高考数学专题六 函数与方程及函数的应用

合集下载

最新高考数学必备独家专题函数y=Asin(ωx+φ)的图象及应用

最新高考数学必备独家专题函数y=Asin(ωx+φ)的图象及应用

第六节函数y=Asin(ωx+φ)的图象及应用A组基础题组1.函数y=sin(2x-π3)在区间[-π2,π]上的简图是( )答案 A 令x=0,得y=sin(-π3)=-√32,排除B,D.令x=-π3,得y=sin(-π)=0,排除C.2.将函数f(x)=cos 2x-sin 2x的图象向左平移π8个单位后得到函数F(x)的图象,则下列说法中正确的是( )A.函数F(x)是奇函数,最小值是-2B.函数F(x)是偶函数,最小值是-2C.函数F(x)是奇函数,最小值是-√2D.函数F(x)是偶函数,最小值是-√2答案 C f(x)=cos 2x-sin 2x=√2cos(2x+π4),将f(x)的图象向左平移π8个单位后得F(x)的图象,则F(x)=√2·cos[2(x+π8)+π4]=√2cos(2x+π2)=-√2sin 2x,所以F(x)是奇函数,最小值为-√2.故选C.3.(2018河北、河南重点中学第三次联考,7)若对于任意的x∈R都有f(x)+2f(-x)=3cos x-sin x,则函数f(2x)图象的对称中心为( )A.(kπ-π4,0)(k∈Z) B.(kπ-π8,0)(k∈Z)C.(kπ2-π4,0)(k∈Z) D.(kπ2-π8,0)(k∈Z)答案 D 因为f(x)+2f(-x)=3cos x-sin x,所以f(-x)+2f(x)=3cos x+sin x.可得f(x)=cos x+sin x=√2sin(x+π4),所以f(2x)=√2sin (2x +π4). 令2x+π4=kπ(k∈Z),得x=k π2-π8(k ∈Z).所以f(2x)图象的对称中心为(k π2-π8,0)(k ∈Z).4.(2018山东潍坊统一考试)函数y=√3sin 2x-cos 2x 的图象向右平移φ(0<φ<π2)个单位长度后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为( ) A.π12B.π6 C .π4 D .π3答案 B 由题意知y=√3sin 2x-cos 2x=2sin (2x -π6),其图象向右平移φ个单位长度后,得到函数g(x)=2sin (2x -2φ-π6)的图象,因为g(x)为偶函数,所以2φ+π6=π2+kπ,k∈Z,所以φ=π6+k π2,k ∈Z,又φ∈(0,π2),所以φ=π6.5.函数f(x)=Asin(ωx+φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,若将f(x)图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,则g(x)的解析式为( )A.y=sin (4x +π6) B.y=sin (4x +π3) C.y=sin (x +π6) D.y=sin (x +π12) 答案 A 根据函数的图象可得A=1,3T 4=11π12-π6=3π4,∴T=π,∴ω=2ππ=2.∵f (π6)=1,∴2×π6+φ=π2+2kπ,k∈Z,∴φ=2kπ+π6,k ∈Z.∵|φ|<π2,∴φ=π6,∴f(x)=sin (2x +π6).将f(x)图象上所有点的横坐标缩短为原来的12(纵坐标不变),得到函数g(x)的图象,则g(x)=sin (4x +π6).故选A.6.函数y=tan (2x +π4)的图象与x 轴交点的坐标是 . 答案 (k π2-π8,0),k ∈Z解析 令2x+π4=kπ(k∈Z),得x=k π2-π8(k ∈Z).∴函数y=tan (2x +π4)的图象与x 轴交点的坐标是(k π2-π8,0),k ∈Z.7.若函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π2, f(x)的最小正周期为π,且f(0)=√3,则ω= ,φ= . 答案 2π3解析 由函数f(x)的最小正周期为π,得到ω=2(ω>0),又由f(0)=√3且|φ|<π2得到φ=π3. 8.(2019江西南昌模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M 是函数f(x)图象上的点,K,L 是函数f(x)的图象与x 轴的交点,且△KLM 为等腰直角三角形,则f(x)= .答案 12cos πx 解析 由题意可得12·2πω=KL=1,所以ω=π,易得A=12,所以f(x)=12sin(πx+φ).再结合f(x)为偶函数以及所给的图象,可得φ=π2,所以f(x)=12cos πx.9.如图所示,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2√3),赛道的后一部分为折线段MNP,求A,ω的值和M,P 两点间的距离.解析 依题意,有A=2√3,T4=3,因为T=2πω, 所以ω=π6,所以y=2√3sin π6x,x ∈[0,4], 所以当x=4时,y=2√3sin2π3=3,所以M(4,3),又P(8,0),所以MP=√(8-4)2+(0-3)2=√42+32=5(km),即M,P 两点间的距离为5 km.10.已知函数f(x)=2sin (2ωx +π6)(其中0<ω<1),若点(-π6,0)是函数f(x)图象的一个对称中心.(1)试求ω的值,并求出函数的单调增区间; (2)先列表,再作出函数f(x)在[-π,π]上的图象.解析 (1)因为点(-π6,0)是函数f(x)图象的一个对称中心,所以-ωπ3+π6=kπ,k∈Z,所以ω=-3k+12(k ∈Z),因为0<ω<1,所以当k=0时,可得ω=12.