高三一轮复习函数与方程
高三数学一轮复习知识点
高三数学一轮复习知识点高三是每个学生都经历的一段关键时期,无论是对于学习压力还是备考任务,都是非常巨大的挑战。
而在高三中,数学作为一门重要科目,更是需要学生们下大功夫去复习和巩固。
在这篇文章中,我们将探讨一些高三数学一轮复习的重点知识点,帮助学生们更好地备考。
一、函数与方程在高中数学中,函数与方程是一个非常基础且重要的概念。
学生们需要掌握函数的定义、性质以及各种常见的函数关系。
此外,还要熟练掌握一元一次方程、一元二次方程以及一元一次不等式的解法。
这些内容是后续学习的基础,因此需要学生们牢固掌握。
二、三角函数与向量三角函数是数学中一个非常重要的分支,学生们需要理解三角函数的定义、性质以及应用。
此外,学生们还需了解三角函数与直角三角形、单位圆、平面向量等的关系。
而在向量部分,学生们需要熟悉向量的基本运算、向量的模、方向以及与点、直线、平面的关系等。
三、数列与数学归纳法数列作为数学中的一个重要概念,对于高考复习来说也是不能忽略的一部分。
学生们需要了解数列的定义、性质以及数列的收敛性等。
此外,数学归纳法也是数学中的一个重要证明方法,学生们需要能够熟练运用数学归纳法解决各种题目。
四、平面几何与立体几何几何在高中数学中占有重要地位,学生们需要掌握平面几何和立体几何的相关知识。
在平面几何中,学生们需要熟悉各种图形的性质、相似与全等的判定以及平行线与垂直线的性质。
而在立体几何中,学生们需要了解各种立体图形的性质、平行线与垂直线的判定等。
五、导数与微分导数与微分是高中数学中一个比较难的知识点,但同样也是需要学生们掌握的重要内容。
学生们需要理解导数的定义、性质以及各种基本导数的计算方法。
此外,学生们还需懂得利用导数解决各种相关的问题,如最值、极值等。
六、概率与统计概率与统计在数学复习中也扮演着重要的角色。
学生们需要了解概率的定义、性质以及常见概率事件的计算方法。
此外,对于统计部分,学生们需要熟悉统计数据的整理和分析,掌握常见统计量的计算方法,同时能够灵活运用统计知识解决实际问题。
高考数学一轮复习 基本初等函数、函数与方程及函数的应用专题训练(1)
基本初等函数、函数与方程及函数的应用一、基础知识要记牢指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图像和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2012·四川高考)函数y =a x-1a(a >0,且a ≠1)的图像可能是( )(2)(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c[解析] (1)当x =-1时,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32, b =log 510=log 55+log 52=1+log 52, c =log 714=log 77+log 72=1+log 72, ∵log 32>log 52>log 72,∴a >b >c . [答案] (1)D (2)D比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较. 三、预测押题不能少1.(1)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A. (2)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c解析:选B 依题意得a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a .一、基础知识要记牢确定函数零点的常用方法:(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例2] (1)函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( )A .2B .3C .4D .5[解析] (1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点. [答案] (1)B (2)C函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. 三、预测押题不能少2.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1. 答案:(0,1]一、经典例题领悟好[例3] 某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划.[解] (1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460 =1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.解决函数实际应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;二是要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 二、预测押题不能少3.某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元), 则 f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3). 所以当t =2时,f (t )max =4,即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3). 对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0, 得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增; 当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减. ∴当x =2时,g (x )max =g (2)=253.故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为253百万元.函数的性质与零点的交汇函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定;(3)利用零点求参数范围问题.函数的性质与零点的交汇问题成为新的命题点. 一、经典例题领悟好[例] (2012·湖南高考)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8学审题——审结论之逆向分析函数y =f (x )-sin x 的零点――→转化 y =f (x )与y =sin x 图像交点――→作用 f (x )的范围――――→函数f x的性质确定f ′(x )的正负――――→分类讨论 ⎝ ⎛⎭⎪⎫x -π2·f ′(x )>0. 用“思想”——尝试用“转化与化归思想”解题∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增.∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π. 又f (x )是以2π为最小正周期的偶函数, 知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点. [答案] B1本题在求解时,用了转化与化归、数形结合、分类讨论思想.个别学生不会利用题设条件判定y =f x 的值域以及函数y =f x 图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型①判断函数零点个数常转化为两函数的图像交点.②由函数的零点情况确定参数范围,常转化为利用函数图像求解. ③方程根的讨论转化为函数零点的问题. 二、预测押题不能少函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 027解析:选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2 012=402×5+2,故函数在区间[0,2 010]内有402×3=1 206个零点,在区间(2 010,2 012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2 012]上零点的个数为1 207.1.(2013·广州惠州调研)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2解析:选A 设f (x )=x a,由其图像过点⎝ ⎛⎭⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f (2)=log 4212=14.2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a ·log c a =log c b ,则B 对.3.(2013·河北质检)若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x+1C .y =e x f (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.(2013·天津一中模拟)设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解析:选C 由题意得0<a <1,b >1,而log 34>1,c =log 34(log 34),得c <0,故c <a <b .5.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析:选D 法一:当2-x >1,即x <1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 法二:f (x )=|ln(2-x )|的图像如图所示.由图像可得,函数f (x )在区间[1,2)上为增函数,故选D.6.(2013·东北三校联合模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x=1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1. 7.已知a =5-22,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 解析:由题意知,a =5-22∈(0,1),故函数f (x )=a x是减函数,由f (m )>f (n )得m <n . 答案:m <n 8.(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).解析:如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH ⇒AF =x ⇒FH =40-x .则S =x (40-x )≤x +40-x 22=⎝ ⎛⎭⎪⎫4022,当且仅当40-x =x ,即x =20时取等号.所以满足题意的边长x 为20(m).答案:209.(2013·江苏扬州中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.解析:由已知∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则需x ≤1时,f (x )不单调即可,即对称轴a 2<1,解得a <2. 答案:a <210.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)∵g (x )=x +e 2x ≥2e 2=2e(x >0), 当且仅当x =e 2x时取等号. ∴当x =e 时,g (x )有最小值2e.因此g (x )=m 有零点,只需m ≥2e.∴m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图像有两个不同的交点.如图所示,作出函数g (x )=x +e 2x(x >0)的大致图像. ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其对称轴为x =e ,f (x )max =m -1+e 2.若函数f (x )与g (x )的图像有两个交点,必须有m -1+e 2>2e ,即m >-e 2+2e +1.即g (x )-f (x )=0有两个相异实根,则m 的取值范围是(-e 2+2e +1,+∞).11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60;当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧ 60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ;当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧ 20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600.当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,所以当x =550时,y 最大,此时y =6 050.显然6 050>2 000.所以当一次订购550件时,利润最大,最大利润为6 050元.12.(2013·江西七校联考)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12. (2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ), 即⎩⎪⎨⎪⎧ 4x +1=a ·2x -a ·2x ,a ·2x -a >0.令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意.①当a =1时,t =-1,不合题意,舍去.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧ Δ=a 2-41-a >0,t 1t 2=11-a <0,经验证满足a ·2x-a >0,∴a >1. ③上式有两根相等,即Δ=0⇒a =±22-2,此时t =a 2a -1,若a =2(2-1),则有t =a 2a -1<0,此时方程(1-a )t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a 2a -1>0,且a · 2x -a =a (t -1)=a ⎣⎢⎡⎦⎥⎤a 2a -1-1=a 2-a 2a -1>0, 因此a =-2(2+1).综上所述,a 的取值范围为{a |a >1或a =-2-22}.。
“函数与方程”一轮复习教学及反思
才 能提取方法. 在学生头脑里有东西 的前 提下 , 可
以放 手 让 学 生 体 验 “ 选 择 方 法——尝 试——失 败—— 再 选 择 …… ” 这一过程 , 从 而在 此 过 程 中逐
步提 高 能力 .
2 . 4 注意 解题 思路 的讲解
因为题 目是千变万化 的 , 永远做不 完 , 不能盲 目地追 求做 多少 题 , 或 只是 机 械地 做 了讲 , 讲 了
题 目.
1 教学 目标要求
( 1 ) 理解函数 ) 的零点即方程 ) = 0的实 数根, 也即 ) 的图像与 轴交点的横坐标 ;
( 2 ) 掌握 求 函数 零 点 、 方程 实 根 的 常用 方 法 , 体 会 数形 结合 、 转化 等数 学思 想 ; ( 3 ) 提高 学生 审题 、 运算 及 分 析 问题 、 解 决 问题 的能力.
《 数学之友》
2 0 1 5年第 1 6期
“ 函数与方程" 一轮复习教学及反思
吴 ; ^ ; 峤 琼 、
( 南京市第 十二 中学 , 2 1 0 0 1 1 )
函数与方程是一种重要的数学思想 , 也是高考 重要考查 内容. 在学生已掌握二次函数性质、 零点存 在性定理及导数等知识 的前提下 , 如何通过一轮复 习使学生进一步强化对函数与方程相互转化的认识
做, 不思 考 不 总结 提高. 我 们要 借 助 题 目这个 载 体, 回到定 义性 质 上来 , 加 深 对知 识 点定 义 的理 解, 同时渗透数学的思想方法 , 很好地去解决新题 目. 一轮复习 中要注重讲思 路 , 寻找 思路 的过 程 , 逐步加深对概念 的理解 , 从而提高学生分析问题 、 解决 问题 的 能力 .
