≤同序和, 得:同序和ax+by+cz 最大. 故选D .点评:本题主要考查了不等关系与不等式、排序不等式等基本知识,解答关键是利用不等关系与不等式的性质:反序和≤乱序和≤同序和.二、填空题13.3【分析】利用条件构造柯西不等式即可【详解】由题得所以所以所以的最大值为3故答案为:3【点睛】该题考查的是有关利用柯西不等式求最值的问题属于基础题目解析:3 【分析】利用条件构造柯西不等式()22222221(3)49112x y z x y z ⎛⎤⎛⎫++≤++++ ⎥ ⎪ ⎝⎭⎥⎝⎦即可 【详解】由题得()()()()22222221231132x y z x y z ⎡⎤⎛⎫⎡⎤++++≥++⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦,所以()29434x y z ⨯≥++,所以333x y z -≤++≤, 所以3x y z ++的最大值为3 故答案为:3. 【点睛】该题考查的是有关利用柯西不等式求最值的问题,属于基础题目.14.2【分析】根据题意得到再由柯西不等式即可求出结果【详解】因为均为非负数且则所以由柯西不等式可得:所以;当且仅当即由解得:即时等号成立故答案为:2【点睛】本题主要考查由柯西不等式求最值熟记柯西不等式即解析:2 【分析】根据题意得到()()()1419118a b c +++++=,再由柯西不等式,即可求出结果. 【详解】因为a ,b ,c 均为非负数,且494a b c ++=,则()()()1419118a b c +++++=, 所以由柯西不等式可得:()()()()21419111123361111a b a b c c ⎛⎫++≥++=⎡⎤ ++++⎪⎣⎦+++⎝+⎭, 所以11136211118a b c ++≥=+++;==12233a b c +=+=+, 由12233494a b c a b c +=+=+⎧⎨++=⎩解得:2120a b c =⎧⎪⎪=⎨⎪=⎪⎩,即12,,02a b c ===时,等号成立. 故答案为:2. 【点睛】本题主要考查由柯西不等式求最值,熟记柯西不等式即可,属于常考题型.15.①③④【解析】【分析】由题意逐一考查所给的四个说法的正误即可【详解】逐一考查所给的四个说法:则说法①正确;当时不成立说法②错误;由绝对值三角不等式的性质可得:|x−2|+|y+2|⩾|(x−2)+( 解析:①③④ 【解析】 【分析】由题意逐一考查所给的四个说法的正误即可. 【详解】逐一考查所给的四个说法:()()()()222222321110x y z x y z x y z +++-++=-+-+-≥,则()22232x y z x y z +++≥++,说法①正确;当1x y ==-时,2x y+≥②错误;由绝对值三角不等式的性质可得:|x −2|+|y +2|⩾|(x −2)+(y +2)|=|x +y |,说法③正确; ()()()()222222102x y z xy yz zx x y y z z x ⎡⎤++-++=-+-+-≥⎣⎦, 则222x y z xy yz zx ++≥++,说法④正确. 综上可得,一定成立的不等式的序号是①③④. 【点睛】本题主要考查不等式的性质,利用不等式求最值,均值不等式成立的条件等知识,意在考查学生的转化能力和计算求解能力.16.【解析】由柯西不等式得(2x2+y2+3z2)(+1+)≥(x+y+z )2=1∴2x2+y2+3z2≥即的最小值为故答案为: 解析:611【解析】由柯西不等式得,(2x 2+y 2+3z 2)(12+1+13)≥(x+y+z )2=1 ∴2x 2+y 2+3z 2≥611,即22223x y z ++的最小值为611故答案为:611. 17.25【解析】故答案为【方法点睛】本题主要考查了一般形式的柯西不等式属于中档题解决问题的关键是利用柯西不等式求最值时关键是对原目标函数进行配凑以保证出现常数结果同时要注意等号成立的条件配凑过程采取如下解析:25 【解析】()222229232321212212212y x x x x x x x x ⎛⎫⎡⎤=+=+=++- ⎪⎣⎦---⎝⎭225≥=,故答案为25.【方法点睛】本题主要考查了一般形式的柯西不等式,属于中档题. 解决问题的关键是利用柯西不等式求最值时, 关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件, 配凑过程采取如下方法:一是考虑题设条件;二是对原目标函数进行配凑后利用柯西不等式解答18.【分析】直接利用柯西不等式列式化简后可求得最大值【详解】由柯西不等式得即即【点睛】本小题主要考查利用利用柯西不等式求最大值考查化归与转化的数学思想方法属于基础题【分析】直接利用柯西不等式列式,化简后可求得最大值. 【详解】 由柯西不等式得222222111112⎡⎤⎫⎡⎤⎢⎥++++≥⎪⎢⎥⎣⎦⎢⎥⎭⎝⎭⎣⎦,即()2542a b c ++≥≤. 【点睛】 本小题主要考查利用利用柯西不等式求最大值,考查化归与转化的数学思想方法,属于基础题.19.9【详解】由柯西不等式可知解析:9【详解】 由柯西不等式可知2222211()(4)(12)9x y y x++≥+=. 20.【解析】试题分析:由柯西不等式得所以即考点:柯西不等式解析:k >【解析】试题分析:由柯西不等式得22(13)()x y ≤++,所以≤k >考点:柯西不等式三、解答题21.(1)答案见解析;(2)f (n )≤g(n ),证明见解析.【分析】(1)利用解析式计算、比较可得答案;(2)由(1)的结果猜想可得f (n )≤g(n ),再利用数学归纳法进行证明可得答案.【详解】(1)当n =1时,f (1)=1,g(1)=1,所以f (1)=g(1);当n =2时,f (2)=98,g(2)=118,所以f (2)<g(2); 当n =3时,f (3)=251216,g(3)=312216,所以f (3)<g(3). (2)由(1)猜想: f (n )≤g(n ),用数学归纳法证明.①当n =1,不等式显然成立.②假设当n =k (k ∈N *)时不等式成立,即1+312+313+314++31k ≤32-212k , 则当n =k +1时, f (k +1)=f (k )+31(1)k +≤32-212k +31(1)k +22233111122(1)2(1)2(1)k k k k =-+-++++,因为212(1)k +-23112(1)k k ++=332(1)k k ++-212k =32312(1)k k k --+<0, 所以f (k +1)<32-212(1)k +=g(k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g(n )成立.【点睛】关键点点睛:掌握数学归纳法原理是本题解题关键.22.(1)证明见解析;(2)[]4,5-.【分析】(1)由柯西不等式即可证明;(2)可先化简计算221111x y ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的最小值,再分2a ≥,1a 2-<<,1a ≤-三种情况讨论即可得到答案.【详解】(1)由柯西不等式得: 22222)11x x ⎡⎤⎛⎡⎤++≥⋅⎢⎥ ⎣⎦⎝⎢⎥⎣⎦, ()22243()13x y x y ∴+⨯≥+=, 当且仅当334x y ==时取等号, 22334x y ∴+≥; (2)由0,0x y >>,1x y +=, 得222211(1)(1)(1)(1)112111x x y y x y x y x y x y xy ⎛⎫+-+-++⎛⎫--=⋅=⋅=+ ⎪ ⎪⎝⎭⎝⎭ 114x y xy=+≥≥ 当且仅当12x y ==时等号成立, 要使得不等式221111|2||1|a a x y ⎛⎫⎛⎫--≥-++ ⎪ ⎪⎝⎭⎝⎭恒成立, 即可转化为|2||1|9a a -++≤,当2a ≥时,219a -≤,可得25a ≤≤,当1a 2-<<时,39≤,可得1a 2-<<,当1a ≤-时,219a -+≤,可得41a -≤≤-,a ∴的取值范围为:[]45-,.【点睛】易错点睛:本题主要考查柯西不等式,均值不等式,绝对值不等式的综合应用. 柯西不等式以及均值不等式注意等号成立的条件.23.(1)[]4,0-;(2)证明见解析【分析】(1)由314x x +++≤,分3,31,1x x x ≤--<<-≥-三种情况,分别解不等式,进而可得出答案;(2)先求出()f x 的最小值,进而利用柯西不等式,可证明结论成立.【详解】(1)()4f x ≤,即314x x +++≤,原不等式等价于3143x x x ⎧⎨----≤≤-⎩或33114x x x ⎧⎨+---≤<<-⎩或3141x x x ⎧⎨+++≤≥-⎩, 解得43x -≤≤-或31x -<<-或10x -≤≤,综上,原不等式的解集为[]4,0-.(2)因为()31312f x x x x x =+++≥+--=,所以函数()f x 的最小值2n =, 则正实数,,a b c ,满足2a b c ++=,由柯西不等式,可得()2411a b ca b c ⎛⎫++++≥ ⎪⎝⎭, 即()2411221116a b c ⎛⎫++≥++=⎪⎝⎭,当且仅当2a b c ==时,等号成立. 所以4118a b c++≥. 【点睛】本题考查绝对值不等式的解法,考查不等式的证明,考查学生的推理能力与计算求解能力,属于中档题.24.1【解析】 试题分析:由柯西不等式得[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++ ⎪+++⎝⎭9≥=,所以1111323232a b c ++≥+++ 试题因为,,a b c 均为正数,且1a b c ++=,所以(32)(32)(32)9a b c +++++=. 于是由均值不等式可知[]111(32)(32)(32)323232a b c a b c ⎛⎫+++++++ ⎪+++⎝⎭9≥=, 当且仅当13a b c ===时,上式等号成立. 从而1111323232a b c ++≥+++. 故111323232a b c +++++的最小值为1.此时13a b c ===. 考点:柯西不等式25.1【分析】令,u x y v x y =+=-,得224u v ,利用柯西不等式可以求出. 【详解】令,u x y v x y =+=-,则,22u v u v x y , 222x y +=,22()()8u v u v ∴++-=,得224u v ,由柯西不等式可得2222211114u v u v , 即22111u v , 当且仅当222u v ==,即2,0x y 或0,2x y 时,等号成立, 故()()2211x y x y ++-的最小值为1.【点睛】本题考查柯西不等式的应用,考查考生分析问题、解决问题的能力. 26.(1) 3m =;(2)证明见解析.【分析】(1)根据(2)0f x -≥的解集为[3,3]-,结合绝对值不等式的解法,即可求m 的值;(2)利用柯西不等式,即可证明结论.【详解】(1)依题意(2)||0f x m x -=-≥,即||x m m x m ≤-≤≤,,3m ∴=; (2)证明: 233(,,0)a b c a b c ++=>, 所以由柯西不等式得3=≤ 所以111323a b c ++≥,当且仅当23a b c ==,即111,,23a b c ===时取等号. 【点睛】本题考查含绝对值不等式的解法和柯西不等式的运用,属于中档题.。