所以f(x)=2sin (x +π6),令2kπ-π2<x+π6<2kπ+π2,k ∈Z, 解得2kπ-2π3<x<2kπ+π3,k ∈Z,所以函数的增区间为(2k π-2π3,2k π+π3),k ∈Z.(2)由(1)知, f(x)=2sin (x +π6), x ∈[-π,π],列表如下:作图如下:B 组 提升题组1.已知A,B,C,D,E 是函数y=sin(ωx+φ)(ω>0,0<φ<π2)的一个周期内的图象上的五个点,如图所示,A (-π6,0),B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD ⃗⃗⃗⃗⃗ 在x 轴上的投影为π12,则ω,φ的值分别为( )A.ω=2,φ=π3B.ω=2,φ=π6 C.ω=12,φ=π3 D.ω=12,φ=π12答案 A 根据题意,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,且|CD ⃗⃗⃗⃗⃗ |在x 轴上的投影为π12,所以最小正周期T=4×(π12+π6)=π, 所以ω=2πT =2.又A (-π6,0),所以sin (-π3+φ)=0,又0<φ<π2,所以φ=π3.故选A.2.水车是古代劳动人民进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R 的水车,一个水斗从点A(3√3,-3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过t 秒后,水斗旋转到点P,设P 的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)(t ≥0,ω>0,|φ|<π2),则下列叙述错误的是( )A.R=6,ω=π30,φ=-π6B.当t ∈[35,55]时,点P 到x 轴的距离的最大值为6C.当t ∈[10,25]时,函数y=f(t)单调递减D.当t=20时,|PA|=6√3答案 C 由点A(3√3,-3)可得R=6.由旋转一周用时60秒可得T=2πω=60,则ω=π30.由点A(3√3,-3)可得∠AOx=-π6,则φ=-π6,故A 叙述正确. 当t ∈[35,55]时,π30t-π6∈[π,5π3],∴当π30t-π6=3π2时,得点P(0,-6), 此时,点P 到x 轴的距离最大且为6,故B 叙述正确.当t ∈[10,25]时,π30t-π6∈[π6,23π],此时函数f(t)不单调.故C 叙述错误.∵f(t)=6sin (π30t -π6), ∴当t=20时,水车旋转了三分之一周期,则∠AOP=2π3, ∴可求得|PA|=6√3,故D 叙述正确.故选C. 3.如图,某地一天6~14时的温度变化曲线近似满足y=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π).(1)求该曲线所对应的函数解析式;(2)若某行业在当地需要的温度在[20-5√2,20+5√2]之间为最佳营业时间,那么该行业在6~14时,最佳营业时间为多少小时?解析 (1)由图象知{A +b =30,-A +b =10,且12×2πω=14-6,所以A=10,b=20,ω=π8, 所以y=10sin (πt8+φ)+20.①当t=6时,y=10,代入①得φ=3π4+2kπ,k∈Z. 因为0<φ<π,所以φ=34π.所以该曲线所对应的函数解析式为y=10sin (π8t +3π4)+20,t ∈[6,14].(2)由题意得,20-5√2≤10sin (π8t +3π4)+20≤20+5√2,即-√22≤sin (π8t +3π4)≤√22, 所以kπ-π4≤π8t+3π4≤kπ+π4,k ∈Z.即8k-8≤t ≤8k-4,因为t ∈[6,14],所以k=2,即8≤t ≤12, 所以最佳营业时间为12-8=4小时.4.已知函数f(x)=√3sin ωxcos ωx+cos 2ωx -12(ω>0),其最小正周期为π2. (1)求f(x)的表达式;(2)将函数f(x)的图象先向右平移π8个单位长度,再将得到的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x 的方程g(x)+k=0在[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解析 (1)f(x)=√3sin ωxcos ωx+cos 2ωx -12 =√32sin 2ωx+cos2ωx+12-12=sin (2ωx +π6).因为f(x)的最小正周期T=π2, 所以T=2π2ω=πω=π2,所以ω=2,所以f(x)=sin (4x +π6). (2)将f(x)的图象向右平移π8个单位长度后,得到y=sin (4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin (2x -π3)的图象, 所以g(x)=sin (2x -π3), 当0≤x ≤π2时,-π3≤2x-π3≤2π3, 易知当-π3≤2x-π3≤π2,即0≤x ≤512π时,g(x)单调递增,且g(x)∈[-√32,1]; 当π2<2x-π3≤2π3,即512π<x≤π2时, g(x)单调递减,且g(x)∈[√32,1). 又g(x)+k=0在[0,π2]上有且只有一个实数解,即函数y=g(x)与y=-k 的图象在[0,π2]上有且只有一个交点,所以-√32≤-k<√32或-k=1, 解得-√32<k ≤√32或k=-1, 所以实数k 的取值范围是(-√32,√32]∪{-1}.。

