原子物理学杨福家第一章答案
最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版
原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。
也就是说,当α粒子和自由电子对头碰时,θ取得极大值。
此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。
原子物理学杨福家第四版课后答案-七章全
p 2m2ve 2 2m 104 2 p Mmve M
亦即: tg
p ~10-4 (rad ) p
a 28e2 1-2) 解:① b ctg ;库仑散射因子:a= 2 2 4 E
a
2 2 22 Z 2Ze2 ee Z (( )( a )( ) ) 4 0 E 4 E 4 E 0
180
2 3 ,即为所求 1 d sin 2 sin 3
3
90
2
BYJ.exe@2012
-3-
参考答案
原子物理学
参考答案
-4-
1800
0
1 dN 1800 nt 4 0 N 0
1800
2
1800
tN A
A 4
0
a2
cos sin
3
2 d 2
0
2 Z1Z 2e 2 cos 2 d 2E sin 3 2
m N A
A 4
a2
cos sin
3
2 d 2
m N A
A
a2
4 2 3 16 10 A
a 2ctg 2
0
4 10 3
m N Actg 2
0
2
d a 1 181 4 103 tg 2100 d 4 sin 4 4 2 10 2 6.02 10 23 sin 4 300 依题: 2 28 2 24 10 m / sr 24b / sr
dN 1 Z1Z 2e 2 2 d nt ( ) N 4 4E sin 4 2
《原子物理学》部分习题解答(杨福家)
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2
1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c
原子物理学杨福家第四版课后答案
原子物理学杨福家第四版课后答案原子物理学作为物理学的一个重要分支,对于理解物质的微观结构和性质具有至关重要的意义。
杨福家所著的《原子物理学》第四版更是众多学子深入学习这一领域的重要教材。
然而,课后习题的解答往往成为学习过程中的关键环节,它有助于巩固所学知识,加深对概念的理解。
以下便是对该教材课后答案的详细阐述。
首先,让我们来看第一章“原子的位形:卢瑟福模型”的课后习题。
其中,有一道关于α粒子散射实验的题目,要求计算α粒子在与金原子核发生散射时的散射角。
解答这道题,需要我们深刻理解库仑散射公式以及相关的物理概念。
我们知道,α粒子与金原子核之间的相互作用遵循库仑定律,通过对散射过程中动量和能量的守恒分析,可以得出散射角与α粒子的初始能量、金原子核的电荷量以及散射距离之间的关系。
经过一系列的数学推导和计算,最终得出具体的散射角数值。
第二章“原子的量子态:玻尔模型”中的课后习题,重点考察了对玻尔氢原子模型的理解和应用。
比如,有一道题让我们计算氢原子在不同能级之间跃迁时所发射光子的波长。
这就要求我们熟练掌握玻尔的能级公式以及光的波长与能量之间的关系。
根据玻尔的理论,氢原子的能级是量子化的,当电子从一个能级跃迁到另一个能级时,会释放出一定能量的光子。
通过计算两个能级之间的能量差,再利用光子能量与波长的关系式,就可以求出相应的波长。
在第三章“量子力学导论”的课后习题中,常常涉及到对波函数和薛定谔方程的理解和运用。
例如,有一道题给出了一个特定的势场,要求求解在此势场中粒子的波函数和可能的能量本征值。
解答此类问题,需要我们将给定的势场代入薛定谔方程,然后通过数学方法求解方程。
这个过程可能会涉及到一些复杂的数学运算,如分离变量法、级数解法等,但只要我们对量子力学的基本概念和方法有清晰的认识,就能够逐步推导得出答案。
第四章“原子的精细结构:电子的自旋”的课后习题,则更多地关注电子自旋与原子能级精细结构之间的关系。
比如,有题目要求计算在考虑电子自旋轨道耦合作用下,某原子能级的分裂情况。
原子物理 杨福家 第一章 答案
第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V ’,沿θ方向散射。
