飞机升力与阻力详解图文
V1VRV2飞机起飞速度与飞机升力和阻力详细讲解
V1 VR V2飞机起飞速度与飞机升力和阻力详解V1 VR V2飞机起飞速度详解V1 VR V2的概念:首先捡容易的来说。
Vr,这个r就是rotate的缩写,所以Vr可以叫做抬前轮速度或者抬头速度。
只有当飞机加速到Vr的时候,飞行员才可以带杆让飞机抬头离地,如果小于这个速度,很容易造成擦机尾。
再说V1。
这个速度,我们通常称其为决断速度。
我们知道,飞机发生机械故障是不会分时候的,任何状态下都可能出现某个部件失效的情况。
如果故障发生在天上,那么就靠机组的处理;如果发生在地面上,那就比较简单了,干脆不起飞了,滑回去,让机务人员来处理。
可是,如果这个故障发生在起飞滑跑这个“地面——空中”的临界状态下呢?这就比较难办了。
显然,这时候我们有两种选择——不起飞了,让飞机继续留在地面上,或者继续起飞,让飞机到空中去再说。
其实无论是否继续起飞,我们都不能一概而论。
因为如果这时候飞机速度已经很大,很接近抬前轮的速度了,虽然还没有离地,但此时刹车可能已经无法确保飞机能在剩余的跑道上停住了。
如果在这种大速度下贸然中断起飞,从而导致飞机冲出跑道,也许造成的损失比那个故障本身造成的损失会大得多。
反过来说,如果这时候速度并不是很大,我们只要及时采取必要的措施,完全可以让飞机在跑道上安全得停下来,我们依然决定继续起飞的话,那显然也不合适,因为毕竟在地面上处理故障要比在空中处理故障更安全更有效。
这时候大家应该差不多有了这么个印象——如果在滑跑速度比较小的时候出问题了,我们就停下来;如果在滑跑速度很大的时候出问题了,我们就继续起飞。
可是,到底多大算是“大”速度,多小算是“小”速度呢?V1的出现就解决了这个问题。
我们在每次飞行前,都要确定一个V1速度,假如问题出现在V1之前,我们就停下来(这时候是完全能够停下来的);如果问题出现在V1之后,那就说明现在刹车已经来不及了,只能继续起飞。
所以,这个V1我们叫决断速度——在这个速度我们要做决断——起飞,还是不起飞!再说V2。
升力与阻力详解
升力与阻力詳解升力是怎样产生的任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。
远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。
飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。
哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。
这一基本原理在足球运动中也得到了体现。
大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。
这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。
飞行原理 2.3 阻力
分离点
●分离区的特点一 分离区的特点一 分离区内漩涡是一个个单独产生的, 分离区内漩涡是一个个单独产生的,它导致机翼 的振动。 的振动。
●分离区的特点二 分离区的特点二 分离区内压强几乎相等,并且等于分离点处的压强。 分离区内压强几乎相等,并且等于分离点处的压强。
P分离点 = P1 = P2 = P3 = P4
•诱导阻力 诱导阻力(Induced Drag) 诱导阻力
升力
粘性
2.3.1 低速附面层
① 附面层的形成
附面层, 附面层,是气流速度从物面处速度为零逐渐增加到 99%主流速度的很薄的空气流动层。 主流速度的很薄的空气流动层。 主流速度的很薄的空气流动层
速度 不受干扰的主流 附面层边界
物体表面
●附面层厚度较薄 附面层厚度较薄
升力 Lift
拉力
阻力
Pull
Drag
重力
Weight
●阻力的分类 阻力的分类
对于低速飞机,根据阻力的形成原因, 对于低速飞机,根据阻力的形成原因,可将阻力 分为: 分为: •摩擦阻力 摩擦阻力(Skin Friction Drag) 摩擦阻力 •压差阻力 压差阻力(Form Drag) 压差阻力 •干扰阻力 干扰阻力(Interference Drag) 干扰阻力 废阻力 (Parasite Drag)