第一部分 专题六 第二讲 基本初等函数、函数与方程

第一部分  专题六  第二讲 基本初等函数、函数与方程

[限时训练·直通高考] 科学设题 拿下高考高分[A 组 基础练]1.已知函数f (x )=(m 2-m -5)x m 是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( ) A .-2 B .4 C .3D .-2或3解析:f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3. 答案:C2.函数y =a x +2-1(a >0,且a ≠1)的图象恒过的点是( ) A .(0,0) B .(0,-1) C .(-2,0)D .(-2,-1)解析:令x +2=0,得x =-2,所以当x =-2时,y =a 0-1=0,所以y =a x +2-1(a >0,且a ≠1)的图象恒过点(-2,0). 答案:C 3.若c =log 3 cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:因为0<1π<13<1,所以1=>0,所以0<a <1,因为b =>e 0=1,所以b >1.因为0<cos π5<1,所以log 3 cos π5<log 3 1=0,所以c <0.故b >a >c ,选B. 答案:B4.(2020·西安一中月考)下列函数中,与函数y =2x -2-x 的定义域、单调性、奇偶性均一致的是( )A .y =sin xB .y =x 3C .y =⎝ ⎛⎭⎪⎫12xD .y =log 2 x解析:y =2x -2-x 是定义域为R 的单调递增函数,且是奇函数.而y =sin x 不是单调递增函数;y =⎝ ⎛⎭⎪⎫12x 是非奇非偶函数;y =log 2 x 的定义域是(0,+∞);只有y =x 3是定义域为R 的单调递增函数,且是奇函数,符合题意. 答案:B5.(2020·新乡模拟)若函数f (x )=log 2(x +a )与g (x )=x 2-(a +1)x -4(a +5)存在相同的零点,则a 的值为( ) A .4或-52 B .4或-2 C .5或-2D .6或-52解析:g (x )=x 2-(a +1)x -4(a +5)=(x +4)[x -(a +5)],令g (x )=0,得x =-4或x =a +5,则f (-4)=log 2(-4+a )=0或f (a +5)=log 2(2a +5)=0,解得a =5或a =-2. 答案:C6.(2020·大连模拟)已知偶函数y =f (x )(x ∈R )满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( )A .1B .3C .2D .4解析:作出函数f (x )与g (x )的图象,如图所示,由图象可知两个函数图象有3个不同的交点,所以函数y =f (x )-g (x )有3个零点,故选B. 答案:B7.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是( )解析:若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A. 答案:A8.(2020·绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3)D .(0,2)解析:由题意,知函数f (x )在(1,2)上单调递增,又函数的一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故选C. 答案:C9.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若当x =0时,f (x )取得最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]解析:∵当x ≤0时,f (x )=(x -a )2,且当x =0时,f (x )取得最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.∴2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,∴a 的取值范围是[0,2].故选D. 答案:D10.函数f (x )=(3ax -b )2的图象如图所示,则( ) A .a >0且b >1 B .a >0且0<b <1 C .a <0且b >1 D .a <0且0<b <1解析:由题图可知,当x →-∞时,f (x )→+∞,若a >0,则3a >1,则3ax →0,f (x )→b 2,不合题意,若a =0,则3ax =1,则f (x )=(1-b )2,不合题意,故a <0,此时3a <1.设3ax =t ,则易知当t =b ,即3ax =b 时,f (x )取最小值,由图象可知此时x <0,故3ax >1,即b >1.综上所述,a <0且b >1.故选C. 答案:C11.已知函数f (x )=⎩⎨⎧2,x >m ,x 2+4x +2,x ≤m 的图象与直线y =x 恰有三个公共点,则实数m 的取值范围是( ) A .