电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin v m V M e -'=0 (3) 作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4)与)sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v ,得)(s i n s i n )(s i n s i n ϕθθϕθϕααα+++=Vm M VM V M e化简上式,得θϕϕθαs i n s i n )(s i n em M +=+ (6)若记αμM m e=,可将(6)式改写为 θϕμϕθμs i n s i n )(s i n+=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有)](sin sin [)]sin([sin ϕθϕμϕθμθϕθ++-=+-222d d令 0=ϕθd d ,则sin2(θ+φ)-sin2φ=0 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0,则 θ=0(极小) (8) (2)若 cos(θ+2φ)=0则 θ=90º-2φ (9) 将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=- 由此可得183641⨯===αμθM m e sin θ~10-4弧度(极大) 此题得证。
(整理)原子物理学杨福家1-6章 课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学杨福家第一章答案
原子物理学杨福家第一章答案第一章习题1、2解vα粒子与一静止的自由电子相碰撞,速度为试证的非相对论的-4αrad.粒子的最大偏离角约为明:10要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.αMVX方向入射;沿粒子的质量为,,证明:设碰撞前速度为αVθm表示,碰撞碰撞后,速度为方向散射。
电子质量用',沿e Ovφα粒处,碰撞后以速度方向反冲。
沿前静止在坐标原点子-电子系统在此过程中能量与动量均应守恒,有:(1)(2)(3)θθ,得cossin±(3)×(作运算:2)×(4)(5)Vv,1)式联立,消去'与4再将()、(5)二式与(化简上式,得(6)若记,可将(6)式改写为(7)θφθφθ的极值,有)式求7,对()(的函数为视.令,则θφφ=0+ sin2()-sin2 即θφθ=0 2cos()sin+2θ=0,若 sin(1)θ=0(极小)(8)则θφ)=0+2)若(2cos(θφ(9o-2)则=90将(9)式代入(7)式,有由此可得-4θ弧度(极大)≈10此题得证。
α粒子被金核以90)动能为的°散射时,它的瞄准距离(1(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几n, 关键要知道180°~°范围的积分. 要点分析:第二问是90n. 注意推导出值,其他值从书中参考列表中找.Z=79金的原子序数和(解:1)依 2答:散射角为90o所对所对应的瞄准距离为.°的散射全部积分出90第二问解的要点是注意将大于: 解(2).来.(问题不知道nA,但可从密度与原子量关系找出)ZA=197,=79,从书后物质密度表和原子量表中查出AuAuρ43kg/m×10=Au 依:注意到:即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
《原子物理学》杨福家第四版课后答案
《原子物理学》杨福家第四版课后答案目录第一章原子的位形 ...................................... - 1 - 第二章原子的量子态:波尔模型 ............................ - 7 - 第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 ............................ 16 第五章多电子原理:泡利原理 (23)第六章 X 射线 ............................................. 28 第七章原子核物理概论 ................... 没有错误!未定义书签。
第一章原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:+'='+=e e v m v M v M v M mv Mv ρρρ222212121='-='-?222e e v M m v v v Mm v v ρρρ e v m p ρρ=?e p=mv p=mv ∴??,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ?≈-≈22e m v v v M∴??=有 212e p p Mmv ??=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M-?===p亦即:()ptg rad pθθ?≈=-4~10 1-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε?=== 当901θθ=?=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=?② 解:金的原子量为197A =;密度:731.8910/g m ρ=? 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=?= 即:A V n Aρ=(2)由(1)式得:在90o→180 o范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ?==?将所有数据代入得)(θP 5()9.410ρθ-=?这就是α粒子被散射到大于90o范围的粒子数占全部粒子数得百分比。