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,-a的相反数是a。

5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。

如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。

如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。

9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。

10.开平方:求一个数a的平方根的运算,叫做开平方。

11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。

12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测(答案解析)

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》检测(答案解析)

一、选择题1.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b>-D .()20a b c -≥2.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <3.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则ac >bd4.已知01a <<,01c b <<<,下列不等式成立的是( ) A .b c b a c a>++ B .c c a b b a+>+ C .log log b c a a < D .b c a a >5.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >6.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 7.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c >b -cB .(a -b )c 2>0C .a 3>b 3D .a 2>b 28.若0a b <<,则下列各式一定..成立的是( ) A .a c b c +>+B .22a b <C .ac bc >D .11a b> 9.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >10.给出以下四个命题:( ) ①若a>b ,则 11a b<; ②若ac 2>bc 2,则a>b ; ③若a>|b|,则a>b ;④若a>b ,则a 2>b 2.其中正确的是( ) A .②④B .②③C .①②D .①③11.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭12.如果a b >,那么下列不等式一定成立的是( ) A .a b >B .33a b >C .11a b< D .22a b <二、填空题13.设()23f x x x =-+-,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______.14.关于x 的不等式22a x x ->-在[]0,2上恒成立,则a 的取值范围是__________. 15.若关于x 的不等式215x a x x -+-≥-在R 上恒成立,则实数a 的取值范围为________.16.若存在实数x ,使得12-++<x x a 成立,则实数a 的取值范围为______. 17.已知不等式222xy ax y +,对任意[1,2],[4,5]x y ∈∈恒成立,则实数a 的取值范围是__________.18.若1a 2-<<,21b -<<,则-a b 的取值范围是 .19.某学习小组,调查鲜花市场价格得知,购买2支玫瑰与1支康乃馨所需费用之和大于8元,而购买4支玫瑰与5支康乃馨所需费用之和小于22元.设购买2支玫瑰花所需费用为A 元,购买3支康乃馨所需费用为B 元,则A 、B 的大小关系是______________ 20.若存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立,则实数c 的取值范围是_____.三、解答题21.已知()211f x x x =-++.(1)画出函数()f x 的图象; (2)求不等式()()1f x f x <-的解集. 22.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 23.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c ∈R , 2222a cb k ++=,求()b ac +的最大值.24.当,p q 都为正数且1p q +=时,试比较代数式2()px qy +与22+px qy 的大小. 25.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()222f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.26.已知函数()|21|||2g x x x =-+++. (1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.2.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.3.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确, 对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.4.A解析:A 【分析】由作差法可判断出A 、B 选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C 选项中不等式的正误;利用指数函数的单调性可判断出D 选项中不等式的正误. 【详解】对于A 选项中的不等式,()()()a b c b cb ac a a b a c --=++++,01a <<,01c b <<<, ()0a b c ∴->,0a b +>,0a c +>,b cb ac a∴>++,A 选项正确; 对于B 选项中的不等式,()()a cbc c a b b a b b a -+-=++,01a <<,01c b <<<, ()0a c b ∴-<,0a b +>,c c abb a+∴<+,B 选项错误; 对于C 选项中的不等式,01c b <<<,ln ln 0c b ∴<<,110ln ln b c∴<<, 01a <<,ln 0a ∴<,ln ln ln ln a ab c∴>,即log log b c a a >,C 选项错误; 对于D 选项中的不等式,01a <<,∴函数x y a =是递减函数,又c b <,所以c b a a >,D 选项错误.故选A. 【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.5.D解析:D 【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >,对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【分析】主要利用排除法求出结果. 【详解】 对于选项A :当0a b >>时,不成立;对于选项B :当10a b >>>时,()lg 0a b -<,所以不成立; 对于选项D :当0a b >>时,不成立; 故选C . 【点睛】本题考查的知识要点:不等式的基本性质的应用,排除法的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.C解析:C 【解析】 【分析】由不等式性质及举反例逐个分析各个选项可判断正误。

北师大版高二数学下绝对值不等式的解法 第2课时导学案

北师大版高二数学下绝对值不等式的解法     第2课时导学案

a
–a 图 1-2
a
1
同样,如果给定的不等式符合这种类型,就可以直接利用它的结果 来解。 3、 ax b c 和 ax b c 型不等式的解法。
ax b c c ax b c ax b c ax b c或ax b c
4、 x a x b c 和 x a x b c 型不等式的解法。 (三种 思路) 〔导学释疑〕 例 1、解不等式 3x 1 x 2 。 例 2、解不等式 3x 1 2 x 。 方法 1:分类讨论。 方法 2:依题意,原不等式等价于 3 x 1 2 x 或 3x 1 x 2 , 然后去解。 例 3、解不等式 2x 1 3x 2 5 。 例 4、解不等式 x 2 x 1 5 。 解:本题可以按照例 3 的方法解,但更简单的解法是利用几何意义。 原不等式即数轴上的点 x 到 1,2 的距离的和大于等于 5。因为 1,2 的 距离为 1,所以 x 在 2 的右边, 2 的距离大于等于 2 与 (= (5-1) 2) ; 或者 x 在 1 的左边, 1 的距离大于等于 2。 与 这就是说,x 4 或 x 1. 例 5、 不等式 x 1 x 3 > a , 对一切实数 x 都成立, 求实数 a 的 取值范围。 〔检查反馈〕 一、解下列不等式: 1、 2 2 x 1 1. 2、 41 3x 1 0
{x | a x a} ,它的几何意义就是数轴上到原点的
距离小于 a 的点的集合是开区间(-a,a) ,如图所示。
图 1-1 a 如果给定的不等式符合上述形式,就可以直接利用它的结果来解。 第二种类型:设 a 为正数。根据绝对值的意义,不等式 x a 的解 集是 { x | x a 或 x a }, 它的几何意义就是数轴上到原点的距离大于 a 的 点的集合是两个开区间 (,a), (a, ) 的并集。如图 1-2 所示。

初三数学知识点归纳北师大版

初三数学知识点归纳北师大版

初三数学知识点归纳北师大版初三数学知识点归纳北师大版涵盖了初中数学的核心内容,为学生提供了一个系统性的复习框架。

以下是北师大版初三数学的主要知识点归纳:1. 数与式- 实数的概念和分类,包括有理数和无理数。

- 绝对值的性质和运算法则。

- 代数式的运算,包括加减乘除和乘方运算。

- 因式分解的方法,如提公因式法、公式法和分组分解法。

2. 方程与不等式- 一元一次方程的解法,包括移项和合并同类项。

- 一元二次方程的解法,如直接开平方法、配方法、公式法和因式分解法。

- 不等式的基本性质和解法,包括一元一次不等式和一元二次不等式。

- 含绝对值的不等式的解法。

3. 函数- 函数的概念,包括定义域、值域和对应法则。

- 一次函数的图象和性质,以及一次函数与一元一次方程的关系。

- 二次函数的图象和性质,包括开口方向、顶点坐标和对称轴。

- 反比例函数的图象和性质,以及反比例函数与一次函数的关系。

4. 几何图形- 线段、射线和直线的性质和关系。

- 角的概念和分类,包括锐角、直角、钝角和平角。

- 多边形的性质,如三角形的内角和定理和多边形的内角和定理。

- 圆的性质,包括圆心角、弧长和扇形面积的计算。

5. 统计与概率- 数据的收集和整理,包括统计表和统计图的绘制。

- 描述性统计,如众数、中位数和平均数的计算。

- 概率的基本概念,包括随机事件和概率的计算方法。

- 简单事件的概率计算,如古典概型和几何概型。

通过以上知识点的归纳,学生可以对初三数学有一个清晰的认识和掌握,为中考做好充分的准备。

在复习过程中,建议学生结合实际例题进行练习,以加深对知识点的理解和应用能力。

同时,定期进行模拟测试,以检验学习效果和查漏补缺。

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义

第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。

高中数学第一章不等关系与基本不等式1.2.2绝对值不等式的解法课件北师大版选修4_5

高中数学第一章不等关系与基本不等式1.2.2绝对值不等式的解法课件北师大版选修4_5
• 所以实数a的取值范围是(-∞,3).
• [互动探究]若本例条件变为“若关于x的不等式|x+2| -|x-1|≥a的解集为R”,求实数a的取值范围.
解:法一 令 y1=|x+2|-|x-1|,y2=a, 3,x≥1,
则 y1=2x+1,-2≤x<1, -3,x<-2.
• 函数y1,y2的图像如图所示.由图可知当a<-3时,
• 不等式|x-1|-|x-5|<2的解集是( ) • A.(-∞,4) B.(-∞,1) • C.(1,4) D.(1,5) • 解析:①当x<1时,原不等式等价于 • 1-x-(5-x)<2,即-4<2, • 所以x<1.
• ②当1≤x≤5时,原不等式等价于 • x-1-(5-x)<2,即x<4, • 所以1≤x<4. • ③当x>5时,原不等式等价于x-1-(x-5)<2, • 即4<2,无解. • 综合①②③知x<4. • 答案:A
• 3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解
法 几何意义
• (1)可以利用绝对值不等式的___________零_.点
• (2)利用分类讨论的思想,以绝对值的
“____________”为分界点,将数轴分成几个区间,
然后确定符号各个绝对值中的多绝对项值式符号的____________,
• 所以实数a的取值范围是(-∞,-3).
• 【点评】 (1)含参数的绝对值不等式的解法与不含 参数的绝对值不等式的解法完全一样,只不过要注 意对参数的取值的讨论.
• (2)对于已知含参数的绝对值不等式的解集情况或恒 成立情况,求参数的值或取值范围的问题,关键是 根据其解集或恒成立构建关于参数的方程、不等式 或函数,再求解.
第一章 不等关系与基本不等式