一
第一轮复习11----函数与方程
k , k 1k N , 求k的值。 在的区间为
3
零点位置 若a b c, 则函数f x x a x b x b x c x c x a 的两个零点分
别位于区间( C.b, c 和c, 内 A.a, b 和b, c 内 B.- , a 和a, b 内 ) D.- , a 和c, 内
x
个数为( ) A.1 B.2
C.3
D.4
B
若定义在R上的偶函数f x 满足 f x 2 f x , 且当x 0,1时, ) D.2个 f x x, 则函数y f x log3 | x | 的零点个数是( A.多于4个 B.4个 C.3个
零点个数
3
若函数g x f x loga | x | 至少有5个零 点,则a的取值范围是( A.1,5 1 C. 0, 5, 5 ) 1 B. 0, 5, 5 1 D. ,1 1,5 5
f x 2 f x , 当 - 1 x 1时,f x x ,
5 1 a 4
零点问题的取值范围
1 若存在负实数使得方程 2 a x 1 成立,则实数a的取值范围是( ) A.2, B.0, C.0,2 D.0,1
x
C
零点问题的取值范围
若函数f x a x aa 0且a 1
x
有2个零点,则实数 a的取值范围是__
第一轮复习-函数与方程
上饶中学数学组 俞振
函数的零点:函数 y f x 的图像与x轴的 交点的横坐标。
方程f x 0有实数根 函数y f x 的图像
函数的零点存在性定理 若函数y f x 在区间a, b上的图像是连续曲线, 并且在区间端点的函数 值符号相反即 f a f b 0, 则在区间a, b 内,函数y f x 至少有一个零点,即 相应方程f x 0在区间a, b 内至少有一个实数解。
第06讲 函数与方程(学生版) 备战2025年高考数学一轮复习学案(新高考通用)
第06讲函数与方程(5类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题载体内容,通常会结合其他知识点考查,需要掌握函数零点的定义,难度不定,分值为5-6分【备考策略】1.结合学过的函数图象,了解函数的零点与方程解的关系,会判断函数零点所在区间及零点个数2.结合具体连续函数及其图象的特点,了解函数零点存在定理3.了解用二分法求方程的近似解,能借助计算工具用二分法求方程近似解【命题预测】本节内容通常以函数为载体,考查函数零点,是新高考复习的重要内容1、函数的零点一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图象,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图象影响。
高考数学一轮复习:函数与方程(Word版,含解析)
函数与方程基础练一、选择题1.[2021·河南濮阳模拟]函数f (x )=ln2x -1的零点所在区间为( )A .(2,3)B .(3,4)C .(0,1)D .(1,2)2.函数f (x )=x 2+ln x -2021的零点个数是( )A .3B .2C .1D .03.根据表中的数据,可以判定方程e x -x -2=0的一个根所在的区间为( )A.(-1,0) B .C .(1,2) D .(2,3)4.[2021·四川绵阳模拟]函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)5.[2021·大同调研]已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x >03x ,x ≤0,且函数h (x )=f (x )+x -a 有且只有一个零点,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]二、填空题6.已知函数f (x )=23x +1+a 的零点为1,则实数a 的值为________. 7.[2021·新疆适应性检测]设a ∈Z ,函数f (x )=e x +x -a ,若x ∈(-1,1)时,函数有零点,则a 的取值个数为________.8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 三、解答题9.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同的零点,求实数a 的取值范围.10.已知函数f (x )=ax 2+bx +c (a ≠0),满足f (0)=2,f (x +1)-f (x )=2x -1.(1)求函数f (x )的解析式;(2)若函数g (x )=f (x )-mx 的两个零点分别在区间(-1,2)和(2,4)内,求m 的取值范围.能力练11.[2021·天津部分区质量调查]已知函数f (x )=若关于x 的方程f (x )=m (m ∈R )恰有三个不同的实数根a ,b ,c ,则a +b +c 的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫34,1C.⎝⎛⎭⎫34,2D.⎝⎛⎭⎫32,212.[2021·长沙市四校高三年级模拟考试]已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤01x ,x >0,若方程f (x )=a (x +3)有四个不同的实数根,则实数a 的取值范围是( )A .(-∞,4-23)B .(4-23,4+23)C .(0,4-23]D .(0,4-23)13.[2021·山西省六校高三阶段性测试]函数y =5sin ⎝⎛⎭⎫π5x +π5(-15≤x ≤10)的图象与函数y=5(x +1)x 2+2x +2图象的所有交点的横坐标之和为______.参考答案:1.解析:由f (x )=ln2x -1,得函数是增函数,并且是连续函数,f (1)=ln2-1<0,f (2)=ln4-1>0,根据函数零点存在性定理可得,函数f (x )的零点位于区间(1,2)上,故选D.答案:D2.解析:由题意知x >0,由f (x )=0得ln x =2021-x 2,画出函数y =ln x 与函数y =2021-x 2的图象(图略),即可知它们只有一个交点.故选C.答案:C3.解析:设f (x )=e x -(x +2),则f (1)=-0.28<0,f (2)=3.39>0,故方程e x -x -2=0的一个根在区间(1,2)内.故选C.答案:C4.解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C 项. 答案:C5.解析:h (x )=f (x )+x -a 有且只有一个零点,即方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.在同一坐标系中作出函数f (x )的图象和直线y =-x +a ,如图所示,若函数y =f (x )的图象与直线y =-x +a 有且只有一个交点,则有a >1,故选B.答案:B 6.解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-127.解析:根据函数解析式得到函数f (x )是单调递增的.由零点存在性定理知若x ∈(-1,1)时,函数有零点,需要满足⎩⎪⎨⎪⎧f (-1)<0,f (1)>0⇒1e -1<a <e +1,因为a 是整数,故可得a 的可能取值为0,1,2,3.答案:48.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点.令f (x )=0,得a =2x .因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是(0,1].答案:(0,1]9.解析:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同的实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).10.解析:(1)由f (0)=2得c =2,又f (x +1)-f (x )=2x -1,得2ax +a +b =2x -1,故⎩⎪⎨⎪⎧2a =2,a +b =-1,解得a =1,b =-2,所以f (x )=x 2-2x +2. (2)g (x )=x 2-(2+m )x +2,若g (x )的两个零点分别在区间(-1,2)和(2,4)内,则满足⎩⎪⎨⎪⎧ g (-1)>0,g (2)<0,g (4)>0⇒⎩⎪⎨⎪⎧ 5+m >0,2-2m <0,10-4m >0,解得1<m <52.所以m 的取值范围为⎝⎛⎭⎫1,52. 11.解析:假设a <b <c ,通过作图可得a ∈⎝⎛⎭⎫-12,0,b +c =2,所以a +b +c ∈⎝⎛⎭⎫32,2,故选D 项.答案:D12.解析:方程f (x )=a (x +3)有四个不同的实数根可化为函数y =f (x )与y =a (x +3)的图象有四个不同的交点,易知直线y =a (x +3)恒过点(-3,0),作出函数y =f (x )的大致图象如图所示,结合函数图象,可知a >0且直线y =a (x +3)与曲线y =-x 2-2x ,x ∈[-2,0]有两个不同的公共点,所以方程x 2+(2+a )x +3a =0在[-2,0]上有两个不等的实数根,令g (x )=x 2+(2+a )x +3a ,则实数a 满足⎩⎪⎨⎪⎧ Δ=(2+a )2-12a >0-2<-2+a 2<0g (0)=3a ≥0g (-2)=a ≥0,解得0≤a <4-23,又a >0,所以实数a 的取值范围是(0,4-23),故选D.答案:D 13.解析:函数y =5sin ⎝⎛⎭⎫π5x +π5(x ∈R )的图象关于点(-1,0)对称.对于函数y =5(x +1)x 2+2x +2,当x =-1时,y =0,当x ≠-1时,易知函数y =5(x +1)x 2+2x +2=5x +1+1x +1在(-1,0)上单调递增,在(0,+∞)上单调递减,且当x ∈(-1,+∞)时,y =5(x +1)x 2+2x +2的最大值为52,函数图象关于点(-1,0)对称.对于函数y =5sin ⎝⎛⎭⎫π5x +π5,当x =0时,y =5sin π5>5sin π6=52,所以在(-1,0)内两函数图象有一个交点.根据两函数图象均关于点(-1,0)对称.可知两函数图象的交点关于点(-1,0)对称,画出两函数在[-15,10]上的大致图象,如图,得到所有交点的横坐标之和为-1+(-2)×3=-7.答案:-7。
第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2
当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析
高考一轮复习第二章 第九节 函数与方程
f(1.375)=-
0.260
f(1.437 5)=
0.162
f(1.406 25)=-
0.054
那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为
________. 返回
[自主解答]
通过参考数据可以得到:
f(1.375)=-0.260<0,f(1.437 5)=0.162>0,且1.437 5- 1.375=0.062 5<0.1, 所以,方程x3+x2-2x-2=0的一个近似根为1.4. [答案] 1.4
返回
[巧妙运用] 当x<2时,f ′ (x)=3(x-1)2≥0,说明函 数在(-∞,2)上单调递增,函数的值域
是(-∞,1),又函数在[2,+∞)上单调
递减,函数的值域是(0,1].方程f(x)=k有两个不同的实 根,转化为函数y=f(x)和y=k有两个不同的交点,如图 所示,当0<k<1时直线y=k与函数f(x)图像有两个交点, 即方程f(x)=k有两个不同的实根. 答案:(0,1)
1=0有实数解,则实数m的取值范围是________.