●摩擦阻力在飞机总阻力构成中占的比例较大 摩擦阻力在飞机总阻力构成中占的比例较大 摩擦阻力占总阻力的比例 超音速战斗机 大型运输机 小型公务机 水下物体 船舶 25-30% 40% 50% 70% 90%
② 压差阻力
压差阻力是由处于流动空气中的物体的前后的压 力差,导致气流附面层分离,从而产生的阻力。 力差,导致气流附面层分离,从而产生的阻力。
飞机性能——飞行的升阻力
1.2 飞行的升阻力1.2.1机翼的形状机翼的平面形状机翼的几何参数翼展:左右两翼翼尖之间的距离。
平均几何弦长:机翼面积与翼展之比。
对于矩形机翼:是前缘到后缘的直线距离。
展弦比(aspect ratio):翼展与平均几何弦长之比,或翼展平方与翼面积之比。
根梢比(梯形比):翼根弦长和翼尖弦长之比。
前掠角、后掠角机翼前缘同垂直于机身中心线的直线之间所夹的角度。
是机翼与机身夹角的余角。
机翼前缘位于机身中心线垂直线前面,称为前掠角;机翼前缘位于机身中心线垂直线后面,称为后掠角。
在俯视图上,机翼有代表性的基准线(一般取25%等百分比弦线)与飞机对称面法线之间的夹角。
基准线向后折转时为后掠角。
后掠角是指从飞机的俯仰方向看,机翼平均气动弦长连线自翼根到翼尖向后歪斜的角度。
如果是机翼前缘线的歪斜角,则称前缘后掠角。
上反角、下反角机翼的底面同垂直于飞机立轴的平面之间的夹角。
从飞机侧面看,翼尖上翘是上反角;翼尖下垂是下反角。
机翼的铅垂剖面——翼型翼型的几何特征机翼的铅垂剖面又叫做翼型。
翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。
前缘和后缘翼型前端点叫做前缘,后端点叫做后缘。
翼弦和弦长前缘和后缘之间的连线称为翼弦。
翼弦的长度称为弦长。
翼型的弯度分布和厚度分布迎角对于翼型和固定翼飞机,来流方向和翼弦的夹角称为迎角,也称为攻角,它是确定机翼在气流中姿态的基准。
对于直升机和旋翼机,迎角的表示方法与固定翼飞机略有不同,它是指与前进方向垂直的轴和旋翼的控制轴之间的夹角。
1.2.2升力的产生气体的管流特性理想低速气体的管流特性——Bernoulli 定理气流流经光滑管路,不计摩擦及其它损失,满足理想流体的伯努利定理:气体总压保持不变:总压=静压+速压,并且:气流通过等截面管路,处处流速相等,静压相等;气流通过收敛管路,速度加大,静压下降;气流通过扩张管路,速度降低,静压提高;低速和亚声速气流在变截面管道中的流动低速气流在变截面管道中流动时,由于气流密度变化不大,可视为不可压缩流体:亚声速气流在变截面管道中流动超声速气流在变截面管道中的流动在低速飞行中,机翼周围的空气由于压力变化所引起的空气密度变化量很小,其影响可以略去不计;而在高速飞行中,气流速度变化所引121212121212;;;;P P A A P P A A <><><>υυυυ121212121212121212121212;;;;;;;;;;Ma Ma P P T T A A Ma Ma P P T T A A ><><<<<><>>>υυρρυυρρ起的空气密度变化,会引起空气动力发生很大的变化,甚至会引起空气流动规律的改变,因此它的影响就不能忽略了。
升力系数曲线
在机翼之后组成一个旋涡面,由于空气的粘性作用与旋
涡的相互作用,旋涡面在翼尖后不远处卷成两个大涡束,
称为翼尖涡流,如图3—1—19C。
•
从机翼后面向前看,左翼尖涡流顺时针旋转,右翼尖涡流反时针 旋转。
从实验可以看出上述流动现象的存在,例如用丝线系住的一个的 一个小棉球,会在翼尖部分的气流中旋转起来,如图3—1—20 所示。
• 式中2Cx板摩 为低速平板双面摩擦阻力系数, c 为翼型厚弦比对摩
擦阻力系数影响的修正系数,可由图3—1—17查得,图中 C 是
机翼的平均厚弦比,X
厚度位置 X C 代替。
T
为转捩点相对位置,初步估算可用最大
•
(二)压差阻力
•
空气流过机翼的过程中,在机翼前缘受到阻挡,流速减慢,
压强增大;在机翼后缘,压强减少,特别是在较大迎角下,由于
力系数所对应的迎角,称为临界迎角。
•
不同迎角下机翼流线谱和压强分布影响最大升力系数C y max
的因素很多,主要是翼型的相对弯度、最大弯度位置、厚弦比、
前缘半径等。实验表明,相对弯度较大的翼型,
较大,同一相对弯度,最大弯度位置在15%左右时,C y max 最大,