含有绝对值的不等式教案北师大版

含有绝对值的不等式教案北师大版
4.教室布置:根据教学需要,布置教室环境,如分组讨论区、实验操作台等。可以将教室座位布置成小组讨论的形式,以便学生能够在课堂上进习题,包括基础题、应用题和拓展题,以便在课堂上进行练习和巩固,同时也为学生提供一定的学习资源和挑战机会。
6.教学课件:制作精美的教学课件,包括教学目标、导入案例、知识点讲解、例题解析、练习题等,以便在课堂上进行演示和讲解,提高教学效果和学生的学习兴趣。
解决办法:1.通过实际例子和生活中的情境,引导学生理解绝对值的概念和性质;2.通过讲解、练习和讨论,让学生掌握含有绝对值的不等式的解法;3.提供丰富的练习题,让学生在实践中应用含有绝对值的不等式解决实际问题,加深理解和掌握。
教学资源准备
1.教材:确保每位学生都有北师大版初中数学八年级上册第11章《不等式与不等式组》的教材,以便学生能够跟随教学进度进行学习和复习。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调含有绝对值的不等式的重要性和意义。
过程:
简要回顾本节课的学习内容,包括绝对值的概念、性质、含有绝对值的不等式的解法等。
强调含有绝对值的不等式在实际问题解决中的价值和作用,鼓励学生进一步探索和应用含有绝对值的不等式。
2.绝对值的性质:
(1)非负性:绝对值总是非负的,即|a| ≥ 0。
(2)对称性:对于任意实数a,有|a| = |-a|。
(3)单调性:对于任意实数a和b,如果a < b,则|a| < |b|。
(4)分配律:对于任意实数a、b和c,有|a + b| = |a| + |b|(当a ≥ 0时)和|a + b| = |b| - |a|(当a < 0时)。

北师大版高数:不等式的性质与绝对值不等式

北师大版高数:不等式的性质与绝对值不等式

不等式的性质与绝对值不等式一、教学目标:教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法; 教学难点: 理解绝对值不等式的解法二、知识梳理:1、基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. 2、几个重要的不等式).0(2);,(222>≥+∈≥+ab baa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3、算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4、利用基本不等式求最值问题已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). 5、若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0 ()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或0三、典例训练类型一: 基本不等式的性质例1. 已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18B .36C .81D .243解析:因为m >0,n >0,所以m +n ≥2mn =281=18答案:A练习1. 若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号). ① 1≤ab②2≤+b a ③222≥+b a ④322≥+b a⑤.211≥+ba答案:①③⑤练习2. 已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________. 答案:4例2:求函数15()22y x =<<的最大值解析:注意到21x -与52x -的和为定值。

高中数学 第一章 不等关系与基本不等式 1.2.2 绝对值不等式的解法活页作业3 北师大版选修45

高中数学 第一章 不等关系与基本不等式 1.2.2 绝对值不等式的解法活页作业3 北师大版选修45

活页作业(三) 绝对值不等式的解法一、选择题1.如果1x <2和|x |>13同时成立,那么实数x 的取值范围是( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13<x <12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-13,或x >13解析:解不等式1x <2,得x <0或x >12.解不等式|x |>13,得x >13或x <-13.∴实数x 的取值范围为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >12或x <-13.答案:B2.不等式2<|2x +3|≤4的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x ≤12B .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72<x <-52或-12<x <12C .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x <-52或-12<x ≤12D .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-72≤x ≤-52或-12<x ≤12解析:由2<|2x +3|≤4,可得2<2x +3≤4或 -4≤2x +3<-2.解得-12<x ≤12或-72≤x <-52.答案:C3.关于x 的不等式⎪⎪⎪⎪⎪⎪ax -1x >a 的解集为集合M ,且2∉M ,则实数a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫14,+∞ B .⎣⎢⎡⎭⎪⎫14,+∞ C .⎝ ⎛⎭⎪⎫0,12 D .⎝ ⎛⎦⎥⎤0,12 解析:因为2∉M ,所以2∈∁R M .所以⎪⎪⎪⎪⎪⎪2a -12≤a ,即-a ≤2a -12≤a .解得a ≥14.答案:B4.不等式|3-x |+|x +4|>8的解集是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-92或x >72 D .R解析:|3-x |+|x +4|>8⇔⎩⎪⎨⎪⎧x ≤-4,3-x -x -4>8或⎩⎪⎨⎪⎧-4<x <3,3-x +x +4>8或⎩⎪⎨⎪⎧x ≥3,x -3+x +4>8⇔⎩⎪⎨⎪⎧x ≤-4,-1-2x >8或⎩⎪⎨⎪⎧-4<x <3,7>8或⎩⎪⎨⎪⎧x ≥3,2x >7.∴x <-92或x >72.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <-92或x >72.答案:C 二、填空题5.若关于x 的不等式|ax -2|<3的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-53<x <13,则a =________. 解析:由原不等式的解集,可知-53,13为原不等式对应的方程|ax -2|=3的根,即⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪-53a -2=3,⎪⎪⎪⎪⎪⎪13a -2=3.解得a =-3. 答案:-36.已知函数f (x )=|2x -1|+x +3,若f (x )≤5,则实数x 的取值范围是________. 解析:由已知,有|2x -1|+x +3≤5,即|2x -1|≤2-x .所以x -2≤2x -1≤2-x ,即⎩⎪⎨⎪⎧2x -1≤2-x ,2x -1≥x -2,即⎩⎪⎨⎪⎧x ≤1,x ≥-1.所以-1≤x ≤1.答案:[-1,1]三、解答题7.已知一次函数f (x )=ax -2. (1)当a =3时,解不等式|f (x )|<4; (2)解关于x 的不等式|f (x )|<4;(3)若关于x 的不等式|f (x )|≤3对任意x ∈[0,1]恒成立,求实数a 的取值范围. 解:(1)当a =3时,f (x )=3x -2,所以|f (x )|<4⇔|3x -2|<4⇔-4<3x -2<4⇔ -2<3x <6⇔-23<x <2.所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23<x <2. (2)|f (x )|<4⇔|ax -2|<4⇔-4<ax -2<4⇔-2<ax <6.当a >0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2a <x <6a ; 当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6a <x <-2a . (3)|f (x )|≤3⇔|ax -2|≤3⇔-3≤ax -2≤3⇔-1≤ax ≤5⇔⎩⎪⎨⎪⎧ax ≤5,ax ≥-1.因为x ∈[0,1], 所以-1≤a ≤5.所以实数a 的取值范围为[-1,5].8.已知对区间⎝ ⎛⎦⎥⎤0,54内的一切实数a ,满足关于x 的不等式|x -a |<b 的x 也满足不等式|x -a 2|<12,试求实数b 的取值范围.解:设A ={x ||x -a |<b },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪|x -a 2|<12, 则A ={x |a -b <x <a +b ,b >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a 2-12<x <a 2+12. 由题意,知当0<a ≤54时,A ⊆B .所以⎩⎪⎨⎪⎧a -b ≥a 2-12,a +b ≤a 2+12,0<a ≤54.所以b ≤-a 2+a +12且b ≤a 2-a +12.因为0<a ≤54,所以-a 2+a +12=-a -122+34∈⎣⎢⎡⎦⎥⎤316,34,a 2-a +12=⎝ ⎛⎭⎪⎫a -122+14∈⎣⎢⎡⎦⎥⎤14,1316.所以b ≤316且b ≤14.从而b ≤316.故实数b 的取值范围为⎝ ⎛⎦⎥⎤0,316.一、选择题1.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R },若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3解析:由|x -a |<1,得a -1<x <a +1. 由|x -b |>2,得x <b -2或x >b +2. ∵A ⊆B ,∴a -1≥b +2或a +1≤b -2. ∴a -b ≥3或a -b ≤-3.∴|a -b |≥3. 答案:D2.若关于x 的不等式|2x +1|-|x -4|≥m 恒成立,则实数m 的取值范围为( ) A .(-∞,-1] B .⎝ ⎛⎦⎥⎤-∞,-52C .⎝⎛⎦⎥⎤-∞,-92 D .(-∞,-5] 解析:设F (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4.如图所示,F (x )min =-32-3=-92.故m ≤F (x )min =-92.答案:C二、填空题3.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则实数a 的取值范围是________.解析:∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=12-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,即⎪⎪⎪⎪⎪⎪a -14+|a |≤14.根据绝对值的几何意义,知0≤a ≤14.答案:⎣⎢⎡⎦⎥⎤0,14 4.若函数f (x )是R 上的减函数,且函数f (x )的图像经过点A (0,3)和B (3,-1),则不等式|f (x +1)-1|<2的解集是________.解析:∵|f (x +1)-1|<2,∴-2<f (x +1)-1<2,即-1<f (x +1)<3.∴f (3)<f (x +1)<f (0).∵函数f (x )在R 上是减函数, ∴0<x +1<3.解得-1<x <2. 答案:{x |-1<x <2} 三、解答题5.如图所示,点O 为数轴的原点,A ,B ,M 为数轴上三点,C 为线段OM 上的动点.设x 表示点C 与原点的距离,y 表示点C 到点A 的距离的4倍与点C 到点B 的距离的6倍之和.(1)将y 表示为x 的函数;(2)要使y 的值不超过70,实数x 应该在什么范围内取值? 解:(1)依题意,得y =4|x -10|+6|x -20|,0≤x ≤30. (2)由题意,得x 满足⎩⎪⎨⎪⎧4|x -10|+6|x -20|≤70,0≤x ≤30.(*)当0≤x ≤10时,不等式组(*)化为 4(10-x )+6(20-x )≤70,解得9≤x ≤10. 当10<x <20时,不等式组(*)化为 4(x -10)+6(20-x )≤70,解得10<x <20. 当20≤x ≤30时,不等式组(*)化为 4(x -10)+6(x -20)≤70,解得20≤x ≤23. 综上,实数x 的取值范围是[9,23]. 6.已知函数f (x )=|x -a |.(1)若关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若关于x 的不等式f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.解:法一 (1)由f (x )≤3,得|x -a |≤3. 解得a -3≤x ≤a +3.又关于x 的不等式f (x )≤3的解集为{x |-1≤x ≤5}, 所以⎩⎪⎨⎪⎧a -3=-1,a +3=5.解得a =2.(2)由(1),得a =2,f (x )=|x -2|. 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5;当x>2时,g(x)>5.综上,函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].法二(1)同法一.(2)由(1),得a=2,f(x)=|x-2|.设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立),得函数g(x)的最小值为5.从而若关于x的不等式f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则实数m的取值范围为(-∞,5].。