原子物理学杨福家第四版课后答案
原子物理学杨福家第四版课后答案在学习原子物理学这门课程时,杨福家第四版教材是许多同学的重要参考资料。
然而,课后习题的解答往往成为同学们巩固知识、加深理解的关键环节。
以下是为大家精心整理的原子物理学杨福家第四版课后答案。
第一章主要介绍了原子的基本概念和卢瑟福模型。
课后习题中,关于α粒子散射实验的相关问题较为常见。
例如,计算α粒子在不同散射角度下的散射几率,这需要我们深刻理解库仑散射公式以及散射截面的概念。
答案的关键在于正确运用公式,代入相关参数进行计算。
第二章重点是玻尔的氢原子理论。
在课后习题中,经常会出现让我们根据玻尔理论计算氢原子的能级、轨道半径以及跃迁时辐射的光子能量等问题。
以计算氢原子从激发态跃迁到基态辐射的光子能量为例,首先要明确能级公式,然后根据初末态的能级差来计算光子能量。
第三章讲述了量子力学初步。
其中涉及到的薛定谔方程的应用是重点也是难点。
比如,求解一维无限深势阱中粒子的波函数和能量本征值。
在解答这类问题时,需要熟练掌握薛定谔方程的求解方法,结合边界条件确定波函数和能量的表达式。
第四章是原子的精细结构。
这一章的课后习题中,对于碱金属原子光谱的精细结构和塞曼效应的考察较多。
比如,解释碱金属原子光谱精细结构的产生原因,答案要从电子的自旋轨道耦合作用入手,分析能级的分裂情况。
第五章是多电子原子。
在这部分的习题中,经常会要求分析多电子原子的能级结构和电子组态。
例如,确定某个多电子原子的基态电子组态,需要遵循泡利不相容原理、能量最低原理和洪特规则。
第六章是在磁场中的原子。
关于原子在外磁场中的塞曼分裂以及顺磁共振等问题是常见的考点。
解答这类题目时,要清楚磁场对原子能级和光谱的影响机制。
第七章是原子的壳层结构。
会涉及到原子核外电子的填充规则以及原子基态的确定等问题。
第八章是 X 射线。
对于 X 射线的产生机制、波长和强度的计算等是常见的习题类型。
第九章是原子核物理概论。
重点是原子核的基本性质、结合能的计算以及核反应等内容。
《原子物理学》高教(杨福家)部分习题答案(杨福家)
Z2 E = E∞ Ek b = Ek b = 13.6 2 (eV) nb
基态到第一激发态的激发能: (3)从基态到第一激发态的激发能: 1 E = E 2 E 1 = 13 .6(1 2 ) Z 2 (eV) 2 从第一激发态到基态激发的光: 从第一激发态到基态 激发的光 基态激发的
ww
ww
ε 3100 ∴ = ≈ 3300 Ek 9 .4
.k hd aw .c om
h 2 mE k = λ h = 2 mE k
课后答案网
案 网
0 .39 (nm)( E k 1 .226 = 0 .123 (nm)( E k E k (eV) 0 .039 (nm)( E k
24 2
课
后
∴ λ = 2 × d sin α = 2 × 0.18 × sin 30° = 0.18nm
答
d
α
21 19
= 0 . 025 (ev
)
3-7
∵ E = hν =
hc ∴ E ≈ 2 λ λ
h ∴ τ = t ≥ 4π E λ 600 × 10 9 = = λ 4π c × 1 0 7 4π c λ ≈ 2 × 10 9 (s)
∵ d = 0 . 18 nm , α = 30 ° , k = 1
.k hd aw .c om
案 网
θ
课后答案网
a
h 6 . 63 × 10 34 ∴ p = = λ 0 . 18 × 10 9 = 3 . 68 × 10 24 kg m / s
2
∴ Ek
ww
(3 . 68 × 10 ) p = = 2m 2 × 1 . 67 × 10 27 21 (J ) = 4 . 06 × 10 = 4 . 06 × 10 1 . 60 × 10
原子物理学杨福家第四版课后答案
原子物理学杨福家第四版课后答案原子物理学是物理学的一个重要分支,它研究原子的结构、性质和相互作用等方面的知识。
杨福家所著的《原子物理学》第四版是一本备受欢迎的教材,为学生深入理解原子世界提供了坚实的基础。
以下是为您精心整理的该教材的课后答案。
第一章主要介绍了原子物理学的发展历程和一些基本概念。