解析:方程sin2x+cos x+m+1=0⇒m=cos2x-cos x-2. 12 9 2 令y=cos x-cos x-2得,y=(cos x- ) - . 2 4 9 因此,ymin=- ,ymax=0. 4 因此,方程sin2x+cos x+m+1=0有实数解时,实数m的 9 取值范围是[- ,0]. 4 9 答案:[- ,0] 4
不同的交点,因此只需f(x)的极大值与极小值异号即可. f′(x)=3x2-3,令3x2-3=0,则x=±1, 故极值为f(-1)和f(1),f(-1)=a+2,f(1)=a-2, 所以应有(a+2)(a-2)<0,故a∈(-2,2). 答案: A
高三一轮复习教案-函数与方程
课题:函数与方程(高三第一轮复习课)教学内容分析:本节课选自人教版必修一第三章第一节《函数与方程》内容。
函数与方程在高中数学中占举足轻重的地位,高考对函数零点的考查有:(1)求函数零点;(2)确定函数零点的个数:(3)根据函数零点的存在情况求参数值或取值范围。
题型既有选择题、填空题,又有解答题,客观题主要考查相应函数的图像和性质,主观题考查较为综合,涉及函数与方程、转化与化归、分类讨论、数形结合的思想方法等。
本节课通过对函数零点的讨论,将函数零点与方程的根、与函数图像三者有机结合起来。
它既揭示了函数与方程之间的内在联系,又对函数知识进行了总结拓展,同时将方程与函数图像联系起来,渗透了“数形结合”、“方程与函数”等重要思想。
学情分析:这是一个理科的普通班,学生基础普遍不扎实,学生具有强烈的畏难情绪,且眼高手低。
通过高一高二的知识积累,学生虽然对本节内容有简单的认识,但是时间较长,知识点大多遗忘。
所以,在本课开始前,先通过简单的知识梳理让学生把知识点贯穿起来,然后根据学生的实际情况进行适当的知识点拓展。
设计思想:教学理念:以第一轮复习为抓手,让学生把各个相关的知识点有机的结合起来。
教学原则:夯实基础,注重各个层面的学生。
教学方法:讲练结合,师生互动。
教学目标:知识与技能:让学生理清函数零点、函数图象与x轴的交点、方程的根三者之间的关系;弄清零点的存在性、零点的个数、零点的求解方法等三个问题。
过程与方法:利用已学过的函数的图像、性质去研究函数的零点。
情感态度与价值观:体会数形结合的数学思想及从特殊到一般的归纳思想,提高辩证思维以及分析问题解决问题的能力。
教学重点难点:重点:函数零点,方程的根,函数图象与x轴交点三者之间的互相联系。
难点:零点个数问题,含参数的零点问题。
教学程序框图:教学环节与设计意图:(一)、知识梳理设计意图:第一部分知识梳理要求学生在课前完成,学生回顾已学过的内容,结合相关知识整理出“函数与方程”的知识体系。
函数与方程课件-2025届高三数学一轮复习
D.(0,2)
答案 (1)C
目录
目录
目录
变式训练
若函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,则实数a的取值范围
是
.
答案:(1,+∞)
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
(
)
(
)
答案:(3)√
(4)只要函数有零点,我们就可以用二分法求出零点的近似值.
答案:(4)×
目录
函数零点的判定
目录
函数零点的判定
目录
目录
1
(2)函数f(x)=|x-4|- 的零点的个数为(
A.0
B.1
C.2
)
D.3
1
1
解析 (2)令f(x)=|x-4|- =0得|x-4|= ,在同一坐标系下分
(b) < 0,那么,函数y=f(x)在区间(a,b)内 至少 有一个零点,
即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.
提醒 函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断
函数的不变号零点,而连续函数在一个区间的端点处函数值异号是这个函数在
这个区间上存在零点的充分不必要条件.
第十节
函数与方程
1.结合学过的函数图象,了解函数零点与方程解的关系.
2.结合具体连续函数及其图象的特点,了解函数零点存在性定理,并能简
单应用.
3.了解用二分法求方程的近似解的步骤.
参考答案:
例11.D
: 2.B .C 2.A 3.A
学习评测:
1.D 2.A 3.C 4.B 5.(-1,)
高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版
• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2
高三数学一轮复习专题:函数与方程
函数与方程一.课标要求:1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。
从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
高考试题中有近一半的试题与这三个“二次”问题有关。
三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。
2.二分法二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。
2024年高考数学一轮复习课件(新高考版) 第2章 §2.1 函数的概念及其表示
3.已知 f(x3)=lg x,则 f(10)的值为
A.1
B.3 10
√C.13
1
令x3=10,则x=103.
1 D. 3 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2024年高考数学一轮复习课件(新高考版)
第二章 函 数
§2.1 函数的概念及其表示
考试要求
1.了解函数的含义. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)
表示函数. 3.了解简单的分段函数,并会简单的应用.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
教材改编题
y=x-2 1与 v=t-2 1的定义域都是(-∞,1)∪(1,+∞),对应关系也相 同,所以是同一个函数,故选项 D 正确.
教材改编题
3.已知函数 f(x)=lenx,x,x≤x>00,,
则函数
f
f
13等于
A.3
B.-3
√C.13
D.-13
由题意可知,f 13=ln 13=-ln 3,
思维升华
(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其 中的x的取值集合; (2)若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不 等式a≤g(x)≤b求出; (3)若复合函数f(g(x))的定义域为[a,b],则函数f(x)的定义域为g(x)在 [a,b]上的值域.
课时精练
第
一 部 分
落实主干知识
知识梳理
1.函数的概念 一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意 一个数x, 按照某种确定的对应关系f,在集合B中都有 唯一确定 的数y和它对应,那 么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A. 2.函数的三要素 (1)函数的三要素: 定义域 、 对应关系 、 值域 . (2)如果两个函数的 定义域 相同,并且 对应关系 完全一致,则这两个函 数为同一个函数.