(-∞,-1] B .[-1,2) C .[-1,2]D .[2,+∞)解析:由题意可得直线y =x 与函数f (x )=2(x >m )有且只有一个交点.若要满足题目要求,则需满足直线y =x 与函数f (x )=x 2+4x +2的图象恰有两个交点,如图,由图象可知,函数y =x 与f (x )=x 2+4x +2的图象交点为A (-2,-2),B (-1,-1),故有m ≥-1.而当m ≥2时,直线y =x 和射线y =2(x >m )无交点,故实数m 的取值范围是[-1,2).故选B. 答案:B12.(2020·武汉调研)已知函数f(x)=e x-a ln(ax-a)+a(a>0),若关于x的不等式f(x)>0恒成立,则实数a的取值范围为()A.(0,e2] B.(0,e2)C.[1,e2]D.(1,e2)解析:因为f(x)=e x-a ln(ax-a)+a>0恒成立,所以e xa>ln(x-1)+ln a-1,e x-ln a+x-ln a>ln(x-1)+x-1,e x-ln a+x-ln a>e ln(x-1)+ln(x-1),令g(x)=e x+x,易得g(x)在(1,+∞)上单调递增,所以x-ln a>ln(x-1),即-ln a>ln(x-1)-x,因为ln(x-1)-x≤x-2-x=-2,所以-ln a>-2,所以0<a<e2,所以实数a的取值范围是(0,e2),故选B.答案:B13.(2020·新余一中质检)已知f(x)=22x+1+sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=________.解析:∵f(x)+f(-x)=22x+1+sin x+22-x+1-sin x=22x+1+2x+11+2x=2,且f(0)=1,∴f(-2)+f(-1)+f(0)+f(1)+f(2)=5.答案:514.(2020·杭州期中测试)函数y=log2(-x2+4x)的增区间是________,值域是________.解析:函数y=log2(-x2+4x)的增区间,即函数t=-x2+4x在满足t>0的条件下,函数t的增区间,再利用二次函数的性质可得在满足t>0的条件下,函数t的增区间为(0,2].由于0<t ≤4,故y =log 2 t ∈(-∞,2]. 答案:(0,2] (-∞,2]15.(2020·三明模拟)物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是T 0,经过一定时间t (单位:分)后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th ,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要________分钟.解析:由已知可得T a =24,T 0=88,T =40,则40-24=(88-24)×⎝ ⎛⎭⎪⎫1220h ,解得h =10.当咖啡从40 ℃降温到32 ℃时,可得32-24=(40-24)×⎝ ⎛⎭⎪⎫12t10,解得t =10.故还需要10分钟. 答案:1016.已知函数f (x )=⎩⎨⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0,若关于x 的函数y =f 2(x )-bf (x )+1有8个不同的零点,则实数b 的取值范围是________. 解析:作出函数f (x )=⎩⎪⎨⎪⎧|lg (-x )|,x <0,x 2-6x +4,x ≥0的图象,如图所示.设f (x )=t ,由图可知,t ∈(0,4],f (x )=t 有4个根,∴在(0,4]上,方程t 2-bt +1=0有2个不同的解,∴⎩⎪⎨⎪⎧1>0,b2>0,Δ=b 2-4>0,16-4b +1≥0,解得2<b ≤174.答案:⎝ ⎛⎦⎥⎤2,174[B 组 创新练]1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3.已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为( ) A .{0,1,2,3} B .{0,1,2} C .{1,2,3} D .{1,2}解析:f (x )=2x +32x +1=(1+2x )+21+2x=1+21+2x ,又2x>0,∴21+2x ∈(0,2),∴1+21+2x∈(1,3).∴当f (x )∈(1,2)时,y =[f (x )]=1;当f (x )∈[2,3)时,y =[f (x )]=2.∴函数y =[f (x )]的值域是{1,2}.故选D. 答案:D2.在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol /L ,记作[H +])和氢氧根离子的物质的量浓度(单位mol /L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg [H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg3≈0.48)( ) A.12 B.13 C.16D.110解析:由题意可得pH =-lg [H +]∈(7.35,7.45),且[H +]·[OH -]=10-14,∴lg[H +][OH -]=lg[H +]10-14[H +]=lg [H +]2+14=2lg [H +]+14.