课后习题可能会要求学生阐述卢瑟福散射实验的原理和意义。
卢瑟福散射实验是原子物理学中的一个关键实验,它证明了原子的核式结构。
在回答这类问题时,要清晰地说明实验的步骤、观察到的现象以及得出的结论。
例如,α粒子在穿过金箔时,大部分粒子直线通过,只有少数发生大角度偏转,这表明原子的正电荷和绝大部分质量集中在一个很小的核上。
第二章关于原子的能级和光谱,可能会有关于氢原子光谱线系的计算和解释的题目。
对于氢原子的能级公式和光谱线的频率、波长的计算,需要牢记相关公式并能准确运用。
比如,巴尔末系的波长可以通过公式计算得出,同时要理解为什么氢原子会产生这些特定的光谱线系,这涉及到电子的能级跃迁。
第三章的重点是量子力学初步。
在回答课后问题时,要理解波函数的物理意义以及薛定谔方程的应用。
例如,对于一个给定的势场,如何求解薛定谔方程得到波函数,并根据波函数计算出粒子在不同位置出现的概率。
这需要掌握一定的数学运算和物理概念。
第四章关于碱金属原子和电子自旋,可能会要求分析碱金属原子光谱的精细结构,并解释电子自旋的概念和作用。
在回答这类问题时,要清楚地说明由于电子自旋与轨道运动的相互作用,导致了碱金属原子光谱的精细分裂。
同时,要理解电子自旋的量子特性以及它对原子能级和光谱的影响。
第五章讲到了多电子原子。
这部分的课后习题可能会涉及到多电子原子的能级结构、电子组态和原子态的确定。
回答时需要运用泡利不相容原理、能量最低原理等规则来确定电子的排布,从而得出原子的可能状态。
第六章是在原子的壳层结构基础上,进一步探讨了 X 射线。
对于 X 射线的产生机制、特征谱线以及与物质的相互作用等问题,需要有清晰的理解和准确的表述。
原子物理学部分习题答案(杨福家)
a
p 3.68 10 Ek 2m 2 1.67 10 27 4.06 10 21 4.06 10 21 J 0.025ev 19 1.60 10
24 2
3-7
3-8
电子束缚在10 fm 线度(原子核线度的数量级), 试用 不确定度关系估算电子的最小动能。 x p x
5-2.
5-4.
5-7. (1)
量子态
序号
(ml ,ms)1 (ml ,ms)2 (ml ms)(ml ms)2 1 , , (1,+) (1,- ) (0,+) (1,+) (1,- ) (0,+) 12;13;14;15;16 23;24;25;26 34;35;36 45;46 56
1 2 3 4
1
在施忒恩盖拉赫实验中,基态硼原子将分裂成 2 束原子射线束.
5-12. 磷原子基态
P : 1s 22s 22p 63s 23p 15
3
硫原子基态
S : 1s 22s 22p 63s 23p 16
4ห้องสมุดไป่ตู้
氯原子基态
Cl : 1s 22s 22p 63s 23p 17
5
氩原子基态
Ar : 1s 22s 22p 63s 23p 18
1
d
120
0.54 0.31(n m ) 2 si n60 h 2 6-7 h 0 m0c 0 c m0 c j 180散射电子能量最小
1 c (1 cos j ) 2c 3c 0 3 1 1 0.511 MeV 2 h min h 0 m0c 0.17 MeV 3 3 3 h h h h 4 h 4m 0 c P max 3.64 10 22 (kg m / s ) 0 3c c 3c 3
原子核物理杨福家 第四版(完整版)课后答案
原子物理习题库及解答第一章1-1 由能量、动量守恒 ⎪⎩⎪⎨⎧'+'='+'=e e e e v m v m v m v m v m v m αααααααα222212121(这样得出的是电子所能得到的最大动量,严格求解应用矢量式子)Δp θ得碰撞后电子的速度 ee m m v m v +='ααα2 p故 αv v e2≈' 由)(105.24001~22~~~4rad m m v m v m v m v m pp tg e e e e -⨯=='∆ααααααθθ1-2 (1) )(8.225244.127922fm ctg a b =⨯⨯⨯==θ (2) 52321321063.91971002.63.19]108.22[14.3--⨯=⨯⨯⨯⨯⨯==nt b NdN π1-3 Au 核: )(6.505.4244.1794422fm v m Ze r m =⨯⨯⨯==αα Li 核:)(92.15.4244.134422fm v m Ze r m =⨯⨯⨯==αα1-4 (1))(3.16744.1791221Mev r e Z Z E mp =⨯⨯==(2))(68.4444.1131221Mev r e Z Z E m p =⨯⨯==1-5 2sin /)4(2sin /)4(420222142221θρθr ds t A N E e Z Z ntd E e Z Z N dN p p ⋅=Ω= 