北师大版数学选修45第一章绝对值不等式的解

北师大版数学选修45第一章绝对值不等式的解

专家点评(高新一中党效文)
在认真研究了教材后,针对学生的实际情况,杜老师制定了切合实际的教学目标,通过复习回顾绝对值的几何意义,和不等式的性质,为后面的学习做好铺垫。

进而提出问题,引导学生利用数轴解决这个问题,进而抽象概括,形成概念:不等式|x|<a(a>0)的解集是{x|-a<x<a},体现了由特殊到一般得思想方法,符合学生的认知规律。

再放手让学生通过讨论得出不等式|x|>a(a>0)的解集是{x|x>a,或x<-a}的一般性结论,体现了教学设计中注重对学生自主学习,合作学习,研究性学习等学习方式的培养。

利用前面的一般结论求解|x-3|<2的解集,再次引导学生抽象概括得出不等式()()()()()
f x a f x a f x a f x a a f x a
或及一般结论,并指导学生得出:含绝对值不等式解法关键是>⇔><-<⇔-<<
去掉绝对值符号;其基本思想是把含绝对值的不等式转化成不含绝对值的不等式,使学生的能力得到升华。

(北师大版)北京市高中数学选修2-2第四章《定积分》测试题(答案解析)

(北师大版)北京市高中数学选修2-2第四章《定积分》测试题(答案解析)