2025届高考数学一轮复习教案:函数-函数的零点与方程的解、二分法
第七节函数的应用第1课时函数的零点与方程的解、二分法【课程标准】1.会结合二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.2.根据具体函数的图象,能够借助计算工具利用二分法求相应方程的近似解.【考情分析】考点考法:高考命题常以基本初等函数及其图象为载体,考查函数零点是否存在、存在的区间及个数,利用零点的存在情况求参数是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、逻辑推理、直观想象.【必备知识·逐点夯实】【知识梳理·归纳】1.函数的零点与方程的解(1)函数零点的概念对于一般函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程实数解的关系方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.(3)函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的解.【微点拨】函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.【基础小题·自测】类型辨析改编易错高考题号12431.(多维辨析)(多选题)下列结论错误的是()A.函数f(x)=2x的零点为0B.函数f(x)的零点,即函数f(x)的图象与x轴的交点C.二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点D.图象连续的函数y=f(x)(x∈D)在区间(a,b)⊆D内有零点,则f(a)·f(b)<0【解析】选BD.B函数y=f(x)的零点,即函数y=f(x)的图象与x轴的交点的横坐标.×D f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件.×2.(必修一P144T2·变形式)函数f(x)=log2x+x-2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.函数f(x)在(0,+∞)上单调递增,则f(x)=0在(0,+∞)上只有一个根,且f(1)=-1,f(2)=1,则f(1)f(2)<0,故f(x)的零点所在的区间为(1,2).的零点个数为()3.(2022·北京高考)函数f(x)=2+-2,≤0,-1+ln,>0A.3B.2C.7D.0【解析】选B.由≤0,2+-2=0或>0,-1+ln=0,解得x=-2或x=e,故f(x)有2个零点.4.(忽视区间端点值)函数f(x)=kx+1在[1,2]上有零点,则k的取值范围是[-1,-12].【解析】依题意函数f(x)=kx+1在[1,2]上有零点,所以k≠0,函数f(x)在定义域上是单调函数,所以f(1)·f(2)≤0,即(k+1)(2k+1)≤0,解得-1≤k≤-12.【巧记结论·速算】1.由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.2.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.【即时练】1.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x123456y124.433-7424.5-36.7-123.6则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个【解析】选B.依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据函数零点存在定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.2.函数f(x)=e x+3x的零点有1个.【解析】f(x)在R上单调递增,又f(-1)=1e-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.【核心考点·分类突破】考点一函数零点所在区间的判定[例1](1)(2023·唐山模拟)函数f(x)=1-x log2x的零点所在的区间是() A.(14,12)B.(12,1)C.(1,2)D.(2,3)【解析】选C.因为y=1与y=log2x的图象只有一个交点,所以f(x)只有一个零点.又因为f(1)=1,f(2)=-1,f(1)·f(2)<0,所以函数f(x)=1-x log2x的零点所在的区间是(1,2).(2)(一题多法)设函数f(x)=13x-ln x,则函数y=f(x)()A.在区间(1e,1),(1,e)内均有零点B.在区间(1e,1),(1,e)内均无零点C.在区间(1e,1)内有零点,在区间(1,e)内无零点D.在区间(1e,1)内无零点,在区间(1,e)内有零点【解析】选D.方法一(图象法):令f(x)=0,得13x=ln x.作出函数y=13x和y=ln x的图象,如图,显然y=f(x)在(1e,1)内无零点,在(1,e)内有零点.方法二(函数零点存在定理法):当x∈(1e,e)时,函数图象是连续的,且f'(x)=13-1=-33<0,所以函数f(x)在(1e,e)上单调递减.又f(1e)=13e+1>0,f(1)=13>0,f(e)=13e-1<0,所以函数在区间(1e,1)内无零点,在区间(1,e)内有零点.【解题技法】确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.【对点训练】1.(2023·荆州模拟)若x0是方程(12)x=13的根,则x0属于区间()A.(23,1)B.(12,23)C.(13,12)D.(0,13)【解析】选C.构造函数f(x)=(12)x-13,易知函数f(x)在R上单调递减,且函数f(x)的图象是一条连续不断的曲线,易知f(0)=(12)0-0=1>0,f(13)=(12)13-(13)13f(12)=(12)12-(12)13<0,f(23)=(12)23-(23)13<0,f(1)=12-1=-12<0,结合选项,因为f(13)·f(12)<0,故函数f(x)的零点所在的区间为(13,12),即方程(12)x=13的根x0属于区间(13,12).2.根据表格中的数据可以判定方程ln x-x+2=0的一个根所在的区间为()x12345ln x00.6931.0991.3861.609x-2-10123A.(1,2)B.(2,3)C.(3,4)D.(4,5)【解析】选C.设f(x)=ln x-x+2=ln x-(x-2),易知函数f(x)在(1,+∞)上的图象连续,由题中表格数据得f(1)>0,f(2)>0,f(3)=ln3-(3-2)=1.099-1=0.099>0,f(4)=ln4-2=1.386-2<0,f(5)<0,则f(3)·f(4)<0,即在区间(3,4)上,函数f(x)存在一个零点,即方程ln x-x+2=0的一个根所在的区间为(3,4).3.[x]表示不超过x的最大整数,例如[3.5]=3,[-0.5]=-1.已知x0是方程ln x+3x-15=0的根,则[x0]=()A.2B.3C.4D.5【解析】选C.设f(x)=ln x+3x-15,显然f(x)在定义域(0,+∞)上单调递增,故f(x)=0只有一个根,又f(4)=ln4-3=2ln2-3<2(ln2-1)<0,f(5)=ln5>0,所以x0∈(4,5),故[x0]=4.考点二函数零点个数的判定[例2](1)(一题多法)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【解析】选B.方法一:因为f(0)f(1)=(-1)×1=-1<0,且函数在定义域上单调递增且连续,所以函数f(x)在区间(0,1)内有且只有1个零点.方法二:设y1=2x,y2=2-x3,在同一坐标系中画出两函数的图象如图所示,在区间(0,1)内,两图象的交点个数即为f(x)的零点个数.故函数f(x)在区间(0,1)内有且只有1个零点.(2)(2023·唐山模拟)已知函数f(x)=2-2,≤0,1+1,>0,则函数y=f(x)+3x的零点个数是()A.0B.1C.2D.3【解析】选C.令f(x)+3x=0,则≤0,2-2+3=0或>0,1+1+3=0,解得x=0或x=-1,所以函数y=f(x)+3x的零点个数是2.(3)已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2024x+log2024x,则函数f(x)的零点个数是()A.1B.2C.3D.4【解析】选C.作出函数y=2024x和y=-log2024x的图象如图所示,可知函数f(x)=2024x+log2024x在x∈(0,+∞)上只有一个零点,又f(x)是定义在R上的奇函数,所以f(x)在x∈(-∞,0)上只有一个零点,又f(0)=0,所以函数f(x)的零点个数是3.【解题技法】函数零点个数的判断方法(1)直接求零点:令f(x)=0,有几个解就有几个零点.(2)函数零点存在定理:首先确定函数f(x)在区间[a,b]上是连续不断的曲线,且f(a)f(b)<0,再结合函数的图象与性质确定函数零点个数.(3)利用图象交点个数:作出两函数图象,观察其交点个数即得零点个数.【对点训练】1.函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4【解析】选B.由2x|log0.5x|-1=0得|log0.5x|=(12)x,作出y=|log0.5x|和y=(12)x的图象,如图所示,则两个函数图象有2个交点,故函数f(x)=2x|log0.5x|-1有2个零点.2.(一题多法)(2023·长沙模拟)已知函数f(x)=|ln|,>0,-2(+2),≤0,则函数y=f(x)-3的零点个数是()A.1B.2C.3D.4【解析】选B.方法一(直接法):由y=f(x)-3=0得f(x)=3.当x>0时,得ln x=3或ln x=-3,解得x=e3或x=e-3;当x≤0时,得-2x(x+2)=3,无解.所以函数y=f(x)-3的零点个数是2.方法二(图象法):作出函数f(x)的图象,如图,函数y=f(x)-3的零点个数即y=f(x)的图象与直线y=3的交点个数,作出直线y=3,由图知y=f(x)的图象与直线y=3有2个交点,故函数y=f(x)-3的零点个数是2.3.函数f(x)=36-2·cos x的零点个数为6.【解析】令36-x2≥0,解得-6≤x≤6,所以f(x)的定义域为[-6,6].令f(x)=0,得36-x2=0或cos x=0,由36-x2=0得x=±6,由cos x=0得x=π2+kπ,k∈Z,又x∈[-6,6],所以x为-3π2,-π2,π2,3π2.故f(x)共有6个零点.考点三函数零点的应用【考情提示】函数的零点问题充分体现了函数与方程的联系,蕴含了丰富的数形结合思想,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,各种题型均可考查,属于中档题.角度1根据函数零点个数求参数[例3](1)(多选题)(2023·廊坊模拟)已知函数f(x)=|x2+3x+1|-a|x|,则下列结论正确的是()A.若f(x)没有零点,则a∈(-∞,0)B.若f(x)恰有2个零点,则a∈(1,5)C.若f(x)恰有3个零点,则a=1或a=5D.若f(x)恰有4个零点,则a∈(5,+∞)【解析】选AC.当x=0时,f(0)=1≠0,所以x=0不是f(x)的零点;当x≠0时,由f(x)=0,整理得a=|x+1+3|,令g(x)=|x+1+3|,则函数f(x)的零点个数即为函数g(x)=|x+1+3|的图象与直线y=a的交点个数,作出函数g(x)=|x+1+3|的大致图象(如图).由图可知,若f(x)没有零点,则a∈(-∞,0),故A正确;若f(x)恰有2个零点,则a∈{0}∪(1,5),故B不正确;若f(x)恰有3个零点,则a=1或a=5,故C正确;若f(x)恰有4个零点,则a∈(0,1)∪(5,+∞),故D不正确.(2)已知函数f(x)=e,≤0,ln,>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)【解析】选C.函数g(x)=f(x)+x+a存在2个零点,即关于x的方程f(x)=-x-a有2个不同的实根,即函数y=f(x)的图象与直线y=-x-a有2个交点,作出函数f(x)的图象,并平移直线y=-x,如图所示,由图可知,当且仅当-a≤1,即a≥-1时,函数y=f(x)的图象与直线y=-x-a有2个交点.角度2根据函数零点范围求参数[例4](1)若函数f(x)=2x-2-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)【解析】选C.因为函数f(x)=2x-2-a在区间(1,2)上单调递增,且函数f(x)=2x-2-a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0,解得0<a<3.(2)(2023·北京模拟)已知函数f(x)=3x-1+B.若存在x0∈(-∞,-1),使得f(x0)=0,则实数a的取值范围是()A.