42323213)5.0(1105.1105.11971002.6)41044.179(⨯⨯⨯⨯⨯⨯⨯⨯=--68221090.8197105.144.1795.102.6--⨯=⨯⨯⨯⨯⨯=1-660=θ时,232221⋅==a ctg ab θ 90=θ时,12222⨯==a ctg a b θ 3)21()23(22222121===∴b bdN dN ππ1-7 由32104-⨯=nt b π,得ntb π32104-⨯=由22θctg a b =,得 23233232)67.5(1021811002.614.310410104)2(⨯⨯⨯⨯⨯⨯=⨯=--- ntctg a π )(1096.5224cm -⨯=)(8.23161096.5)41(2sin )4(2442b a d d =⨯⨯⨯==Ω∴-θσ1-8(1)设碰撞前m 1的速度为v 1,动量为p 1。
原子核物理第二版习题答杨福家复旦大学出版社
原子核物理第二版习题答杨福家复旦大学出版社[标签:标题]篇一:原子核物理第二版习题答案杨福家复旦大学出版社第一章1-3.试计算核素He和Li,并对比结合能之差别作讨论。
1-4.试计算Zr,Zr,Zr,三个核素的中子分离能;比较这三个分离能,可得出什么重要结论?1-5.求出U的平均结合能;如果近似假定中等质量原子核的平均结合能为8.5MeV,试估计一个U核分裂成两个相同的中等原子核时,能放出多少能量?1-6.试由质量半经验公式,试计算Ca和Co的质量,并与实验值进行比较。
1-7.利用质量半经验公式来推导稳定核素的电荷数Z与质量数A 的关系式,并与β稳定线的经验公式作比较?1-8.试利用镜核(A相同,中子数N和质子数Z互换的一对核)N和C质量差以及质量半经验公式来近似估算原子核半径参量r。
1-11.在核磁共振法研究原子Mg的基态(=5/2+)的磁特性实验中,当恒定磁场的强度??0=5.4×103Gs以及高频磁场的频率为v=1.40MHz时,发现了能量的共振吸收,试求gI 因子及核磁矩。
1-12.假定核电荷Ze均匀分布在两个主轴分别为a和c(c沿对称轴)的旋转椭球内,试推导公式(1.6.6)。
(Q=5Z(??2-??2))2第二章2-1.核力有哪些主要性质?对每一种性质,要求举一个实验事实。
16172-3.试计算从157??8??9??中取出一个质子所需的能量;并进行比较,从中可得出什么结论?2-4.由质量半经验公式估算17??和17??的基态质量差,并与实验值比较。
(r0取1.4fm)2-5.根据壳层模型决定下列一些核的基态自旋和宇称:32563831232097412,3,12,19??,29,36,51,82.篇二:原子核物理第三章课后习题答案3-3. 60Co是重要的医用放射性同位素,半衰期为5.26年,试问1g60Co的放射性强度?100mCi的钴源中有多少质量60Co?解:放射性强度公式为:A??dN0.693mN0e??t??N,其中N?N0e??t,?=,N=NA,T为半衰期,dtTM A??dN0.693mN0e??t??N??NAdtTM0.69316.0221367?1023 5.26?365?24?360059.9338?4.19778?1013次/秒?1.135?103Ci其中Ci?3.7?1010次核衰变/秒,100mCi?3.7?1010?100?10?3=3.7?109次核衰变/秒,利用公式dN0.693mN0e??t??N?NA,可知dtTM0.693m0.693mA?NA??6.0221367?1023?3.7?109 TM5.26?365?24?360059.9338A??解可得,m?8.814?10-5g?88.14?g3-5用氘轰击55Mn可生成??放射性核素56Mn,56Mn的产生率为5?108/s,已知56Mn的半衰期2.579h,试计算轰击10小时后,所生成的56Mn的放射性强度。
原子物理学答案杨福家高教第四版.doc
目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 ........................ 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章 X射线 ............................................................................... . (28)第七章原子核物理概论 ........................................... 错误!未定义书签。