对普通翼型,厚弦比在9—14%范围内, C 最y m大ax 。
摩擦力在相对气流方向上的投影的总和,就是整个飞机的摩擦阻
力。
•
空气在飞机表面附面层内的流动与在平板附面层内的流动相
类似。因此在空气动力学中,飞机机翼、机身、尾翼等处摩擦,
阻力系数的大小,可以在前章所讲述的平板摩擦阻力系数的基础
上,加以适当修正而估算出来。
•
机翼摩擦阻力系数可用下式计算:
Cx翼摩 2Cx板摩 c
飞行基础知识-升力与阻力详解
飞行基础知识-升力与阻力详解升力是怎样产生的任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。
远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。
飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。
哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。
这一基本原理在足球运动中也得到了体现。
大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。
这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
第二章飞机的低速空气动力4解析精选课件PPT
2021/3/2 29
●极曲线的深入理解
从坐标原点向曲线引切线,切点对应最小阻力迎角和最大升阻比。
2021/3/2 30
0
ห้องสมุดไป่ตู้CD0
●极曲线的深入理解
从原点所引直线与极曲线交于两点,则两点的升阻比相同,较 高者的迎角较大,较高者的平飞速度较小。
2021/3/2 31
② 不同滑流状态的极曲线
●螺旋桨滑流
CL max
2021/3/2 15
lj
●相对厚度对升力特性的影响
相对厚度增加,最大升力系数增加,临界迎角减小。
相对厚度增加
2021/3/2 16
●翼型前缘半径对升力特性的影响
前缘半径增加,临界迎角增加。
半径小
半径大
2021/3/2 17
●展弦比对升力特性的影响
展弦比越高,最大升力系数越大,临界迎角越小。
主要空气动力性能参数包括: ① 最大升力系数 ② 最小阻力系数 ③ 最大升阻比
2021/3/2 4
2.4.1 升力特性
① 升力系数的变化规律
2021/3/2 5
●升力系数随迎角的变化规律 ➢当α<α临界,升力系数随迎角增大而增大。 ➢当α=α临界,升力系数为最大。 ➢当α>α临界,升力系数随迎角的增大而减小,进入失速区。
2021/3/2 24
2.4.3 升阻比特性
① 升阻比
升阻比是相同迎角下,升力系数与阻力系数之比,用K 表示。
升阻比的大小主要随迎角变化而变化。 升阻比越大,飞机的空气动力性能越好。
L CL K D CD
2021/3/2 25
② 升阻比曲线
L CL K D CD
KM A X
飞行基本知识2.3阻力
L
L’
D
●影响诱导阻力的因素
➢机翼平面形状: 椭圆形机翼的诱导阻力最小。
➢展弦比越大,诱导阻力越小 ➢升力越大,诱导阻力越大 ➢平直飞行中,诱导阻力与飞行速度平方成反比 ➢翼梢小翼可以减小诱导阻力
●展弦比对诱导阻力的影响
低展弦比使翼尖涡变 强,诱导阻力增加。
高展弦比使翼尖涡减 弱,诱导阻力变小。
P分离点 = P1 = P2 = P3 = P4
P分离点
P1
P2 P3 P4
●分离区的特点三 附面层分离的内因是空气的粘性,外因是因物体
表面弯曲而出现的逆压梯度。
PA PB PC
B C
A
●分离点与最小压力点的位置 最小压力点 B
A
分离点 C
●分离点与转捩点的区别 ➢层流变为紊流(转捩),顺流变为倒流(分离)。 ➢分离可以发生在层流区,也可发生在紊流区。 ➢转捩和分离的物理含义完全不同。
●摩擦阻力在飞机总阻力构成中占的比例较大
摩擦阻力占总阻力的比例
超音速战斗机
25-30%
大型运输机
40%
小型公务机
50%
水下物体
70%
船舶
90%
② 压差阻力
压差阻力是由处于流动空气中的物体的前后的压 力差,导致气流附面层分离,从而产生的阻力。
I. 顺压梯度与逆压梯度 顺压:A到B,沿流向压力逐渐减小,如机翼上表面前段。
●干扰阻力的消除