(-∞,43)B.(0,43)C.(-∞,0)D.(43,+∞)【解析】选B.由f(x)=3x-1+B=0,可得a=3x-1,令g(x)=3x-1,其中x∈(-∞,-1),由于存在x0∈(-∞,-1),使得f(x0)=0,则实数a的取值范围即为函数g(x)在(-∞,-1)上的值域.由于函数y=3x,y=-1在区间(-∞,-1)上均单调递增,所以函数g(x)在(-∞,-1)上单调递增.当x∈(-∞,-1)时,g(x)=3x-1<g(-1)=3-1+1=43,又g(x)=3x-1>0,所以函数g(x)在(-∞,-1)上的值域为(0,43).因此实数a的取值范围是(0,43).【解题技法】已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求已知函数零点情况的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.【对点训练】1.已知函数f(x)=log2(x+1)-1+m在区间(1,3]上有零点,则m的取值范围为()A.(-53,0)B.(-∞,-53)∪(0,+∞)C.(-∞,-53]∪(0,+∞)D.[-53,0)【解析】选D.因为函数y=log2(x+1),y=m-1在区间(1,3]上单调递增,所以函数f(x)在(1,3]上单调递增,由于函数f(x)=log2(x+1)-1+m在区间(1,3]上有零点,则(1)<0,(3)≥0,即<0,+53≥0,解得-53≤m<0.因此,实数m的取值范围是[-53,0).2.已知关于x的方程ax+6=2x在区间(1,2)内有解,则实数a的取值范围是()A.(-4,-1)B.[-4,-1]C.(-2,-12)D.[-2,-12]【解析】选A.根据题意可得ax=2x-6,故转化为函数y=ax和y=2x-6的图象的交点.易知y=2x-6的图象上的两个点为(1,-4)和(2,-2),如图所示,当直线y=ax过(1,-4)时,a=-4,当直线y=ax过(2,-2)时,a=-1.所以a的取值范围是(-4,-1).3.(2023·济南模拟)已知函数f(x)=,≤0,|2-3|,>0,g(x)=f(x)-12x+a,若g(x)存在3个零点,则实数a的取值范围为[0,34).【解析】函数g(x)=f(x)-12x+a存在3个零点,等价于函数f(x)的图象与y=12x-a的图象有3个交点.画出函数f(x)和y=12x-a的图象,如图所示.根据图象易知,要使函数f(x)和y=12x-a的图象有3个交点,则-34<-a≤0,即0≤a<34.【重难突破】复合函数的零点、方程的根的综合【本质】复合函数涉及内外两层函数,问题的解决往往涵盖函数方程、数形结合、分类讨论和化归转化等数学思想.复合函数零点问题具有关系复杂、综合性强的特点.【常见方法】先将复合函数的解析式写出,再根据函数的解析式画出函数的图象,根据函数的图象研究零点问题.类型一判断复合函数零点的个数[例1]已知函数f(x)=ln-1,>0,2+2,≤0,则函数y=f[f(x)+1]的零点个数是() A.2 B.3 C.4D.5【解析】选D.令t=f(x)+1=ln-1+1,>0,(+1)2,≤0.当t>0时,f(t)=ln t-1,则函数f(t)在(0,+∞)上单调递增,因为f(1)=-1<0,f(2)=ln2-12>0,所以由函数零点存在定理可知,存在t1∈(1,2),使得f(t1)=0;当t≤0时,f(t)=t2+2t,由f(t)=t2+2t=0,解得t2=-2,t3=0.作出函数t=f(x)+1的图象,直线t=t1,t=-2,t=0如图所示,由图象可知,直线t=t1与函数t=f(x)+1的图象有两个交点;直线t=0与函数t=f(x)+1的图象有两个交点;直线t=-2与函数t=f(x)+1的图象有且只有一个交点.综上,函数y=f[f(x)+1]的零点个数为5.【解题技法】求复合函数y=f(g(x))的零点的个数或方程解的个数的策略(1)先换元解“套”,令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由y=f(t)的图象观察有几个t的值满足条件,结合t的值观察t=g(x)的图象,求出每一个t被几个x对应,将x的个数汇总后即为y=f(g(x))的根的个数,即“从外到内”.【对点训练】已知f(x)=|lg|,>0,2||,≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是5.【解析】由2[f(x)]2-3f(x)+1=0得f(x)=12或f(x)=1,作出函数y=f(x)的图象.由图象知y=12与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.因此函数y=2[f(x)]2-3f(x)+1的零点有5个.类型二由复合函数零点情况求参数[例2]已知函数f(x)=B+3,≥0,(12),<0,若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是()A.[0,+∞)B.[1,3]C.(-1,-13]D.[-1,-13]【解析】选C.因为f(f(x))-2=0,所以f(f(x))=2,所以f(x)=-1或f(x)=-1(k≠0).(ⅰ)当k=0时,作出函数f(x)的图象如图①所示,由图象可知f(x)=-1无解,所以k=0不符合题意;(ⅱ)当k>0时,作出函数f(x)的图象如图②所示,由图象可知f(x)=-1无解且f(x)=-1无解,即f(f(x))-2=0无解,不符合题意;(ⅲ)当k<0时,作出函数f(x)的图象如图③所示,由图象可知f(x)=-1有1个实根,因为f(f(x))-2=0有3个实根,所以f(x)=-1有2个实根,所以1<-1≤3,解得-1<k≤-13.综上,k的取值范围是(-1,-13].【解题技法】已知复合函数y=f(g(x))零点的个数,求参数的取值范围的问题的方法(1)先换元解“套”,令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由零点个数结合t=g(x)与y=f(t)的图象特点,从而确定t的取值范围,进而决定参数的范围,即“从内到外”.此法称为双图象法(换元法+数形结合).【对点训练】已知函数f(x)=-x2-2x,g(x)=+14,>0,+1,≤0.若方程g(f(x))-a=0有4个不同的实数根,则实数a的取值范围是[1,54).【解析】令f(x)=t(t<1),则原方程化为g(t)=a,易知方程f(x)=t在t∈(-∞,1)时有2个不同的解,则原方程有4个不同的实数根等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g(t)(t<1)的图象如图,由图象可知,当1≤a<54时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是[1,54).。
高三数学一轮复习精品教案2:2.8函数与方程教学设计
第八节函数与方程1.函数零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间『a,b』上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系续表3.二分法对于在区间『a,b』上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.(人教A 版教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间为( )A .(2,4)B .(3,4)C .(2,3)D .(2.5,3)『解析』 由零点存在性定理知x 0∈(2,3),故选C. 『答案』 C2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A .(-14,0) B .(0,14)C .(14,12)D .(12,34)『解析』 显然f (x )=e x +4x -3的图象连续不间断,又f (12)=e -1>0,f (14)=4e -2<0.∴由零点存在定理知,f (x )在(14,12)内存在零点.『答案』 C3.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12『解析』 由题意知2a +b =0, 即b =-2a .令g (x )=bx 2-ax =0得x =0或x =a b =-12,故选C.『答案』 C4.(2012·北京高考)函数f (x )=x 12-(12)x 的零点的个数为( )A .0B .1C .2D .3『解析』 在同一平面直角坐标系内作出y 1=x 12与y 2=(12)x 的图象如图所示,易知,两函数图象只有一个交点.因此函数f (x )=x 12-(12)x 只有1个零点.『答案』 B5.(2013·德州调研)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.『解析』 函数f (x )=x 2+x +a 在(0,1)上递增. 由已知条件f (0)f (1)<0,即a (a +2)<0,解得-2<a <0. 『答案』 (-2,0)(1)(2012·天津高考)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3(2)(2013·湛江模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间(端点值为连续整数的开区间)是________.『思路点拨』 (1)先根据零点存在性定理证明有零点,再根据函数的单调性判断零点的个数.(2)画出两个函数的图象寻找零点所在的区间.『尝试解答』 (1)因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)设f (x )=x 3-(12)x -2,则x 0是函数f (x )的零点.在同一坐标系下画出函数y =x 3与y =(12)x-2的图象,如图所示. ∵f (1)=1-(12)-1=-1<0,f (2)=8-(12)0=7>0∴f (1)f (2)<0, ∴x 0∈(1,2).『答案』 (1)B (2)(1,2),确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上;(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间『a ,b 』上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.(1)函数f (x )=x -cos x 在『0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点(2)(2013·汕头模拟)函数f (x )=ln(x -2)-2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)『解析』 (1)令f (x )=x -cos x =0,则x =cos x ,设函数y =x 和y =cos x ,在同一坐标系下做出它们在『0,+∞)的图象,显然两函数的图象的交点有且只有一个,所以函数f (x )=x -cos x 在『0,+∞)内有且仅有一个零点.(2)由题意知函数f (x )的定义域为{x |x >2},∴排除A. ∵f (3)=-23<0,f (4)=ln 2-12>0,f (5)=ln 3-25>0,∴f (3)·f (4)<0,f (4)·f (5)>0,∴函数f (x )的零点在(3,4)之间,故选C.『答案』(1)B(2)C若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为()A.1.25B.1.375C.1.406 25 D.1.5『思路点拨』(1)二分法求近似零点,需将区间一分为二,逐渐逼近;(2)必须满足精确度要求,即|a-b|<0.1.『尝试解答』根据题意知函数的零点在1.406 25至1.437 5之间,又|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.406 25.『答案』C,1.解答本题一要从图表中寻找数量信息,二要注意“精确度”的含义,切不可与“精确到”混淆.2.(1)用二分法求函数零点的近似解必须满足①y=f(x)的图象在『a,b』内连续不间断,②f (a )·f (b )<0.(2)在第一步中,尽量使区间长度缩短,以减少计算量及计算次数.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.『解析』 在(1,2)内取中点x 0=32,令f (x )=x 3-2x -1,∵f (32)=278-4<0,f (2)=8-4-1>0,f (1)<0,∴f (x )=0的根在(32,2)内.『答案』 (32,2)(2013·临沂模拟)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.『思路点拨』 解答(1)可用基本不等式求出最值或数形结合法求解,(2)转化为两个函数f (x )与g (x )有两个交点,从而数形结合求解.