第一章 原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:eevmvMvM vMmvMv 222 2121 21222e e v Mmvv v M mvvevmpeep=mvp=mv ,其大小: (1)222(')(')(') em vvvvvvvM近似认为:(');'pMvvvv22e m vvv M有21 2eppMmv亦即: (2)(1)2/(2)得224222 10e e mvm pMmvM p亦即:()ptgrad p-4~101-2) 解:① 22a bctg E228e;库仑散射因子:a=4 )2)(4 ( 4 2 0 20 2 E Ze E Zea 22279()()1.44()45.545 eZ afmMevfm EMev当901时,ctg2122.752 bafm亦即:1522.7510bm② 解:金的原子量为197A ;密度:731.8910/gm依公式,λ射粒子被散射到θ方向,d 立体角的内的几率:ntdadP 2sin16)( 42(1)式中,n 为原子核数密度,()AAmnnN即:AVn A(2)由(1)式得:在90º→180 º范围内找到粒子得几率为: )(P 1802 2 490ant2sin() 164sin2dant将所有数据代入得)(P5()9.410这就是粒子被散射到大于90º范围的粒子数占全部粒子数得百分比。
原子物理学杨福家1-6章-课后习题标准答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题1、2解速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)(2)(3)作运算:(2)×sinθ±(3)×cosθ,得(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)若记,可将(6)式改写为(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令,则sin2(θ+φ)-sin2φ=0即2cos(θ+2φ)sinθ=0(1)若 sinθ=0,则θ=0(极小)(8)(2)若cos(θ+2φ)=0则θ=90º-2φ(9)将(9)式代入(7)式,有由此可得θ≈10-4弧度(极大)此题得证。
(1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值.,其他值从书中参考列表中找.解:(1)依和金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρAu=×104kg/m3依:注意到:即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
是常数其值为最后结果为:d N’/N=×10-5说明大角度散射几率十分小。
1-3~1-4 练习参考答案(后面为褚圣麟1-3~1-4作业)1-3 试问的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为7Li核,则结果如何?要点分析: 计算简单,重点考虑结果给我们什么启示,影响靶核大小估计的因素。
解: 对心碰撞时,时,离金核最小距离离7Li核最小距离结果说明: 靶原子序数越小,入射粒子能量越大,越容易估算准核的半径. 反之易反。
1-4 ⑴假定金核半径为 fm,试问入射质子需要多少能量才能在对头碰撞时刚好到达金核的表面?⑵若金核改为铝时质子在对头碰撞时刚好到达铝核的表面,那么入射质子的能量应为多少?设铝核的半径为 fm。
要点分析:注意对头碰撞时,应考虑靶核质量大小,靶核很重时, m << M可直接用公式计算;靶核较轻时, m << M不满足,应考虑靶核的反冲,用相对运动的质心系来解.79A Au=196 13A Al=27 解:⑴若入射粒子的质量与原子核的质量满足m<<M,则入射粒子与原子核之间能达到的最近距离为,时,即即:⑵若金核改为铝核,m << M则不能满足,必须考虑靶核的反冲在散射因子中,应把E理解为质心系能E C说明靶核越轻、Z越小,入射粒子达到靶核表面需要能量越小.核半径估计值越准确.褚圣麟教材作业题解若卢瑟福散射用的α粒子是放射性物质镭C′放射的,其动能为×106电子伏特。
散射物质是原子序数Z=79的金箔,试问散射角θ=150°所对应的瞄准距离b多大?解:依和答:散射角为150º所对所对应的瞄准距离为×10-15m钋放射的一种α粒子的速度为×107米/秒,正面垂直入射厚度为10-7米,密度为×104公斤/米3的金箔,试求所有散射在θ≥90°的α粒子占全部入射粒子的百分比,已知金的原子量为179。
解: 此题解的要点是注意将大于90°的散射全部积分出来. 设散射入大于90°角的粒子数为d n’,入射的总粒子数为n,金箔的单位体积内的粒子数为N。
依:注意到:最后结果为:d n/n=×10-7问答:如果知道散射的总粒子数,如何计算散射入某一角度内粒子的数量?如何求出其散射截面?如何算出散射几率?散射入某一角内的粒子数散射几率(微分散射截面)习题1-5、1-6解补:求积分式的积分结果解:积分式的积分结果=结果:1-5 动能为的窄质子束垂直地射在质量厚度为cm 2的金箔上,记数器的记录以60°角散射的质子。