一、选择题1.给出以下命题: (1)若()0haf x dx >⎰,则()0f x >;(2)20|sin |4x dx π=⎰;(3)()f x 的原函数为()F x ,且()F x 是以T 为周期的函数,则:()()aa TTf x dx f x dx +=⎰⎰其中正确命题的个数为( ). A .1B .2C .3D .42.已知函数sin (11)()1(12)x x f x x x-≤≤⎧⎪=⎨<≤⎪⎩,则21()f x dx -=⎰( ) A .ln 2 B .ln 2-C .12-D .3cos 1-3.已知()22214a x ex dx π-=--⎰,若()201620121ax b b x b x -=++ 20162016b x ++(x R ∈),则12222b b + 201620162b ++的值为( ) A .1-B .0C .1D .e4.由23y x =-和2y x =围成的封闭图形的面积是( ) A .23 B .923- C .323 D .3535.曲线3y x =在点()1,1处的切线与x 轴、直线2x =所围成的三角形的面积为( ) A .83B .73C .53D .436.如图,设D 是途中边长分别为1和2的矩形区域,E 是D 内位于函数1(0)y x x=>图象下方的阴影部分区域,则阴影部分E 的面积为( )A .ln 2B .1ln 2-C .2ln 2-D .1ln 2+7.曲线22y x x =-与直线11x x =-=,以及x 轴所围图形的面积为( )A .2 B.83 C .43 D .238.等比数列{}n a 中,39a =,前3项和为3230S x dx =⎰,则公比q 的值是( )A .1B .12-C .1或12-D .1-或12-9.函数()325f x x x x =+-的单调递增区间为( ) A .5,3⎛⎫-∞- ⎪⎝⎭和1,B .5,3⎛⎫-∞-⋃ ⎪⎝⎭1,C .(),1-∞-和5,3⎛⎫+∞ ⎪⎝⎭D .(),1-∞-⋃5,3⎛⎫+∞ ⎪⎝⎭10.由直线,1y x y x ==-+,及x轴所围成平面图形的面积为 ( ) A .()101y y dy ⎡⎤--⎣⎦⎰B .()1201x x dx ⎡⎤-+-⎣⎦⎰C .()121y y dy ⎡⎤--⎣⎦⎰D .()101x x dx ⎡⎤--+⎣⎦⎰11.设函数2e ,10()1,01xx f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,计算11()d f x x -⎰的值为( ) A .1e πe 4-+ B .e 1πe 4-+ C .e 12πe 4-+D .e 1πe 2-+ 12.定义{},,min ,,,a ab a b b a b ≤⎧=⎨>⎩设31()min ,f x x x ⎧⎫=⎨⎬⎩⎭,则由函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积( )A .12ln 26+ B .12ln 24+ C .1ln 24+ D .1ln 26+ 二、填空题13.如图所示,直线y kx =分抛物线2y x x 与x 轴所围图形为面积相等的两部分,则k的值为__________.14.定积分211dx x⎰的值等于________. 15.曲线y=x 2与y=x 所围成的封闭图形的面积为______.16.在平面直角坐标系中,角α的始边落在x 轴的非负半轴,终边上有一点是()1,3-,若[)0,2απ∈,则cos xdx αα-=⎰______.17.曲线()sin 0πy x x =≤≤与x 轴围成的封闭区域的面积为__________. 18.()1||214x e x dx -+-=⎰__________________19.已知函数2()2ln f x x x =-,若方程()0f x m +=在1[,]e e内有两个不等的实数根,则实数m 的取值范围是__________.20.已知等差数列{}n a 中, 225701a a x dx +=-⎰,则468a a a ++=__________.三、解答题21.计算: (1)781010C C +; (2)222(24)x x dx -+-⎰.22.现有一个以OA 、OB 为半径的扇形池塘,在OA 、OB 上分别取点C 、D ,作DE OA 、CF OB 分别交弧AB 于点E 、F ,且BD AC =,现用渔网沿着DE 、EO 、OF 、FC 将池塘分成如图所示的养殖区域.已知1km OA =,2AOB π∠=,EOF θ∠=(02πθ<<).(1)若区域Ⅱ的总面积为21km 4,求θ的值; (2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当θ为多少时,年总收入最大?23.已知函数()3269f x x x x =-+-.若过点()1,P m -可作曲线()y f x =的切线有三条,求实数m 的取值范围.24.已知函数()121f x x x a =+--+ (1)当0a =时,解不等式()0f x ≥;(2)若二次函数2814y x x =-+-的图象在函数()y f x = 的图象下方,求a 的取值范围·25.利用定积分的定义,计算221(2)d x x x -+⎰的值,并从几何意义上解释这个值表示什么.26.设函数()ln h x x x =,()()()h x a h x f x x a+-=+,其中a 为非零实数.(1)当1a =时,求()f x 的极值;(2)是否存在a 使得()f x a ≤恒成立?若存在,求a 的取值范围,若不存在请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】(1)根据微积分基本定理,得出()()()0haf x dx F h F a =->⎰,可以看到与()f x 正负无关.(2)注意到sin x 在[]0,2π的取值符号不同,根据微积分基本运算性质,化为220|sin ||sin ||sin |x dx x dx x dx ππππ=+⎰⎰⎰求解判断即可.(3)根据微积分基本定理,两边分别求解,再结合()()F a T F a +=,()()0F T F =判定. 【详解】 (1)由()()()0haf x dx F h F a =->⎰,得()()F h F a >,未必()0f x >.(1)错误.(2)()22200|sin ||sin ||sin |sin sin x dx x dx x dx xdx x dx πππππππ=+=+-⎰⎰⎰⎰⎰()()20cos |cos |11114x x πππ=-+=--+--=,(2)正确.(3)()()0()0af x dx F a F =-⎰,()()()()()0a TTf x dx F a T F T F a F +=+-=-⎰;故()()aa T Tf x dx f x dx +=⎰⎰;(3)正确.所以正确命题的个数为2, 故选:B.【点睛】本题主要考查了命题真假的判定与定积分的计算,属于中档题.2.A解析:A 【分析】将所求积分分成两段来进行求解,根据积分运算法则可求得结果. 【详解】()21212111111sin cos ln cos1cos1ln 2ln1ln 2f x dx xdx dx x x x ---=+=-+=-++-=⎰⎰⎰ 故选:A 【点睛】本题考查积分的计算问题,关键是能够按照分段函数的形式将所求积分进行分段求解.3.A解析:A 【解析】因为22x -表示的是以原点为圆心、半径为2的上半圆的面积,即22πx -=,222221e d (e )|02x x x --==⎰,所以)221e d 2a x x π-==⎰,则()2016201212x b b x b x -=++ 20162016b x ++,令0x =,得01b =,令12x =,得1202022b b b =++ 201620162b ++,则12222b b + 2016201612b ++=-;故选A. 点睛:在处理二项展开式的系数问题要注意两个问题:一是要正确区分二项式系数和各项系数;二要根据具体问题合理赋值(常用赋值是1、-1、0).4.C解析:C 【解析】试题分析:画出函数图象如下图所示,所以围成的面积为()13122333232333x x x dx x x --⎛⎫--=--= ⎪⎝⎭⎰.考点:定积分.5.A解析:A 【解析】 试题分析:()'323x x=,所以切线方程为13(1),32y x y x -=-=-,所以切线与x 轴、直线2x =所围成的三角形的面积()2238323S x dx =-=⎰.考点:1、切线方程;2、定积分.【易错点晴】本题易错点有三个,一个是切线方程,错解为看成过()1,1的切线方程;第二个错误是看成与y 轴围成的面积,()()22320328103232333S x dx x dx =--+-=+=⎰⎰;第三个是没有将切线与x 轴的交点求出来,导致没有办法解决题目.切线的常见问题有两种,一种是已知切点求切线方程;另一种是已知切线过一点求切线方程,两种题目都需要我们认真掌握.6.D解析:D 【解析】试题分析:由题意,阴影部分E 由两部分组成,因为函数1(0),y x x=>当2y =时,1,2x =所以阴影部分E 的面积为1111221121ln |1ln 2,2dx x x ⨯+=+=+⎰故选D . 考点:利用定积分在曲边形的面积.7.A解析:A 【解析】试题分析:在抄纸上画出图像,可根据图像列出方程1221(20)(2)x x dx x x dx---+-+⎰⎰=320321111()33x x x x --+-+=110(1)(1)33---+-+=4233+=2考点:区间函数的运用8.C解析:C 【分析】先由微积分基本定理得到327S =,再由等比数列的求和公式以及通项公式,即可求出结果. 【详解】23312333133|2727003S x dx x a a a =⎰=⋅=∴++=,,即333227a a a q q ++=,解得1q =或1-2q =. 【点睛】本题主要考查定积分的就算,以及等比数列的公比,熟记微积分基本定理,以及等比数列的通项公式及前n 项和公式即可,属于常考题型.9.C解析:C 【解析】由题意得,2'()325f x x x =+- ,令5'()013f x x x >⇒><-或,故选C. 10.C解析:C 【解析】如图,由直线y=x ,y=−x+1,及x 轴围成平面图形是红色的部分,它和图中蓝色部分的面积相同,∵蓝色部分的面积()121S x x dx ⎡⎤=--⎣⎦⎰,即()121y y dy ⎡⎤--⎣⎦⎰.本题选择C 选项.11.B解析:B 【解析】因为函数2e ,10()1,01x x f x x x ⎧-≤≤⎪=⎨-<≤⎪⎩,所以102110()d e d 1d x f x x x x x --=+-⎰⎰⎰,其中01101e 1e d e e e 11e e x x x ---==-=-=-⎰,201d x x -表示圆221x y +=在第一象限的面积,即2π1d 4x x -=⎰,所以11e 1π()d e 4f x x --=+⎰,故选B .12.B解析:B 【解析】由31x x=,得1x =±,则图象的交点为(1,1)--,(1,1) ∵()31min ,f x x x ⎧⎫=⎨⎬⎩⎭∴根据对称性可得函数()f x 的图象与x 轴、直线4x =所围成的封闭图形的面积为143401141111|ln |ln 42ln 201444x dx dx x x x +=+=+=+⎰⎰ 故选B二、填空题13.【分析】根据题意求出直线与抛物线的交点横坐标再根据定积分求两部分的面积列出等式求解即可【详解】联立或由图易得由题设得即即化简得解得故答案为:【点睛】本题主要考查了定积分的运用需要根据题意求到交界处的解析:341【分析】根据题意求出直线与抛物线的交点横坐标,再根据定积分求两部分的面积,列出等式求解即可. 【详解】联立2y x x y kx⎧=-⇒⎨=⎩ 0x =或1x k =-.由图易得1,11x k k由题设得()()112212kx xkx dx x x dx ---=-⎰⎰, 即232123100111111||232223k x x kx x x -⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭. 即()()()232111111123212k k k k -----= 化简得()3112k -=. 解得341k = 故答案为:3412- 【点睛】本题主要考查了定积分的运用,需要根据题意求到交界处的点横坐标,再根据定积分的几何意义列式求解即可.属于中档题.14.ln2【分析】直接根据定积分的计算法则计算即可【详解】故答案为:ln2【点睛】本题考查了定积分的计算关键是求出原函数属于基础题解析:ln 2【分析】直接根据定积分的计算法则计算即可. 【详解】22111|2dx lnx ln x==⎰, 故答案为:ln2. 【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.15.【分析】首先求得两个函数交点的坐标然后利用定积分求得封闭图形的面积【详解】根据解得画出图像如下图所示封闭图像的面积为【点睛】本小题主要考查利用定积分求封闭图形的面积考查运算求解能力属于基础题解题过程解析:16【分析】首先求得两个函数交点的坐标,然后利用定积分求得封闭图形的面积. 【详解】根据2y x y x⎧=⎨=⎩解得()()0,01,1,.画出图像如下图所示,封闭图像的面积为()12x x dx -⎰2310111|23236x x ⎛⎫=-=-= ⎪⎝⎭.【点睛】本小题主要考查利用定积分求封闭图形的面积,考查运算求解能力,属于基础题.解题过程中首先求得两个函数图像的交点坐标,然后画出图像,判断出所要求面积的区域,然后利用微积分基本定理求得封闭图形的面积.16.【解析】【分析】可得再利用微积分基本定理即可得出【详解】则故答案为【点睛】本题考查了微积分基本定理三角函数求值考查了推理能力与计算能力属于基础题 3【解析】【分析】tan 3α=-,[)0,2απ∈,可得2.3πα=再利用微积分基本定理即可得出. 【详解】tan 3α=-,[)0,2απ∈,23πα∴=. 则()23232233cos sin |sin sin 33322xdx x αππαππ--⎛⎫⎛⎫==--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎰. 故答案为3 【点睛】本题考查了微积分基本定理、三角函数求值,考查了推理能力与计算能力,属于基础题.17.2【解析】与轴所围成的封闭区域的面积故答案为2解析:2 【解析】sin (0π)y x x =≤≤与x 轴所围成的封闭区域的面积ππsin d cos cos πcos020S x x x==-=-+=⎰,故答案为2.18.【解析】由定积分的几何意义知:是如图所示的阴影部分曲边梯形的面积其中故故故故答案为 解析:22233e π+-+【解析】11221424x dx x dx --=-⎰⎰,由定积分的几何意义知:1204x dx -⎰是如图所示的阴影部分曲边梯形OABC 的面积,其中()1,3,30B BOC ∠=,故1223π-==+11101022|22xx x e dx e dx e e -===-⎰⎰,故(112223xe dx e π-=+-⎰2223e π+-19.【解析】当时在为增函数当时在为减函数当时有极大值也为最大值又因此本题正确答案是:解析:21(1,2]e +. 【解析】2(1)(1)'()x x f x x-+=,∴当1[,1)x e∈时, '()0f x >,()f x 在1[,1)e 为增函数,当(1,)x e ∈时, '()0f x <,()f x 在(1,)e 为减函数,∴当1x =时, ()f x 有极大值,也为最大值, (1)1f =-,又2211()2,()2f f e e e e=--=-, 2121m e --≤-<-, 2112m e ∴<≤+. 因此,本题正确答案是: 21(1,2]e +. 20.3【解析】由题意得即则解析:3【解析】由题意,得()()()()21222221220101111||2x dx x dx xdx x x x x -=-+-=-+-=⎰⎰⎰,即57622a a a +==,则468633a a a a ++==.三、解答题21.(1)165(2)2π 【分析】(1)直接根据组合数公式计算即可;(2)直接利用牛顿—莱布尼茨公式,定积分的几何意义计算即可. 【详解】(1)78831010111111109165321C C C C ⨯⨯===⨯⨯+=.(2)(2222222x dx xdx ---=+⎰⎰⎰,其中222222|440xdx x --==-=⎰,2-⎰表示的是半径为2的圆的面积的12,即22π-=⎰,所以(222022x dx ππ-=+=⎰.【点睛】本题考查组合数公式的计算,定积分的计算,解题的关键是理解定积分的几何意义,考查学生的运算能力,属于基础题. 22.(1)3πθ=(2)6πθ=【解析】试题分析:(1)本问考查解三角函数的实际应用,由OB OA =及BD AC =可知OD OC =,根据条件易证Rt Rt ODE OCF ≌,所以DOE COF ∠=∠= 122πθ⎛⎫- ⎪⎝⎭,由cos OC OF COF =⋅∠可以求出12COFS OC OF =⋅⋅⋅ 1sin cos 4COF θ∠=,所以区域Ⅱ的总面积为11cos 24θ=,则1cos 2θ=,可以求出θ的值;(2)本问考查函数的最值问题,区域Ⅰ的面积可以根据扇形面积公式求得,区域Ⅱ的面积第(1)问中已经求出,区域Ⅲ的面积可以用1/4圆的面积减去区域Ⅰ、Ⅱ的面积,于是得到年收入函数,利用导数求函数的最大值即可得出年收入的最大值. 试题(1)因为BD AC =,OB OA =,所以OD OC =. 因为2AOB π∠=,DE OA ,CF OB ,所以DE OB ⊥,CF OA ⊥.又因为OE OF =,所以Rt Rt ODE OCF ≌. 所以DOE COF ∠=∠= 122πθ⎛⎫- ⎪⎝⎭, 又cos OC OF COF =⋅∠ 所以12COFSOC OF =⋅⋅⋅ 1sin cos 4COF θ∠= 所以1cos 2S 区域Ⅱθ=(02πθ<<). 由11cos 24θ=得1cos 2θ=,02πθ<<,3πθ∴=. (2)因为12S θ=区域Ⅰ,所以S S S S =--=区域Ⅲ总区域Ⅰ区域Ⅱ 11cos 422πθθ--.记年总收入为y 万元, 则113040cos 22y θθ=⨯+⨯120(42πθ+⨯- 1cos )2θ- 5510cos πθθ=++(02πθ<<),所以()512sin y θ=-',令0y '=,则6πθ=.当06πθ<<时,0y '>;当62ππθ<<时,0y '<.故当6πθ=时,y 有最大值,即年总收入最大.考点:1.三角函数的实际应用;2.利用导数研究函数的最值.23.1116m -<<【解析】 【分析】首先写出切线方程,然后将问题转化为方程有三个实数根的问题,利用导函数研究函数的极值即可确定m 的取值范围. 【详解】设过P 点的切线切曲线于点()00,x y ,则切线的斜率2003129k x x =-+-.所以切线方程为()()20031291y x x x m =-+-++,故()()23200000003129169y x x xm x x x =-+-++=-+-,要使过P 可作曲线()y f x =的切线有三条,则方程()()2320000003129169x x xm x x x -+-++=-+-有三解0032023129,m x x x ∴=--+()3223129g x x x x =--+令则()()()26612612g x x x x x =--=+-'易知1,2x =-为()g x 的极值大、极小值点,又()()11,16,g x g x =-=极小极大 故满足条件的m 的取值范围1116.m -<< 【点睛】本题主要考查导函数研究函数的切线,导函数研究函数的极值,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 24.(1)1{x |x 3}3≤≤;(2)13a 4>. 【解析】 【分析】()1a 0=时,将不等式移项平方分解因式可解得;()2根据题意,只需要考虑x 1>时,两函数的图象位置关系,利用抛物线的切线与抛物线的位置关系做. 【详解】() 1当a 0=时,不等式()f x 0≥化为:x 12x 10+--≥,移项得x 12x 1+≥-,平方分解因式得()()3x 1x 30--≤, 解得1x 33≤≤,解集为1{x |x 3}3≤≤. ()2化简得()x 3a,x 1f x 3x 1a,1x 1x 3a,x 1-+≤-⎧⎪=-+-<≤⎨⎪-++>⎩,根据题意,只需要考虑x 1>时,两函数的图象位置关系, 当x 1>时,()f x x 3a =-++, 由2y x 8x 14=-+-得y'2x 8=-+,设二次函数与直线y x 3a =-++的切点为()00x ,y , 则02x 81-+=-,解得09x 2=,所以07y 4=, 代入()f x x 3a =-++,解得13a 4=, 所以a 的取值范围是13a 4>. 【点睛】本题主要考查了含绝对值不等式的解法,以及导数的几何意义的应用问题,其中解答中熟记含绝对值不等式的求解方法,合理分类是解答的关键,着重考查了运算与求解能力,属于中档试题.25.由直线1x =,2x =,0y =与曲线2()2f x x x =-+所围成的曲边梯形的面积. 【分析】利用定积分的定义在区间[]1,2进行分割,后近似代替、作和,取极限,可得()2212xx dx -+⎰的值,与其表示的几何意义.【详解】解:令()22f x x x =-+.(1)分割:在区间[]1,2上等间隔地插入1n -个分点,将它等分成n 个小区间()1,1,2,,n i n i i n n n +-+⎡⎤=⎢⎥⎣⎦其长度为11n i n i x n n n++-∆=-=. (2)近似代替、作和:取()11,2,,i ii n nξ=+=,则2111(1)121nn n i i i i i S f x n n n n==⎡⎤⎛⎫⎛⎫=+⋅∆=-+++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑()()()()()2223212122122n n n n n n n n ⎡⎤⎡⎤=-+++++++++++⎣⎦⎣⎦()()()()()32221411211212662n n n n n n n n n n n ⎡⎤++++++=--+⋅⎢⎥⎣⎦11111112412336n n n n n⎛⎫⎛⎫⎛⎫⎛⎫=-+++++++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.(3)取极限:()221111111122lim lim 24123363n n n x x dx S n n n n n →∞→∞⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+==-+++++++= ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎰.()221223xx dx -+=⎰的几何意义:由直线1x =,2x =,0y =与曲线()22f x x x =-+所围成的曲边梯形的面积. 【点睛】本题主要考查利用定积分的定义求定积分,并求其几何意义,属于中档题型. 26.(1)()f x 有极大值(1)ln 2f =,无极小值;(2)见解析. 【解析】试题分析:(1)由题意,利用导数法进行求解,通过导数研究函数()f x 的单调性,从而求出该函数的极值,问题得于解决;(2)由题意,可将问题转化为()max f x a ≤,利用导数法,对参数a 进行分段讨论()f x '的符号,经过逐层深入研究,由此求出函数()f x 的最大值,从而问题得于解决. 试题(1)∵()()ln ln x f x x a x x a =+-+ ()ln 1ln a x a x x a=+--+, ∴()()21'ln 1a f x x x a x a =--++ ()21ln a ax x a x x a -=-++, 当1a =时,()()2ln '01xf x x =->+ 01x ⇔<<,()'01f x x ⇔,∴()f x 有极大值()1ln2f =,无极小值;(2)当0a >时,()'001f x x >⇔<<,()'01f x x ⇔,∴()()()1ln 1f x f a ≤=+,设()()()ln 10u a a a a =+->,则()1'1011a u a a a=-=-<++, ∴()()00u a u <=,故()f x a ≤恒成立,当0a <时,()()ln 1a a xf x ln x a x x a⎛⎫=++>- ⎪+⎝⎭, 由于2ln 112a a a a e x x ⎛⎫+>⇔+> ⎪⎝⎭ 21a a x e ⇔>-,ln ln 22a x a x a x x a +>⇔<+,()*设()ln x v x x e =-,则()'e xv x ex-=, ()'00v x x e >⇔<<,()'0v x x e ⇔,∴()()0v x v e ≤=,即ln xx e≤, 则只需2x x a e +<,()*⇒成立, 而22x x a ea x e e +-⇔-,∴2ea x e ->-时,ln 2a x ax a >+, 故取02max ,21a a ea x e e ⎧⎫-⎪⎪=⎨⎬-⎪⎪-⎩⎭,显然0x a >-, 由上知当0x x >时,ln 12a a x ⎛⎫+> ⎪⎝⎭,ln 2a x ax a >+,∴()f x a >, 综上可知,当0a >时,()f x a ≤恒成立.。