『尝试解答』 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是『2e ,+∞),因此,只需m ≥2e ,则g (x )=m 就有零点.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞). 法二 作出g (x )=x +e 2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2,故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.(2013·淮南模拟)函数f (x )=⎩⎪⎨⎪⎧|x 2+2x -1|,x ≤0,2x -1+a , x >0有两个不同的零点,则实数a 的取值范围为________.『解析』 由于当x ≤0,f (x )=|x 2+2x -1|时图象与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x -1+a =0有1个正根即可,变形为2x =-2a ,结合图形只需-2a >1⇒a <-12即可.『答案』 a <-12一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看.同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.两个防范1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.三种方法函数零点个数的判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间『a ,b 』上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.从近两年高考试题看,函数的零点、方程的根的问题是高考的热点,题型以客观题为主,主要考查学生转化与化归及函数与方程的思想.思想方法之五 用函数与方程思想解决图象公共点问题(2012·山东高考)设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0『解析』 由题意知函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x =ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同非零实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 21x -x 2x 2+2x 1x 2x -x 2x 21),∴b =a (-2x 1-x 2), x 21+2x 1x 2=0,-ax 2x 21=-1,∴x 1+2x 2=0,ax 2>0,当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2>0.当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0.『答案』 B易错提示:(1)不能把函数图象的交点问题转化为方程的根的问题,找不到解决问题的切入点.(2)不能把方程根的情况与相应函数的极值大小联系起来,思维受阻,无法解答. 防范措施:(1)明确函数图象的交点、方程的根与函数的零点三者之间的关系是解决问题的关键所在.(2)方程的根的情况与函数的极值的大小有密切的关系,求解时应注意寻找它们之间的关系.1.(2012·湖北高考)函数f (x )=x cos x 2在区间『0,4』上的零点个数为( ) A .4 B .5 C .6 D .7『解析』 根据x 2的范围判断y =cos x 2在区间『0,4』上的零点个数.当x =0时,f (x )=0.又因为x ∈『0,4』,所以0≤x 2≤16.因为5π<16<11π2,所以函数y=cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间『0,4』上的零点个数为6.『答案』 C2.(2013·威海模拟)设方程log 4x -(14)x =0,log 14x -(14)x =0的根分别为x 1、x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2『解析』 在同一坐标系内画出函数y =(14)x ,y =log 4x ,y =log 14x 的图象,如图所示,则x 1>1>x 2>0,由log 4x 1=(14)x 1,log 14x 2=(14)x 2得log 4x 1x 2=(14)x 1-(14)x 2<0,∴0<x 1x 2<1,故选A. 『答案』 A。
高考数学一轮复习第8讲 函数与方程
第8讲函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与02x轴有交点⇔函数y=f(x)有03零点.(3)函数零点的判定(零点存在定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有04 f(a)·f(b)<0,那么,函数y=f(x)在区间05(a,b)内有零点,即存在c∈(a,b),使得06f(c)=0,这个07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点08(x0),(x2,0)09(x1,0)无交点1,零点个数102111120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B.2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个答案 B解析∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]上至少有3个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .4.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上单调递增,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.5.(2020·河南信阳调研)若函数f (x )=3mx -4在[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.答案 ⎝⎛⎦⎥⎥⎤-∞,-23解析 由已知得f (-2)·f (0)=(-6m -4)·(-4)≤0,解得m ≤-23,故实数m 的取值范围为⎝⎛⎦⎥⎥⎤-∞,-23.6.若函数f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,则函数y =f (x )-1的零点是________.答案 0或2解析 要求函数y =f (x )-1的零点,则令y =f (x )-1=0,即f (x )=1,又因为f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,①当x ≤0时,f (x )=e x ,由e x =1,解得x =0.②当x >0时,f (x )=x 2-1,由x 2-1=1,解得x =2(负值舍去).综上可知,函数y =f (x )-1的零点是0或2.考向一 函数零点所在区间的判断例1 (1)(2020·济南模拟)已知f (x )=x 3+x -4,则函数f (x )的零点所在区间是( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 由函数f (x )=x 3+x -4在定义域上单调递增,且f (1)=1+1-4=-2<0,f (2)=8+2-4=6>0,再根据函数零点存在定理可得零点所在区间是(1,2),故选C .(2)(2020·长春模拟)设函数f (x )=log 4x -⎝ ⎛⎭⎪⎪⎫14x ,g (x )=log x -⎝ ⎛⎭⎪⎪⎫14x 的零点分别是x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2>2 答案 B解析 由题意可得x 1是函数y =log 4x 的图象和y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,x 2是y =log x 的图象和函数y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,且x 1,x 2都是正实数,如图所示:故有log x 2>log 4x 1,故log 4x 1-log x 2<0,∴log 4x 1+log 4x 2<0,∴log 4(x 1x 2)<0,∴0<x 1x 2<1,故选B .判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )上必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.1.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上单调递增,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.考向二 函数零点个数的讨论例2 (1)(2020·青岛模拟)已知图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,则f (x )在区间[0,2020]上的零点个数为( )A .5050B .4041C .4040D .2020答案 B解析 因为图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,所以f (0)=0,f (1)=0,x ∈(0,1)时,函数有1个零点,所以x ∈(0,1]时,函数有2个零点,所以x ∈(0,2020]时,函数有4040个零点,则f (x )在区间[0,2020]上的零点个数为4041.故选B .(2)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x2+12x ,x≥0,则函数y =f (f (x ))-1的零点个数为( )A .2B .3C .4D .5答案 B解析 由题意,令f (f (x ))-1=0,得f (f (x ))=1,令f (x )=t ,由f (t )=1,得t =-1或t =-1+174,作出函数f (x )的图象,如图所示,结合函数f (x )的图象可知,f (x )=-1有1个解,f (x )=-1+174有2个解,故y =f (f (x ))-1的零点个数为3,故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)函数零点存在定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3.函数f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.多角度探究突破考向三 函数零点的应用 角度1 利用零点比较大小例3 (1)已知a 是函数f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( ) A .f (x 0)=0 B .f (x 0)>0 C .f (x 0)<0D .f (x 0)与0的大小关系不确定 答案 C解析 在同一平面直角坐标系中作出函数y =2x ,y =log x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log x 0,即f (x 0)<0.(2)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 B解析 令y 1=2x ,y 2=ln x ,y 3=-x -1,因为函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则y 1=2x ,y 2=ln x ,y 3=-x -1与y =-x 的图象的交点的横坐标分别为x 1,x 2,x 3,在同一平面直角坐标系内分别作出函数y 1=2x ,y 2=ln x ,y 3=-x -1及y =-x 的图象如图,结合图象可得x 1<x 2<x 3,故选B .在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.5.已知函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x和函数y =1x -1的图象,如图所示.由图象可知函数y =2x和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0.角度2 由函数零点存在情况或个数求参数范围 例4 (1)(2020·海南省新高考诊断性测试)已知函数 f (x )=⎩⎪⎨⎪⎧-x2-4x +1,x≤0,2-2-x ,x>0,若关于x 的方程[f (x )-1]·[f (x )-m ]=0恰有5个不同的实根,则m 的取值范围为( )A .