飞机各部件之间的平滑过渡和整流片,可以有效地 减小干扰阻力的大小。
干扰阻力在飞机总阻力中所占比例较小。
④ 诱导阻力
由于翼尖涡的诱导,导致气流下洗,在平行于相对 气流方向出现阻碍飞机前进的力,这就是诱导阻力。
飞行原理(升力和阻力).ppt
飞行速度小于音速时
扰动波的传播速度大于飞机前进速度 传播向四面八方
飞行速度等于或超过音速时
扰动波的传播速度等于或小于飞机前进速度 后续时间的扰动就会同已有的扰动波叠加在 一起形成较强的波, 空气受到强烈的压缩、而形成了激波
波阻
能量的观点
空气通过激波时,受到薄薄一 层稠密空气的阻滞,使得气流速 度急骤降低,由阻滞产生的热量 来不及散布,于是加热了空气。 加热所需的能量由消耗的动能而 来。在这里,能量发生了转化-由动能变为热能。动能的消耗表 示产生了一种特别的阻力。这一 阻力由于随激波的形成而来,所 以就叫做"波阻"
翼型的下表面→流管变化不大→压强基本不变 上下表面产生了压强差→总空气动力R R的方向向后向上→分力:升力L、阻力D
不同迎角对应的压力分布
失速
通常,机翼的升力与迎角成正比。迎角增加,升力随之 增大(图1、图2)。但是,当迎角增大到某一值时,则会 出现相反的情况,即迎角增加升力反而急剧下降。这个 迎角就称为临界迎角。
• John Gay拍摄
1999年7月7日
• F/A 18-C Hornet 在航母附近低高度(75英尺)超音速飞行的场面
正激波和斜激波
Ma=1 Ma>1
正激波 钝头:正激波 尖头:斜激波
正激波的波阻大, 空气被压缩很厉害, 激波后的空气压强、 温度和密度急剧上 升,气流通过时, 空气微团受到的阻 滞强烈,速度大大 降低,动能消耗很 大,这表明产生的 波阻很大。
阻力4:干扰阻力
气流流过翼-身连接处,由于部件形状的关系, 形成了一个气流的通道。B处高压区形成气流 阻塞,使气流开始分离,产生旋涡,能量消耗
和飞机不同部件之间的相对位置有关
飞机升力与阻力详解(图文)
飞行基础知识①升力与阻力详解(图文)升力是怎样产生的任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。
远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。
飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。
哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。
这一基本原理在足球运动中也得到了体现。
大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。
这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
飞机的升力 流体对运动物体的阻力
飞机获得升力的原因
上方流速快,压强小 合压强:P
结论:气流在机翼上下表面由于流速不同产生压力 差,这就是向上的升力 下方流速慢,压强大
飞机的阻力
凡是懂得物理知识的人都知道,飞机在 飞行的过程中,机体上所受的力是平衡的。 飞机的重力与飞机产生的升力平衡,而飞 机的发动机的作用则是克服飞机所受的阻 力,推动飞机前进,使得飞机相对于空气 运动,从而产生升力。大家肯定要想,飞 机发动机的功率那么大,难道飞机上所受 的阻力有那么大吗?的确,飞机在高速飞 行的同时,会因为不同原因受到非常大的 阻力。
草原犬鼠洞穴的空调系统
A
B
A 吹过平坦表面的风运动速度小,压强大 B 吹过隆起表面的风流速大,压强小
战斗机:利用“ 机翼获得的升力 升空
”
1、如图当汛期来临,大渠水流汹涌,小 渠水波不兴,问涵洞中水如何流动?
2、当汽车飞驰而过时,我们常看到路边的树叶 纸片被汽车带过的气流吸过去,怎样解释这种 现象?
三.流线体
• 流线体是前圆后尖,表面光滑,略像水滴 的形状。具有这种形状的物体在流体中运 动时所受到的阻力最小,所以汽车、火车、 飞机机身、潜水艇、轮船等外形常做成流 线型。
• 是物体的一种外部形状,通常表现为 平滑而规则的表面,没有大的起伏和 尖锐的棱角。
P118
教材习题讲解
3、观察鸟类翅膀的形状,解释为什么 鸟在空中展翅滑翔时不会坠下来?