北师大版高二数学下绝对值不等式 第1课时导学案

北师大版高二数学下绝对值不等式     第1课时导学案
(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段 当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c=0(即C为原点),就得到例2的后半部分。)
〔巩固提高〕
例1、已知 ,求证
证明 (1)

(2)
由(1),(2)得:
例2、已知 求证: 。
证明 ,∴ ,
由例1及上式, 。
注意:在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。
(检测反馈)
1.求证:
⑴ ;⑵
2.求证:
⑴ ቤተ መጻሕፍቲ ባይዱ⑵
3.(1)、已知 求证: 。
(2)、已知 求证: 。
(学生小结)
1.实数 的绝对值的意义:
⑴ ;(定义)
⑵ 的几何意义:
2.定理(绝对值三角形不等式)
如果 是实数,则 注意取等的条件。
(学生小结)
谈谈自己本节课有什么收获?
高二年级第二学期数学学科导学稿
执笔人:王广青审核人:王广青学校:安中数学组时间:2013年3月日
集体备课
个人空间
一、课题:绝对值不等式第1课时
二、学习目标
1:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法,会进行简单的应用。
2:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学思想,并能运用绝对值三角不等式公式进行推理和证明
定理1如果 是实数,则( 当且仅当 时,等号成立.)
(1)若把 换为向量 情形又怎样呢?
根据定理1,有 ,就是, 。所以, 。
定理(绝对值三角形不等式)
如果 是实数,则
注:当 为复数或向量时结论也成立.

高三数学一轮复习课时规范练57绝对值不等式文含解析北师大版

高三数学一轮复习课时规范练57绝对值不等式文含解析北师大版

课时规范练57 绝对值不等式基础巩固组1.(2020江西上饶三模,23)已知f(x)=|x+1|-|2x-1|,其中a∈R.(1)求不等式f(x)>0的解集;(2)若f(x)≤log2a恒成立,求实数a的取值范围.2.已知函数f(x)=|x-2|+|2x+a|,a∈R.(1)当a=1时,解不等式f(x)≥5;(2)若存在x0满足f(x0)+|x0-2|<3,求a的取值范围.3.(2020湖南湘潭三模,文23)已知函数f(x)=|x+1|.(1)求不等式f(x)+x>|x-2|的解集;(2)设函数y=f(x)+f(x-3)的最小值为m,已知a2+b2+c2=m,求ab+bc的最大值.4.(2020河北唐山一模,23)已知函数f(x)=|x+a|-2|x-1|-1.(1)当a=1时,求不等式f(x)>0的解集;(2)是否存在实数a,使得f(x)的图像与x轴有唯一的交点?若存在,求a的值;若不存在,说明理由.5.设函数f(x)=|x+1|+3|x-a|.(1)当a=1时,解不等式f(x)≤2x+3;(2)若关于x的不等式f(x)<4+2|x-a|有解,求实数a的取值范围.6.(2020辽宁大连三模,22)设函数f(x)=|x-2|+|3x-4|.(1)解不等式f(x)>2;(2)若f(x)的最小值为m,实数a,b满足3a+4b=3m,求(a-2)2+b2的最小值.综合提升组7.已知函数f(x)=|x-2|-m(x∈R),且f(x+2)≤0的解集为〖-1,1〗.(1)求实数m的值;(2)设a,b,c∈R+,且a2+b2+c2=m,求a+2b+3c的最大值.8.(2020河北石家庄二模,23)已知函数f(x)=|x+1|+|2x-2|,g(x)=|x-1|+|x+3m|-m.(1)求函数f(x)的最小值;(2)对于任意x1∈R,存在x2∈R,使得f(x1)≥g(x2)成立,求实数m的取值范围.创新应用组9.(2020山西运城模拟,23)已知函数f(x)=|3x+6|,g(x)=|x-3|.(1)求不等式f(x)>g(x)的解集;(2)若f(x)+3g(x)≥a2-2a对于任意x∈R恒成立,求实数a的取值范围.▁ ▃ ▅ ▇ █ 参 *考 *答 *案 █ ▇ ▅ ▃ ▁课时规范练57 绝对值不等式1.解(1)由题意得|x+1|>|2x-1|,所以|x+1|2>|2x-1|2, 整理得x 2-2x<0,解得0<x<2. 故不等式解集为{x|0<x<2}. (2)由已知可得,log 2a ≥〖f (x )〗max .f (x )=|x+1|-|2x-1|={x -2,x <-1,3x ,-1≤x ≤12,-x +2,x >12.可知当x=12时,f (x )取得最大值32,所以log 2a ≥32,a ≥2√2.所以实数a 的取值范围为〖2√2,+∞).2.解(1)当a=1时,f (x )=|x-2|+|2x+1|,由f (x )≥5得|x-2|+|2x+1|≥5.当x ≥2时,不等式等价于x-2+2x+1≥5,解得x ≥2;当-12<x<2时,不等式等价于2-x+2x+1≥5,即x ≥2,不等式无解;当x ≤-12时,不等式等价于2-x-2x-1≥5,解得x ≤-43.所以原不等式的解集为(-∞,-43]∪〖2,+∞).(2)f (x )+|x-2|=2|x-2|+|2x+a|=|2x-4|+|2x+a|≥|2x+a-(2x-4)|=|a+4|. 因为f (x )+|x-2|<3等价于(f (x )+|x-2|)min <3,所以|a+4|<3,所以-7<a<-1.故所求实数a 的取值范围为(-7,-1). 3.解(1)f (x )+x>|x-2|,即|x-2|<x+|x+1|.当x ≥2时,不等式化为x-2<x+x+1,解得x>-3,所以x ≥2; 当-1<x<2时,不等式化为2-x<x+x+1,解得x>13,所以13<x<2;当x ≤-1时,不等式化为2-x<x-x-1,解得x>3,此时无解. 综上,原不等式的解集为13,+∞.(2)因为f (x )+f (x-3)=|x+1|+|x-2|≥|x+1-x+2|=3, 所以a 2+b 2+c 2=3. 又因为a 2+b 2+c 2=a 2+b 22+b 22+c 2≥√2ab+√2bc ,则ab+bc ≤3√22,当且仅当a 2=c 2=b22=34时,等号成立.所以ab+bc 的最大值为3√22.4.解(1)当a=1时,f (x )>0化为|x+1|-2|x-1|-1>0.当x ≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得23<x<1; 当x ≥1时,不等式化为-x+2>0,解得1≤x<2. 综上,f (x )>0的解集为x 23<x<2.(2)存在.若a>-1,则f (x )={x -a -3,x <-a ,3x +a -3,-a ≤x ≤1,-x +a +1,x >1.此时f (x )的最大值f (1)=a ,当a=0时满足题设. 若a<-1,则f (x )={x -a -3,x <1,-3x -a +1,1≤x ≤-a ,-x +a +1,x >-a .此时f (x )的最大值f (1)=-a-2,当a=-2时满足题设. 若a=-1,则f (x )=-|x-1|-1<0, 所以当a=-1时不满足题设.综上所述,存在实数a=0或a=-2满足题设.5.解(1)f (x )=|x+1|+3|x-a|≤2x+3可转化为{x ≥1,4x -2≤2x +3或{-1<x <1,4-2x ≤2x +3或{x ≤-1,2-4x ≤2x +3,解得1≤x ≤52或14≤x<1或无解. 所以不等式的解集为[14,52].(2)依题意,问题等价于关于x 的不等式|x+1|+|x-a|<4有解, 即(|x+1|+|x-a|)min <4,又|x+1|+|x-a|≥|x+1-x+a|=|a+1|, 当(x+1)(x-a )≤0时取等号. 所以|a+1|<4,解得-5<a<3, 所以实数a 的取值范围是(-5,3). 6.解(1)f (x )=|x-2|+|3x-4|={4x -6,x ≥2,2x -2,43<x <2,-4x +6,x ≤43.由f (x )>2得{x ≥2,4x -6>2或{43<x <2,2x -2>2或{x ≤43,-4x +6>2,∴不等式的解集为{x|x<1,或x>2}. (2)由(1)可知f (x )min =f43=23,∴3a+4b=2,(a-2)2+b 2表示直线3x+4y-2=0上的点与点A (2,0)的距离的平方,其最小值为点A (2,0)到直线的距离的平方.点A (2,0)到直线的距离的最小值为d=√32+42=45,∴(a-2)2+b 2的最小值为1625.7.解(1)依题意得f (x+2)=|x|-m ,f (x+2)≤0,即|x|≤m ,可得m=1.(2)依题意得a 2+b 2+c 2=1(a ,b ,c>0),由柯西不等式得,a+2b+3c ≤√12+22+32·√a 2+b 2+c 2=√14,当且仅当a=b2=c3,即a=√1414,b=√147,c=3√1414时取等号. 故a+2b+3c 的最大值为√14.8.解(1)∵f (x )=|x+1|+|2x-2|={-3x +1,x <-1,-x +3,-1≤x ≤1,3x -1,x >1,∴f (x )在(-∞,1〗上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=2,故当x=1时,f (x )取得最小值2. (2)由(1)得f (x )min =2,而g (x )=|x-1|+|x+3m|-m ≥|x-1-x-3m|-m=|1+3m|-m.由题意知,对任意x 1∈R ,存在x 2∈R 使得f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min ,即2≥|1+3m|-m , 所以{2+m ≥0,(2+m )2≥(1+3m )2,解得-34≤m ≤12,即m 的取值范围为-34,12.9.解(1)由f (x )>g (x ),得|3x+6|>|x-3|,平方得(3x+6)2>(x-3)2,得8x 2+42x+27>0,解得x<-92或x>-34.故不等式f (x )>g (x )的解集是-∞,-92∪-34,+∞. (2)f (x )+3g (x )≥a 2-2a 恒成立,即|3x+6|+|3x-9|≥a 2-2a 恒成立, 只需(|3x+6|+3|x-3|)min ≥a 2-2a 即可. 而|3x+6|+|3x-9|≥|3x+6-(3x-9)|=15, 所以a 2-2a ≤15,得a 2-2a-15≤0,解得-3≤a ≤5. 故实数a 的取值范围是〖-3,5〗.。