计数器圆形输入孔的面积为1.5cm 2,离金箔散射区的距离为10cm ,输入孔对着且垂直于射到它上面的质子,试问:散射到计数器输入孔的质子数与入射到金箔的质子数之比为多少?(质量厚度ρm 定义为单位面积的质量ρm =ρt ,则ρ=ρm /t 其中ρ为质量密度,t 为靶厚)。
要点分析:没给直接给nt 。
设置的难点是给出了质量厚度,计算时需把它转换成原子体密度n 和厚度t 。
需推导其关系。
解:输入圆孔相对于金箔的立体角为 AAu =197θ=60º (注意密度为单位体积的质量,单位体积内的粒子数为)1-6 一束α粒子垂直射至一重金属箔上,试求α粒子被金属箔散射后,散射角大于60°的α粒子与散射角大于90°的粒子数之比。
要点分析:此题无难点,只是简单积分运算。
解:依据散射公式因为 同理算出62 1523 4 2 109 . 8 110 5 . 1 10 44 .179 ( 10022 .6 197 1 'd nt可知习题1-7、8解补:求积分式的积分结果解:积分式的积分结果=结果:1-7 单能的窄α粒子束垂直地射到质量厚度为cm2的钽箔上,这时以散射角θ0>20˚散射的相对粒子数(散射粒子数与入射数之比)为×10-3.试计算:散射角θ=60°角相对应的微分散射截面。
要点分析:重点考虑质量厚度与nt关系。
解:ρm= cm2A Ta=181 Z Ta=73θ=60º依微分截面公式知该题重点要求出a2/16由公式所以1-8 (1)质量为m1的入射粒子被质量为m2(m2<< m1)的静止靶核弹性散射,试证明:入射粒子在实验室坐标系中的最大可能偏转角θ由下式决定.(2)假如粒子在原来静止的氢核上散射,试问:它在实验室坐标系中最大的散射角为多大?要点分析:同第一题结果类似。
证明:(1)(2)(3)作运算:(2)×sinθ±(3)×cosθ,得(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,得化简上式,得(6)若记,可将(6)式改写为(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令,则sin2(θ+φ)-sin2φ=02cos(θ+2φ)sinθ=0(1)若 sinθ=0,则θ=0(极小)(8)(2) 若cos(θ+2φ)=0则θ=90º-2φ(9)将(9)式代入(7)式,有由此可得若m2=m1则有此题得证。
第一章习题1-9、10题解1-9 动能为 Mev的窄质子束垂直地射到质量厚度(ρt)为cm2的金箔上,若金箔中含有百分之三十的银,试求散射角大于30°的相对质子数为多少?要点分析:此题靶为一个复合材料靶,关键找出靶的厚度t.然后计算出金原子数和银原子数,即可积分计算.从书后表可知:Z Au=79,A Au=197, ρAu=×104kg/m3; Z Ag=47,A Ag=108, ρAg=×104kg/m3.解:先求金箔的厚度tρt=ρAu+ρAg) t = cm2这种金箔中所含金原子数与银原子数分别为和再计算质子被金原子与银原子散射到θ>30°范围内的相对数目。
被金原子散射的相对数目为:式中,N为入射质子总数,d N Au’为被金原子散射到θ>30°范围内的质子数。
同理可得质子被银原子散射的相对数目为:被散射的相对质子总数为将已知数据代入:N A=×1023,E=,t=μm,Z Au=79,A Au=197,ρAu=×103kg/m3,Z Ag=47,A Ag=108,ρAg=×103kg/m3η≈×10-5结果讨论: 此题是一个公式活用问题.只要稍作变换,很容易解决.我们需要这样灵活运用能力.1-10 由加速器产生的能量为、束流为 nA的质子束,垂直地射到厚为μm的金箔上,试求5 min内被金箔散射到下列角间隔内的质子数。
金的密度(ρ=×104 kg/m3)[1] 59°~61°;[2] θ>θ0=60°[3] θ<θ0=10°要点分析:解决粒子流强度和入射粒子数的关系.注意:第三问,因卢瑟福公式不适用于小角(如0º)散射,故可先计算质子被散射到大角度范围内的粒子数,再用总入射粒子数去减,即为所得。
解:设j 为单位时间内入射的粒子数,I为粒子流强度,因I=je, j=I/e,时间T=5min内单位面积上入射的质子的总数为N个:再由卢瑟福公式,单位时间内,被一个靶原子沿θ方向,射到dΩ立体角内的质子数为:单位时间内,被所有靶原子沿θ方向,射到dΩ立体角内的质子数为式中,n为单位体积的粒子数,它与密度的关系为:所以,上式可写为解:[1]解:[2] 仍然像上式一样积分,积分区间为60°-180°,然后用总数减去所积值。
即θ>θ0=60°的值。
解:[3] 由于0°的值为无穷大,无法计算,所以将作以变换.仍然像上式一样积分,积分区间为10°-180°,然后用总数减去所积值,即θ<θ0=10°的值。
总数为××1011=×1012 (个。