4.破解“香蕉球”的奥秘
如果你经常观看足球比赛的话,一定见过罚前场直接 任意球。这时候,通常是防守方五六个球员在球门前组成 一道“人墙”,挡住进球路线。进攻方的主罚队员,起脚 一记劲射,球绕过了“人墙”,眼看要偏离球门飞出,却 又沿弧线拐过弯来直入球门,让守门员措手不及,眼睁睁 地看着球进了大门。这就是颇为神奇的“香蕉球”。 为 什么足球会在空中沿弧线飞行呢?原来,罚“香蕉球”的 时候,运动员并不是拔脚踢中足球的中心,而是稍稍偏向 一侧,同时用脚背摩擦足球,使球在空气中前进的同时还 不断地旋转。这时,一方面空气迎着球向后流动,另一方 面,由于空气与球之间的摩擦,球周围的空气又会被带着 一起旋转。这样,球一侧空气的流动速度加快,而另一侧 空气的流动速度减慢。物理知识告诉我们:气体的流速越 大,压强越小(伯努利方程)。由于足球两侧空气的流动 速度不一样,它们对足球所产生的压强也不一样,于是, 足球在空气压力的作用下,被迫向空气流速大的一侧转弯 了。
升力系数曲线、阻力系数曲线和升阻比曲线、极曲线
3.4.5 升力系数曲线、阻力系数曲线和升阻比曲线、极曲线升阻比和升力系数、阻力系数一样都是无量纲参数,在飞行马赫小于一定值时,只与机翼的形状(机翼翼型、机翼平面形状)和迎角的大小有关。
当迎角改变时,气流在机翼表面的流动情况和机翼表面的压力分布(见图3-26)都会随之变化,结果导致了机翼升力和阻力的变化,压力中心位置的前后移动。
1、 升力系数随迎角的变化图3-27 升力系数曲线从图3-27中升力系数曲线L C 的变化情况可以看到,在迎角小于一定值时(小于最大升力系数对应的迎角,max αα<),升力系数与迎角近似成线性关系,随着迎角的增加而增加,由负值增大到零到正值再到最大值max L C ,然后又转折开始下降。
升力系数曲线的斜率L L C C αα∆=∆表示了升力系数L C α随着迎角变化的快慢。
升力系数为零时,机翼的升力为零,对应的迎角叫做零升力迎角(0α)(见图3-27)。
对于大多数民用运输机机翼采用的具有一定弯曲的非对称翼型,零升力迎角是一个较小的负值(见图3-28(d )):对于对称翼型,零升力迎角为零(见图3-28(e ))。
迎角小于升力迎角(0αα<)时,升力系数为负值,飞机的升力方向指向机翼下表面(见图3-28(d )):迎角大于零升力迎角时(0αα>),升力系数为正值,飞机的升力方向指向机翼上表面(见图3-28(a )(c))。
图3-28 不同迎角下的不同升力2.机翼压力中心位置随迎角变化正如前面已讲述的:机翼气动力合力的作用点叫做机翼的压力中心。
随着迎角的改变,机翼压心的位置会沿飞机纵向前后移动(对称翼型除外)。
当迎角比较小时,机翼前缘上表面还没有形成很细的流管,气流在机翼前缘的加速比较缓慢,并没有在机翼前缘形成吸力区,机翼上表面的最低压力点靠后(见图3-29(a)),这是机翼的升力系数比较小,压力中心也比较靠后。
随着迎角的逐渐增加,机翼前缘上表面的流管逐渐变细,气流在机翼前缘上表面加速的速度加快,机翼上表面的最低压力点向前移,机翼的升力系数增大,压力中心也向前移(见图3-29(b))。
飞机的升力 流体对运动物体的阻力共29页
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
飞机的升力 流体对运动物体的阻力 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞行基础知识①升力与阻力详解(图文)升力是怎样产生的任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。
前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。
远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。
然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢?相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。
飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。
机翼是怎样产生升力的呢?让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。
哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。
这一基本原理在足球运动中也得到了体现。
大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。
这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。
对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。
空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。
日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。
流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。
根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。
当飞机的机翼为对称形状,气流沿着机翼对称轴流动时,由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。
但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。
飞机的阻力凡是懂得物理知识的人都知道,飞机在飞行的过程中,机体上所受的力是平衡的。
飞机的重力与飞机产生的升力平衡,而飞机的发动机的作用则是克服飞机所受的阻力,推动飞机前进,使得飞机相对于空气运动,从而产生升力。
大家肯定要想,飞机发动机的功率那么大,难道飞机上所受的阻力有那么大吗?的确,飞机在高速飞行的同时,会因为不同原因受到非常大的阻力。
从产生阻力的不同原因来说,飞机所受的阻力可以分为摩擦阻力、压差阻力、诱导阻力、干扰阻力、激波阻力等。
摩擦阻力当两个物体相互滑动的时候,在两个物体上就会产生与运动方向相反的力,阻止两个物体的运动,这就是物体之间的摩擦阻力。
当飞机在空气中飞行时,飞机也会受到空气的摩擦阻力,飞机的摩擦阻力是因为空气的粘性造成的。
当气流流过物体时,由于粘性,空气微团与物体表面发生摩擦,阻滞了气流的流动,这就是物体对空气的摩擦阻力,反之,空气对物体也给予了摩擦阻力。
摩擦阻力是在边界层中产生的。
所谓边界层就是紧贴物体表面,流速由外部流体的自由流速逐渐降低到零的那一层薄薄的空气层。
边界层中气流的流动情况是不同的。
一般机翼大约在最大厚度之前,边界层的气流各层不相混杂而成层地流动,这部分叫做“层流边界层”。
在这之后,气流的活动转变为杂乱无章,并且出现了漩涡和横向流动,这部分叫做“紊流边界层”。
从“层流边界层”转变为“紊流边界层”的那一点叫做“转捩点”。
边界层中的摩擦阻力大小与流动情况有很大关系,从大量的实践证明,对于层流流动,物体表面受到的摩擦阻力小,而紊流流动对物面的摩擦阻力大的多。
在普通的机翼表面,既有层流边界层,又有紊流边界层,所以为了减小摩擦阻力,人们就千方百计地使物体表面的流动保持层流状态,例如通过在机翼表面上钻孔,吸除紊流边界层,这样就可以达到减阻的目的。
另外,提高加工精度,使层流边界层尽量的长,延缓转捩点的出现,甚至抑制它的出现,也可以起到很好的效果。
这些都是飞机设计中的层流机翼的概念。
物体表面受到的摩擦阻力还跟物体的表面积有关系,面积越大,阻力也越大。
因此在人们试图减小飞行阻力的时候,减小飞机的尾翼或者机翼的面积也是一个有效的方法。
当然前提条件是保证产生足够的升力和控制力。
例如使用推力矢量技术的飞机,由于有了发动机推力直接用于飞行控制,这样飞机的尾翼就可以减小或者去除,这样就可以大大的减小摩擦阻力。
诱导阻力机翼同一般物体相似,也有摩擦阻力和压差阻力。
对于机翼而言,这二者合称“翼型阻力”。
机翼上除翼型阻力外,还有“诱导阻力”(又叫“感应阻力”)。
这是机翼所独有的一种阻力。
因为这种阻力是伴随着机翼上举力的产生而产生的。
也许可以说它是为了产生举力而付出的一种代价。
如果有一架飞机以某一正迎角a作水平飞行,它的机翼上面的压强将降低,而下面的压强将增高,加上空气摩擦力,于是产生了举力Y。
这是气流作用到机翼上的力,根据作用和反作用定律,必然有一个反作用力即负举刀力(-Y),由机翼作用到气流上,它的方向向下,所以使气流向下转折一个角度a,这一角度叫“下洗角”。