(1,2)B .(1,5)C .(2,3)D .(2,5)答案 A解析 由[f (x )-1][f (x )-m ]=0,得f (x )=1或f (x )=m ,作出y =f (x )的图象,如图所示.由图可知,方程f (x )=1有2个实根,故方程f (x )=m 有3个实根,故m 的取值范围为(1,2).(2)(2020·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x3,x≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(22,+∞)B .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(0,22)C .(-∞,0)∪(0,22)D .(-∞,0)∪(22,+∞)答案 D解析 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=错误!恰有3个实根即可,令h (x )=错误!,即y =|kx -2|与h (x )=错误!的图象有3个不同交点.因为h (x )=错误!=错误!当k =0时,y =2,如图1,y =2与h (x )=错误!的图象有1个交点,不满足题意;当k <0时,如图2,y =|kx -2|与h (x )=错误!的图象恒有3个不同交点,满足题意;当k >0时,如图3,当y =kx -2与y =x 2的图象相切时,联立方程得x 2-kx +2=0,令Δ=0得k 2-8=0,解得k =22(负值舍去),所以k >22.综上,k的取值范围为(-∞,0)∪(22,+∞).故选D .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.7.当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12×12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2. 8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 -14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎪⎫2x -122-14,因为x ∈[-1,1],所以2x∈12,2,所以⎝ ⎛⎭⎪⎪⎫2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.一、单项选择题1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)答案 C解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).故选C .2.(2021·长郡中学高三月考)设函数f (x )=x +log 2x -m ,则“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 函数f (x )=x +log 2x -m 在区间(0,+∞)上单调递增,由函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点,得f ⎝ ⎛⎭⎪⎪⎫12=-12-m <0,f (4)=6-m >0,解得-12<m <6,故“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的必要不充分条件.故选B . 3.(2020·北京市大兴区一模)下列函数中,在区间(0,+∞)上单调递增且存在零点的是( )A .y =e xB .y =x +1C .y =-log xD .y =(x -1)2答案 C解析 函数y =e x >0恒成立,不存在零点,即A 不符合题意;函数y =x +1>0恒成立,不存在零点,即B 不符合题意;函数y =-log x =log 2x 在(0,+∞)上单调递增,且当x =1时,y =0,所以函数的零点为x =1,即C 正确;函数y =(x -1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D 不符合题意.故选C .4.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点答案 B解析 当x ∈(0,1]时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故f (x )有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎪⎫12x =x 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎪⎫23,1B .⎝ ⎛⎭⎪⎪⎫12,23C .⎝ ⎛⎭⎪⎪⎫13,12D .⎝⎛⎭⎪⎪⎫0,13答案 C解析令g (x )=⎝ ⎛⎭⎪⎪⎫12x ,f (x )=x ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12,g ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫12>f ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫13,所以由图象关系可得13<x 0<12.7.f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .二、多项选择题9.(2020·山东德州高三模拟)已知函数f (x )=e |x |+|x |.则关于x 的方程f (x )=k 的根的情况,下列结论正确的是( )A .当k =1时,方程有一个实根B .当k >1时,方程有两个实根C .当k =0时,方程有一个实根D.当k≥1时,方程有实根答案ABD解析方程f(x)=k化为e|x|=k-|x|,设y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系,折线与曲线y1=e|x|恰好有一个公共点时,k=1.如图,若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是(1,+∞).故选ABD.10.(2021·湖南郴州高三质检)已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2 B.x1+x2<1C.x1+x2<2 D.x1<1答案AC解析函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|的图象与直线y=-b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一平面直角坐标系中画出y=|2x-2|与y =-b的图象如图所示,可知1<x1<2,2x1-2+2x2-2=0,即4=2x1+2x2>22x1×2x2=22x1+x2,所以2x1+x2<4,所以x1+x2<2.11.(2020·海南中学高三月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎪⎨⎪⎧2x2-1,x≤1,|2-x|,x >1D .f (x )=1x-x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD .12.(2020·山东临沂高三模拟)定义域和值域均为[-a ,a ]的函数y =f (x )和y =g (x )的图象如图所示,其中a >c >b >0,给出下列四个结论,其中正确的是( )A .方程f (g (x ))=0有且仅有三个解B .方程g (f (x ))=0有且仅有四个解C .方程f (f (x ))=0有且仅有八个解D .方程g (g (x ))=0有且仅有一个解 答案 AD解析 由图象可知对于函数y =f (x ),当-a ≤y <-c 时,方程有一解,当y =-c 时,方程有两解,当-c <y <c 时方程有三解,当y =c 时,方程有两解,当c <y ≤a时,方程有一解,对于函数y =g (x ),由图象可知,函数g (x )为单调递减函数,当-a ≤y ≤a 时,方程有唯一解.对于A ,设t =g (x ),则由f (g (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,即t =g (x )有三个不同的值,又由函数g (x )为单调递减函数且a >c >b >0,所以方程f (g (x ))=0有三个不同的解,所以是正确的;对于B ,设t =f (x ),则由g (f (x ))=0,即g (t )=0,此时只有唯一的解t =b ,即方程b =f (x ),此时有三解,所以不正确;对于C ,设t =f (x ),则由f (f (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,当t =-b,0或b 时,方程t =f (x )均有三个不同的解,则f (f (x ))=0有九个解,所以不正确;对于D ,设t =g (x ),则由g (g (x ))=0,即g (t )=0,此时t =b ,对于方程b =g (x ),只有唯一的解,所以是正确的.故选AD .三、填空题13.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫13,1.14.已知f (x )=⎩⎪⎨⎪⎧xln x ,x>0,x2-x -2,x≤0,则其零点为________.答案 -1,1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为-1,1.15.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.16.(2020·聊城二模)已知f (x )=⎩⎪⎨⎪⎧1-ln x ,0<x≤1,-1+ln x ,x>1,若f (a )=f (b ),则1a +1b的最小值为________.答案 1+1e2解析 已知分段函数f (x )在两段区间内都是单调函数,若f (a )=f (b ),则必然分属两段内,不妨设0<a ≤1,b >1,则f (a )=1-ln a ,f (b )=-1+ln b ,即1-ln a =-1+ln b ⇒ln a +ln b =ln (ab )=2⇒ab =e 2.当1a +1b =be2+1b =1e2⎝ ⎛⎭⎪⎪⎫b +e2b 时,令g (b )=1e2⎝ ⎛⎭⎪⎪⎫b +e2b ,b ∈(1,+∞),由双勾函数性质可知g (b )在区间(1,e)上单调递减,在区间(e ,+∞)上单调递增,所以g (b )min =g (e)=2e ,此时a =e(不符合题意),当1a +1b =1a +ae2=1e2⎝ ⎛⎭⎪⎪⎫a +e2a 时,令h (a )=1e2⎝ ⎛⎭⎪⎪⎫a +e2a ,a ∈(0,1],由双勾函数性质可知h (a )在区间(0,1]上单调递减,所以h (a )min =h (1)=1+1e2,此时a =1,b =e 2.故1a +1b的最小值为1+1e2.四、解答题17.函数f(x)的定义域为实数集R,且f(x)=错误!对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,求实数m的取值范围.解因为对任意的x∈R都有f(x+2)=f(x-2),所以函数f(x)的周期为4.由在区间[-5,3]上函数g(x)=f(x)-mx+m有三个不同的零点,知函数f(x)与函数h(x)=mx-m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f(x)与h(x)在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m<1-0-5-1,即-12≤m<-16.21 / 21。
高中数学高考高三理科一轮复习资料第1章 1.10 函数与方程
解析:∵函数 f(x)唯一零点同时在区间(0,16),(0,8),(0,4), (0,2)内,∴函数 f(x)的唯一零点必在区间(0,2)内,故应选 C. 答案:C
2 3.函数 f(x)=lnx- 的零点所在的大致区间是( x A.(1,2) B.(2,3) C.(e,3) D.(e,+∞)
)
解析:∵f(1)=ln1-2=-2<0,f(2)=ln2-1<0,故排除 2 A,又∵f(3)=ln3-3,∵3>e,∴ln3>1, ∴f(3)>0,故选 B. 答案:B
3.函数零点的存在性定理 如果函数 y=f(x)在区间[a,b]上的图象是④________的一 条曲线,并且⑤________,那么函数 y=f(x)在区间(a,b)内有 零点,即存在 c∈(a,b),使得⑥________,这个 c 也就是方程 f(x)=0 的根. 4.二分法的定义 对于在区间[a, b]上连续不断且 f(a)· f(b)<0 的函数 y=f(x), 通过不断把函数 f(x)的零点所在的区间⑦________,使区间的 两个端点逐渐逼近零点, 进而得到⑧________的方法叫做二分 法.