2022版高考数学北师大版一轮:选修4-5第一节绝对值不等式

2022版高考数学北师大版一轮:选修4-5第一节绝对值不等式

【解析】(1)若m=2时,|x-1|+|2x+2|≤3, 当x≤-1时,原不等式可化为-x+1-2x-2≤3,解得x≥-43 ,所以-34 ≤x≤-1,当-1<x<1时,原不等式可化为1-x+2x+2≤3, 解得x≤0,所以-1<x≤0, 当x≥1时,原不等式可化为x-1+2x+2≤3, 解得x≤32 ,所以x∈∅, 综上所述:不等式的解集为x-43≤x≤0 .
选修4-5 不等式选讲 第一节 绝对值不等式
必备知识·自我排查
1.绝对值三角不等式
三角不等式1:|a+b|≤|a|+|b|,等号成立的条件为_a_b_≥__0_. 三角不等式2:|a-c|≤|a-b|+|b-c|,等号成立的条件为_(_a_-__b_)_(_b_-__c_)_≥__0_.
【微提示】 由绝对值不等式定理还可以推得以下几个不等式.
1 恒成立,所以2
≤a≤2,故实数a的取值范
围为21,2 .
【规律方法】 解绝对值不等式的基本方法
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等 式. (2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值 符号的普通不等式. (3)利用绝对值的几何意义,数形结合求解.
由图像可知当且仅当 x<-76 时,y=f(x)的图像在 y=f(x+1)的图像上方, 故不等式 f(x)>f(x+1)的解集为-∞,-67 .
【加练备选·拔高】 (2020·广州模拟)已知函数f(x)=|x-1|+|2x+m|(m∈R).
(1)若m=2时,解不等式f(x)≤3; (2)若关于x的不等式f(x)≤|2x-3|在x∈[0,1]上有解,求实数m的取值范围.
①利用绝对值不等式的几何意义求解; ②利用“零点分段法”求解; ③通过构造函数,利用函数的图像求解.