随着下洗角的出现,同时出现了气流向下的速度。
这一速度叫做“下洗速(w)”。
下洗的存在还可由风洞实验观察出来。
由实验可知:当飞机飞行时,下翼面压强大、上翼面压强小。
由于翼展的长度是有限的,所以上下翼面的压强差使得气流从下翼面绕过两端翼尖,向上翼面流动。
当气流绕流过翼尖时,在翼尖那儿不断形成旋涡。
旋涡就是旋转的空气团。
随着飞机向前方飞行,旋涡就从翼尖向后方流动,并产生了向下的下洗速(w)。
下洗速在两个翼尖处最大,向中心逐渐减小,在中心处减到最小。
这是因为旋涡可以诱导四周的空气随之旋转,而这又是由于空气粘性所起的作用。
空气在旋转时,越靠内圈,旋转得越快,越靠外圈,旋转得越慢。
因此,离翼尖越远,气流垂直向下的下洗速就越小。
图示的就是某一个翼剖面上的下洗速度。
它与原来相对速度v组成了合速度u 。
u 与v的夹角就是下洗角a1。
下洗角使得原来的冲角a减小了。
根据举力Y原来的函义,它应与相对速度v垂直,可是气流流过机翼以后,由于下洗速w的作用,使v的方向改变,向下转折一个下洗角a1,而成为u。
因此,举力Y也应当偏转一角度a1,而与u垂直成为y 1。
此处下洗角很小,因而y与y1一般可看成相等。
回这时飞机仍沿原来v的方向前进。
y1既不同原来的速度v垂直,必然在其上有一投影为Q;。
它的方向与飞机飞行方向相反,所起的作用是阻拦飞机的前进。
实际上是一种阻力。
这种阻力是由举力的诱导而产生的,因此叫做“诱导阻力”。
它是由于气流下洗使原来的举力偏转而引起的附加阻力,并不包含在翼型阻力之内。
图中机翼前面的一排小箭头表示原来的流速,后面的一排小箭头则表示流过机翼后偏转一个角度的流速。
诱导阻力同机翼的平面形状,翼剖面形状,展弦比,特别是同举力有关。
压差阻力“压差阻力”的产生是由于运动着的物体前后所形成的压强差所形成的。
压强差所产生的阻力、就是“压差阻力”。
压差阻力同物体的迎风面积、形状和在气流中的位置都有很大的关系。
用刀把一个物体从当中剖开,正对着迎风吹来的气流的那块面积就叫做“迎风面积”。
如果这块面积是从物体最粗的地方剖开的,这就是最大迎风面积。
从经验和实验都不难证明:形状相同的物体的最大迎风面积越大,压差阻力也就越大。
物体形状对压差阻力也有很大的作用。
把一块圆形的平板,垂直地放在气流中。
它的前后会形成很大的压差阻力。
平板后面会产生大量的涡流,而造成气流分离现象。
如果在圆形平板的前面加上一个圆锥体,它的迎风面积并没有改变,但形状却变了。
平板前面的高压区,这时被圆锥体填满了。
气流可以平滑地流过,压强不会急剧升高,显然这时平板后面仍有气流分离,低压区仍然存在,但是前后的压强差却大为减少,因而压差阻力降低到原来平板压差阻力的大约五分之一。
如果在平板后面再加上一个细长的圆锥体,把充满旋涡的低压区也填满,使得物体后面只出现很少的旋涡,那么实验证明压差阻力将会进一步降低到原来平板的大约二十到二十五分之象这样前端圆纯、后面尖细,象水滴或雨点似的物体,叫做“流线形物体”,简称“流线体”。
在迎风面积相同的条件下,它的压差阻力最小。
这时阻力的大部分是摩擦阻力。
除了物体的迎风面积和形状外,物体在气流中的位置也影响到压差阻力的大小。
物体上的摩擦阻力和压差阻力合起来叫做“迎面阻力”。
一个物体,究竟哪一种阻力占主要部分,这要取决于物体的形状和位置。
如果是流线体,那么它的迎面阻力中主要部分是摩擦阻力。
如果形状远离流线体的式样,那么压差阻力占主要部分,摩擦阻力则居次要位置,而且总的迎面阻力也较大。
干扰阻力飞机上除了摩擦阻力,压差阻力和诱导阻力以外,还有一种“干扰阻力”值得我们注意,实践表明,飞机的各个部件,如机翼、机身、尾翼等,单独放在气流中所产生的阻力的总和并不等于、而是往往小于把它们组成一个整体时所产生的阻力。
所谓“干扰阻力”就是飞机各部分之间由于气流相互干扰而产生的一种额外阻力。
如图所示,气流流过机翼和机身的连接处,由于机翼和机身二者形状的关系,在这里形成了一个气流的通道。
在A处气流通道的截面积比较大,到C点翼面最圆拱的地方,气流通道收缩到最小,随后到B处又逐渐扩大。
根据流体的连续性定理和伯努利定理,C 处的速度大而压强小,B处的速度小而压强大,所以在CB一段通道中,气流有从高压区B 回流到低压区 C的趋势。
这就形成了一股逆流。
但飞机前进不断有气流沿通道向后流,遇到了后面的这股逆流就形成了气流的阻塞现象,使得气流开始分离,而产生了很多旋涡。