)
解析:∵x2+2x-3=0,∴(x+3)(x-1)=0, ∴x=1,-3. ∵f(x)=x2+2x-3=(x+1)2-4,∴顶点为(-1,-4). 故应选 C. 答案:C
2.若函数 f(x)唯一的零点同时在区间(0,16),(0,8),(0,4), (0,2)内,那么下列命题正确的是( ) A.函数 f(x)在区间(0,1)内有零点 B.函数 f(x)在区间(0,1)或(1,2)内有零点 C.函数 f(x)在区间[2,16)上无零点 D.函数 f(x)在区间(1,16)内无零点
高中数学
1.10 函数与方程
函数与方程导学案-2025届高三数学一轮复习
高三(直升部)数学翻转课堂课时学案班级 小组 姓名________ 使用时间______年______月______日 编号 一轮复习-30 第 1 页课题 函数与方程 编制 审核课标 结合学过的函数图象,了解函数零点与方程解的关系。
目标 导学 理解函数零点的概念以及函数的零点与方程的根之间的关系,并会求函数的零点或判断个数; 会根据函数的零点求参数,了解函数零点存在定理,会判断零点所在区间。
重点难点 重点: 能判断方程根的个数,会判断零点所在区间;难点: 方程的根和函数的零点灵活转换。
自 学 质 疑 学 案一、基础练习1.函数()21f x x =-的零点是_____ 2.函数22y x x m =-+无零点,则m 的取值范围为( ) .(,1)A -∞ .(,1)B -∞- .(1,)C +∞ .(1,)D -+∞问题1:阅读课本119页,说出函数零点的定义,并写出函数零点及对应方程,不等式解集之间的关系,思考如何求函数的零点。
3.设()2f x lnx x =+-,则函数f (x )的零点所在的区间为( ).1(0)A , ).(12?B , .3(2)C ,.4(3)D ,4.用二分法求函数f (x )在区间(a ,b )内的唯一零点时,精确度为0.001,则结果计算的条件是( )A .|a -b |<0.1B .|a -b |<0.001C .|a -b |>0.001D .|a -b |=0.001问题2:阅读课本P115,叙述零点存在定理5.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3问题3:如何确定零点的个数?二、考点突破考向一 函数零点所在区间的判断 例1.(1)若x 0是方程3121x x =⎪⎭⎫ ⎝⎛的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫0,13(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内变式1:函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2)变式2:函数f (x )=x ·2x -kx -2在区间(1,2)内有零点,则实数k 的取值范围是________.考向二 函数零点个数问题 例2.已知函数f (x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x ,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点个数为( ) A .0 B .1 C .2 D .3练习:已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )A .9B .10C .11D .18训 练 展 示 学 案变式:已知函数f (x )=⎩⎨⎧x e x ,x ≤0,ln x ,x >0,若g (x )=f (x )-ax 有四个不同的零点,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,1e B.⎣⎢⎡⎭⎪⎫1e ,1 C.[1,e) D.[e ,+∞)拓展:已知M 是函数f (x )=|2x -3|-8sin πx (x ∈R )的所有零点之和,则M 的值为_______.A 组:1.设函数f (x )=13x -ln x ,则函数y =f (x )( ) A .在区间(1e ,1),(1,e)内均有零点 B .在区间(1e,1),(1,e)内均无零点 C .在区间(1e,1)内有零点,在区间(1,e)内无零点 D .在区间(1e,1)内无零点,在区间(1,e)内有零点2. 函数f (x )=e x +3x 的零点个数是( )A .0B .1C .2D .33.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.4.已知函数f (x )=⎩⎪⎨⎪⎧2|x |,x ≤1,x 2-3x +3,x >1,若关于x 的方程f (x )=2a (a ∈R )恰有两个不同的实根,则实数a 的取值范围为( )A .⎝⎛⎭⎫12,1B .⎩⎨⎧⎭⎬⎫12 C .⎝⎛⎦⎤38,12∪(1,+∞) D .RB 组5.已知函数的图象与函数的图象恰有两个交点,则实数k 的取值范围是_________.6.(多选题)已知函数f (x )=⎩⎨⎧-x 2-2x ,x ≤0,|log 2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( )A . 121-=+x xB .143=x xC .214<<xD .104321<<x x x xC 组 7.已知f (x )=⎩⎨⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数为________.8. 函数f (x )=⎩⎨⎧ln (-x -1),x <-1,2x +1,x ≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是________.高考链接:9.(2020浙江卷)已知a ,b ∈R 且ab ≠0,若(x –a )(x –b )(x –2a –b )≥0在x ≥0上恒成立,则( )A. a <0B. a >0C. b <0D. b >0考查点:函数与方程的转化,变号不变号零点,穿根法能力要求:观察方程不等式的特征;提取出穿根法;穿根过程要全面考虑零点的类别;核心素养:数学抽象,逻辑推理,数据分析112--=x x y 2-=kx y第 4 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.二分法的定义 f(a)· f(b)<0 对于在区间[a,b]上连续不断且________________ 的函数y=
f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使 零点 ,进而得到零点近似值的方 区间的两个端点逐步逼近______
法叫 做 二分法. 温馨提醒:二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范围,当达 到一定的精确度要求时,所得区间的任一点就是这个函数零 点的近似值.
第二章
基本初等函数、导数及其应用
函数零点的综合问题
x 2 -1,x>0, (1)已知函数 f(x)= 若函数 y=f(x) 2 -x -2x,x≤0,
(0,1) ; -m 有 3 个不同的零点,则实数 m 的取值范围是________
(2)(2014· 湖北荆州市质量检测)函数 f(x)=xex-a 有两个零 1 (- ,0) 点,则实数 a 的取值范围是__________________ . e
第二章
基本初等函数、导数及其应用
1 (2014· 陕西西安质检)函数 f(x)=log2x- 的零点所在的区间 x 为( C ) 1 A.0,2 C.(1,2) 1 B.2,1 D.(2,3)
第二章
基本初等函数、导数及其应用
判断函数在某个区间上是否存在零点,要根据具体题目灵活 处理.当能直接求出零点时,就直接求出进行判断;当不能 直接求出时,可根据零点存在性定理判断;当用零点存在性 定理也无法判断时可画出图象判断.
两 3.函数y=|x|-cos x在(-∞,+∞)内有________ 个零点. 4.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,则 (-2,0) a的取值范围为____________ .
第二章
基本初等函数、导数及其应用
函数零点所在区间的确定
(2013· 高考重庆卷)若 a<b<c, 则函数 f(x)=(x- a)(x - b)+ (x-b)(x- c)+(x-c)(x-a)的两个零点分别位于区间 ( A ) A. (a,b)和 (b, c)内 C. (b,c)和 (c,+∞)内 B. (-∞,a)和(a,b)内 D. (- ∞,a)和(c,+ ∞)内
1.函数的零什么?零点是点吗?
提示:对于函数y=f(x)(x∈R),我们把使f(x)=0的实数x,叫 做函数的零点,函数的零点不是点,是方程f(x)=0的根,是 函数y=f(x)的图象与x轴的交点的横坐标,它是一个实数
第二章
基本初等函数、导数及其应用
(2)几个等价关系 x轴 有 交 方程f(x)=0有实数根⇔函数y=f(x)的图象与______ 点⇔函数y=f(x)有______ 零点 . (3)函数零点的判定(零点存在性定理)
基本初等函数、导数及其应用
温馨提醒: (1)函数f(x)的零点是一个实数,是 方 程f(x)=0 的根,也是函 数y=f(x)的图象与x轴交点的横坐标. (2)函数零点存在性定理是零点存在的一个充分条件,而 不是 必要条件;判断零点个数还要根据函数的单调性、对称 性 或 结合函数图象.
第二章
基本初等函数、导数及其应用
第二章
基本初等函数、导数及其应用
关于 x 的一元二次方程 x2-2ax+a+2=0, 当 a 为何实数时: (1)方程有两个不同正根; (2)方程在(1,3)内有两个不同实数根.
第二章
基本初等函数、导数及其应用
已知函数有零点 (方程有根)求参数取值范围常用的方法: (1)直接法: 直接根据题设条件构建关于参数的不等式, 再通 过解不等式确定参数范围. (2)分离参数法:先将参数分离, 转化成求函数值域问题加以 解决. (3)数形结合法: 先对解析式变形, 在同一平面直角坐标系中, 画出函数的图象,然后数形结合求解.
第二章
基本初等函数、导数及其应用
第 9讲
函数与方程
第二章
基本初等函数、导数及其应用
[考情分析]
从近两年的高考试题来看,函数的零点、方程的根的问
题是高考的热点,题型既有选择题、填空题,又有解答 题。在考察函数的零点、方程根的基础上,又注重考察 转化与化归、分类讨论、数形结合的思想方法。
第二章
基本初等函数、导数及其应用
如果函数y=f(x)在区间[a,b]上的图象是连续不 断的一 条
f(a)· f(b)<0 ,那么函数y=f(x)在区间 曲线,并且有____________ (a,b) 内有零点,即存在c∈(a,b),使得________ f(c)=0 ,这个 ________
c 也 就 是f(x)=0的根.
第二章
第二章
基本初等函数、导数及其应用
1.如图所示的函数图象与 x轴均有交点,其中不能用二分法 求图中交点横坐标的是( B )
A.①② C.①④
B.①③ D.③④
第二章
基本初等函数、导数及其应用
2.函数f(x)=2x+3x的零点所在的一个区间是( B ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系 Δ>0
二次函数 y=ax2+bx +c (a>0)的图 象 与x轴的交 点 零点个数 (x1,0) (x2,0) _______,_______ 2 (x1,0)或 (x2,0) 1 无交点 0
Δ=0
Δ<0
第二章
基本初等函数、导数及其应用
第二章
基本初等函数、导数及其应用
确定函数零点个数
x 2 -1,x≤1, 已知函数 f(x)= 则函数 f(x)的零 1+log2x,x>1,
点为( D ) 1 A. ,0 2 1 C. 2
B.-2,0 D.0
第二章
基本初等函数、导数及其应用
(1)(2013· 高考天津卷)函数 f(x)=2x|log0.5x|-1 的零点个数 为( C ) A.1 C.3 B.2 D.4
x+1,x≤0, (2)已知函数 f(x)= 则函数 y=f(f(x))+1 的 log2x,x>0,
零点个数是( A ) A.4 C.2
B.3 D.1
第二章
基本初等函数、导数及其应用
判断函数零点个数的方法:
(1)解方程法:令f(x)=0,如果能求出解,则有几个解就有 几
个零点; (2)零点存在性定理法:利用定理不仅要求函数在区 间[a,b] 上是连续不断的曲线,且f(a)· f(b)<0,还必须结合 函数 的 图 象与性质(如单调性、奇偶性、周期性、对称性)才能 确 定 函 数有多少个零点或零点值所具有的性质; (3)数形结合法:转化为两个函数的图象的交点个数问题.先 画出两个函数的图象,看其交点的个数,其中交点的横 坐 标 有几个不同的值,就有几个不同的零点.