【走向高考】高三数学一轮总复习 133不等式选讲课件 北师大

【走向高考】高三数学一轮总复习 133不等式选讲课件 北师大

[解析] (1)当 a=-1 时,f(x)=|x-1|+|x+1|, 由 f(x)≥3 得|x-1|+|x+1|≥3, (解法 1)由绝对值的几何意义知不等式的解集为{x|x≤-32 或 x≥32}. (解法 2)不等式可化为x-≤2-x≥13 或-2≥1<3x≤1, 或x2>x≥1,3. 所以不等式的解集为{x|x≤-32或 x≥32}.
基础自测
1.(2012·绵阳模拟)已知 p:|2x-5|≤1,q:(x+2)(x-3)≤0,
则 p 是 q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[答案] A
[解析] 依题意,p:|2x-5|≤1,解得 2≤x≤3, q:(x+2)(x-3)≤0,解得-2≤x≤3, 所以 p 是 q 的充分不必要条件.
3 . (2012·山 东 理 , 13) 若 不 等 式 |kx - 4|≤2 的 解 集 为 {x|1≤x≤3},则实数 k=________.
[答案] 2
[解析] 本题考查了绝对值不等式的解法.由|kx-4|≤2
可得-2≤kx-4≤2,即 2≤kx≤6,而 1≤x≤3,所以 k=2.掌
握好绝对值不等式的常见解法.也可把不等式转化为方程来解
(2)若 a=1,f(x)=2|x-1|,不满足题设条件;
-2x+a+1,x≤a, 若 a<1,f(x)=1-a,a<x<1,
2x-a+1,x≥1,
f(x)的最小值为 1-a;
-2x+a+1,x≤1, 若 a>1,f(x)=a-1,1<x<a,
2x-a+1,x≥a.
f(x)的最小值为 a-1.
决,如由题意可知 x=1,x=3 是|kx-4|=2 的两根,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 含绝对值的不等式解法1.不等式|x-2|>1的解集是(D ) A .}31|{<<x xB .}33|{>-<x x x ,或C .}33|{<<-x xD .}31|{><x x x ,或提示:12-<-x 或12>-x ,∴1<x 或3>x . 2.不等式1|31|<-x 的解集为(C ) A .,0|{<x x 或}32>xB .,32|{-<x x 或}0>xC .}320|{<<x xD .}032|{<<-x x 提示:化为1311<-<-x 后解不等式组得.3.下列不等式组的解集为实数集R 的一个是(A ) A .⎩⎨⎧≤--->3|1|11||x xB .⎩⎨⎧-<>-3212x xC .⎩⎨⎧≤->31x xD .⎩⎨⎧≤->3|1|1||x x提示:逐一求解不等式组,或直接判断可知A 中不等式组是恒成立的不等式组.4.已知集合M={x||x-1|<2}与集合P={x||x-1|>1},则M ∩P=(C ) A .{x|-1<x<3}B .{x|-1<x<0}C .{x|-1<x<0,或2<x<3}D .{x|x<0,或x>3} 提示:M=}31|{<<-x x ,P=0|{<x x ,或}2>x .5.已知不等式|x-a|<b 的解集是{x|-3<x<9},则实数A 、B 的值依次是(B ) A .-3、9 B .3、6C .3、9D .-3、6提示:必有0>b ,∴b a x b <-<-,即不等式的解为b a x b a +<<-,令3-=-b a ,9=+b a 解得.6.已知不等式|x+3|≥|x-5|成立,则实数x 的取值范围是(B ) A .{x|x>1} B .{x|x ≥1} C .{x|x<1} D .{x|x ≤1}提示:即0)5()3(22≥--+x x ,∴0)53)(53(≥+-+-++x x x x .7.已知a 2=9,则不等式x 2-|a|≥0的解集是(B )A .{x|x ≤3-,或x ≥3}B .{x|x ≤3-,或x ≥3}C .{x|3-≤x ≤3}D .{x|3-≤x ≤3}提示:即32≥x .8.不等式|21||3|x x ->+的解集是(A ) A .2{|3x x <-,或4}x > B .{|3x x <-,或4}x > C .{|34}x x -<<D .2{|4}3x x -<< 提示:原不等式即22(21)(3)x x ->+,∴(213)(213)0x x x x -++--->,即(32)(4)0x x +->,∴23x <-,或4x >,故选A .9.设集合M={2|||<-a x x },P={x |1212<+-x x },若M ⊆P ,则实数a 的取值范围是(A ) A .{a |0≤≤a 1} B .{a |0<<a 1} C .{1|≥a a } D .{0|≤a a }提示:}22|{+<<-=a x a x M ,}32|{<<-=x x P ,∴22-≥-a , 且32≤+a .10.不等式|1|2kx -<的解集为{|13}x x -<<,则实数k 满足条件(C )A .21k -<<B .113k -<< C .1k = D .3k =- 提示:不等式即212kx -<-<,∴13kx -<<,反代检验立知1k =.11.已知不等式||(0)x a a >>的解集是)2()2(∞+--∞,,,则不等式3|3|-≤-a a x的解集是(C )A .)1[]1(∞+--∞,,B .RC .ФD .]11[,- 提示:由已知得a=2,则不等式3|3|-≤-a a x即为1||-<x ,由绝对值的意义知这不可能,即不存在实数使不等式3|3|-≤-a a x成立,所以应选择的答案是C . 12.设全集U=R ,集合M={x||x|<2},P={x|x ∈N },给出下列命题: ①0∈M ∩P ; ②-2∈M ∪P ; ③3∈C U M ∩P ; ④C U M={x||x|>2}; 其中正确的命题是(C )A .①②B .②③C .①③D .②④提示:集合M 即{22|<<-x x },集合P 即自然数集N ,注意到自然数集中含有元素0,M 在R 中的补集应该是集合{x||x|≥2},所以正确命题是①和③;故选C .13.设全集是R ,集合M={|||1}x x ≥,P={||1|2}x x -<,则(ðR M )∪(ðR P )=___________.[答案]{|1x x <,或3}x ≥提示:{|1M x x =≤-,或1}x ≥,∴{|11}R M x x =-<<ð,{|13}P x x =-<<,∴{|1R P x x =≤-ð,或3}x ≥,∴(ðR M )∪(ðR P )={|1x x <,或3}x ≥;本题也能由ðR (M ∩P )=(ðR M )∪(ðR P )解得.14.若集合M={x|2x-a<3}与P={x|-x+4≤3a}的交集是空集,则实数a 的取值范围是________.[答案]{a|75a ≤} 提示:M={x|x<23a +},P={x|x ≥4-3a},∴23a+≤4-3a .15.不等式|x-3|-|x+2|>0的解集为___________. [答案]1{|}2x x <提示:即32x x -<--,或32x x ->+,故得12x <. 16.设全集为R ,已知集合M={x||4x|≥13},集合P={x||x|≤2a ,a>0},若M ∩P 是非空集合,且集合M ∩P 所对应的区间长度之和为23,则a=___________. [答案]2提示:由已知得M={,413|-≤x x 或413≥x },P=}22|{a x a x ≤≤-,利用数轴表示出集合M ∩P ,可得M ∩P={x|-2a ≤x ≤-413,或413≤x ≤2a},由此知M ∩P 所对应的区间长度之和为2(2a-413)=23,解得a=2.17.已知实数a ≠0,则关于x 的不等式|ax+3|<2的解集是_____________.[答案]0a <时为15{|}x x a a -<<-;0a >时为51{|}x x a a-<<- 提示:原不等式即232ax -<+<,∴51ax -<<-,若0a >,则原不等式解集为51{|}x x a a -<<-;若0a <,则原不等式的解集为15{|}x x a a-<<-. 18.不等式2≤|3x-4|<3的解集是______________. [答案]}3723231|{<≤≤<x x x ,或 提示:令3x-4=y ,则不等式等价于不等式组⎩⎨⎧<≥;,3||2||y y 即⎩⎨⎧<<-≥-≤;,,或3322y y y∴3223<≤-≤<-y y ,或,即34322433<-≤-≤-<-x x ,或,解这一对应的一元一次不等式组,得原不等式的解集是}3723231|{<≤≤<x x x ,或.19.已知a 为实数,且关于x 的不等式|(1)|1a x a -<-的解集是{|11}x x -<<,则关于x的不等式|(1)2|1a x a +-≥-的解集是___________. [答案]R提示:若a ≤1则不等式|(1)|1a x a -<-的解集是空集,故在已知条件下有1a >, ∴不等式|(1)2|1a x a +-≥-的右边是一个负数,由绝对值的意义知这一不等式对于任意实数x 都成立,∴所求解集为实数集R . 20.解不等式|x x 21|43+>-.[解答]若340x -≥,则原不等式化为不等式组⎩⎨⎧+>-≥-;,x x x 2143043解这一不等式组得5x >;若340x -<,则原不等式化为不等式组⎩⎨⎧+>+-<-;,x x x 2143043此时解得53<x ; 综上得原不等式的解集是553|{><x x x ,或}.21.解不等式|2-|2x+1||>1.[解答]原不等式等价于2-|2x+1|<-1,或2-|2x+1|>1, 即|2x+1|>3,或|2x+1|<1,由|2x+1|>3,得2x+1<-3,或2x+1>3,∴x<-2,或x>1; 由|2x+1|<1,得-1<2x+1<1,∴-1<x<0;综合以上得原不等式的解集是{x|x<-2,或-1<x<0,或x>1}.22.已知对于任意的实数x ,不等式|x+1|-|x-2|>k 恒成立,求出实数k 的取值范围.[解答一]∵=)(x f =--+|2||1|x x ;,,)2()21()1(3211221321≥<≤--<⎪⎩⎪⎨⎧=+-+-=-++-=-+--x x x x x x x x x x∴3|2||1|min -=--+)(x x ,欲不等式|x+1|-|x-2|>k 恒成立,当且仅当k 小于)(x f 的最小值时,∴k 的取值范围是(3,-∞-).[解答二]要使不等式|x+1|-|x-2|>k 恒成立,只要代数式|x+1|-|x-2|的最小值大于k ,反之即要求k 小于代数式|x+1|-|x-2|的最小值;注意到|x+1|的几何意义为数轴上的点x 到-1的距离,|x-2|的几何意义为点x 到2的距离,由于这两个距离之差的最小值显然是-3,∴只需k<-3.故k 的取值范围是(3,-∞-).23.解下列不等式:(1)|5x-4|≥6; (2)3-|-2x-1|>0;(3)1≤|32x+|<3. [解答](1)即5x-4≤-6,或5x-4≥6,解得52-≤x ,或2≥x ; (2)即|2x+1|<3,∴-3<2x+1<3,解得-2<x<1;(3)原不等式等价于不等式组⎪⎩⎪⎨⎧<+≥+;3|32x|,1|32x|即⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧<<--≥-≤∴<+<-≥+-≤+∴<+≥+;0x 12,4x ,8x ;66x 6,26x ,26x ;6|6x |,2|6x |或或∴原不等式的解集为{x|-12<x ≤-8,或-4≤x<0}. 24.解下列关于x 的不等式: (1)|ax|<a ;(2)ax-2≤x+b .24.(1)当a=0时,0<0不成立,原不等式的解集为Ф;当a<0时,不等式的解集也为Ф;当a>0时,不等式即|x|<1,∴解集为{x|-1<x<1}. (2)原不等式即(a-1)x ≤b+2,10当a>1时,a-1>0,∴此时不等式的解集为{x|x ≤12-+a b },20当a<1时,a-1<0,∴此时不等式的解集为{x|x ≥12-+a b },30当a=1时,a-1=0,若b ≥-2,则不等式的解集为实数集R , 若b<-2,则不等式的解集为Ф.25.解不等式|x-1|+|2-x|>3+x .[解答]当x ≤1时,原不等式化为-(x-1)-(x-2)>3+x ,此时有x<0;当1<x ≤2时,原不等式化为(x-1)-(x-2)>3+x ,此时1<x ≤2,且x<-2不可能; 当x>2时,原不等式化为x-1+x-2>3+x ,此时有x>6;综合上述结果,原不等式的 解集是{x|x<0,或x>6}.26.若关于x 的不等式||1x ax >+的解集是{|0}x x ≤的子集,求实数a 的取值范围.[解答]作出函数||y x =和1y ax =+的草图,由图形特征分析可得所求的a 的取值范围是1a ≥. 27.已知a ∈R ,解关于x 的不等式|(a-3)x-4|>3.[解答]原不等式等价于(a-3)x-4<-3,或(a-3)x-4>3,即(a-3)x<1,或(a-3)x>7;若a-3>0,则x<31-a ,或x>37-a ;若a-3=0,则不等式恒成立; 若a-3<0,则x>31-a ,或x<37-a ;综合知原不等式的解集当a>3时为{x| x<31-a ,或x>37-a };当a=3时,是R ;当a<3时则为{x| x<37-a ,或x>31-a }.28.已知a b c <<,x ∈R ,若||||||x a x b x c k -+-+->恒成立,求实数k 的取值范围. [解答]设||||y x a x b x c =-+-+-,则当x c ≥时,3()2y x c x b x a x a b c c a b =-+-+-=-++≥--, 当b x c ≤<时,()y c x x b x a x a b c =-+-+-=-+-,此时2c a y c a b -≤<--,当a x b ≤<时,()y c x b x x a x a b c =-+-+-=----, 此时2c a y b c a -<≤+-,当x a <时,3()2y c x b x a x x a b c a b c =-+-+-=-+++>-++,综上[2,)[,2](,2)(2,)y c a b c a c a b c a b c a b c a ∈--+∞----+-+-+∞ , 化简即得[,)y c a ∈-+∞,欲y k >恒成立,需且只需k c a <-,即k 的取值范围是(,)c a -∞-.29.已知集合A={x||x-22)1a (21|)1a (21-≤+},B={x|2≤x ≤3a+1}; (1)是否存在实数a ,使得A 是一个单元素的集合?若存在,求出这样的集合A ;若不存在,也请说明理由;(2)若存在实数a ,使得A ⊆B ,试求这样的a 的取值范围.[解答](1)由|x-2)1a (21+|≤2)1a (21-,可得-2)1a (21-≤x-2)1a (21+≤2)1a (21-, 即A={x|2a ≤x ≤a 2+1},当且仅当2a=a 2+1时,即a=1时A 是单元素集合;所以这样的实数a 存在,且a=1,此时A={2};(2)一般地,若A ⊆B ,如图所示,可以直观地得到其充要条件是⎩⎨⎧+≤+≤;1a 31a ,a 222∴1≤a ≤3即为所求的实数a 的取值范围.29题图30.设01a ≤≤,若满足不等式||x a b -<的一切实数x 也满足不等式213||2x a -<,试求实数b 的取值范围.[解答]不等式||x a b -<的解集为{|}A x a b x a b =-<<+, 不等式213||2x a -<的解集为221313{|}22B x a x a =-<<+, 依题意有A B ⊆,∴22132132a b a a b a ⎧-≥-⎪⎪⎨⎪+≤+⎪⎩,即22132132b a a b a a ⎧≤-++⎪⎪⎨⎪≤-+⎪⎩,由01a ≤≤,22131322a a a a -+≤-++, 而2213125()0224a a a -+≤-+>,故21302b a a <≤-+.。

相关文档
最新文档