∵7.35<-lg [H +]<7.45,∴-7.45<lg [H +]<-7.35,∴-0.9<2lg [H +]+14<-0.7,即-0.9<lg [H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误,lg 13=-lg 3≈-0.48,故B 错误,lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确,lg 110=-1,故D 错误,故选C. 答案:C3.(2020·重庆市学业质量调研)已知函数f (x )=2x +log 32+x 2-x,若不等式f ⎝ ⎛⎭⎪⎫1m >3成立,则实数m 的取值范围是( ) A .(1,+∞) B .(-∞,1) C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 解析:由2+x 2-x >0得x ∈(-2,2),又y =2x 在(-2,2)上单调递增,y =log 3 2+x2-x =log 3x -2+42-x =log 3⎝⎛⎭⎪⎫-1-4x -2在(-2,2)上单调递增,所以函数f (x )为增函数,又f (1)=3,所以不等式f ⎝ ⎛⎭⎪⎫1m >3成立等价于不等式f ⎝ ⎛⎭⎪⎫1m >f (1)成立,所以⎩⎨⎧-2<1m <2,1m >1,解得12<m <1,故选D.答案:D4.对于实数a 和b ,定义运算“*”:a *b ={a (a -b )3,a ≤b ,b (b -a )3,a >b ,设f (x )=(2x -1)*(x -1),若函数g (x )=f (x )-mx 2(m ∈R )恰有三个零点x 1,x 2,x 3,则m 的取值范围是________,x 1x 2x 3的取值范围是________.解析:当2x -1≤x -1,即x ≤0时,f (x )=(2x -1)x 3,当2x -1>x -1,即x >0时,f (x )=-(x -1)x 3,所以f (x )=⎩⎪⎨⎪⎧(2x -1)x 3,x ≤0,-(x -1)x 3,x >0,因为g (x )有三个零点,所以函数f (x )与y =mx 2的图象有三个交点,即k (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0的图象与直线y =m 有三个交点,作出k (x )的图象,如图,其中x >0时,函数k (x )的最大值为-⎝ ⎛⎭⎪⎫12-1×12=14,所以0<m <14.不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=1,所以0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322=14. 由⎩⎨⎧(2x -1)x =14,x <0,解得x =1-34,所以1-34<x 1<0,所以1-316<x 1x 2x 3<0,且当m 无限接近14时,x 1x 2x 3趋近于1-316,当m 无限接近0时,x 1x 2x 3趋近于0.故x 1x 2x 3的取值范围为⎝ ⎛⎭⎪⎫1-316,0.答案:⎝ ⎛⎭⎪⎫0,14 ⎝⎛⎭⎪⎫1-316,0。

2020高考数学冲刺核心考点 专题6 第1讲 函数的图象与性质(小题)

2020高考数学冲刺核心考点  专题6 第1讲 函数的图象与性质(小题)

2
PART TWO
真题体验 押题预测
真题体验 1.(2019·全国Ⅰ,理,5)函数 f(x)=csoins xx++xx2在[-π,π]上的图象大致为

解析 ∵f(-x)=cossi-n-x+x--xx2=-csoins xx++xx2=-f(x),∴f(x)为奇函数,排除 A; ∵f(π)=csoins ππ++ππ2=-1π+π2>0,∴排除 C; ∵f(1)=csoins 11++11,且 sin 1>cos 1, ∴f(1)>1,∴排除B,故选D.
若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)等于
A.-50
B.0
√C.2
D.50
解析 ∵f(x)是奇函数,∴f(-x)=-f(x), ∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x), ∴-f(x-1)=f(x+1),∴f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), ∴函数f(x)是周期为4的周期函数. 由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x), ∴f(x)的图象关于直线x=1对称, ∴f(2)=f(0)=0,又f(1)=2,∴f(-1)=-2, ∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0, ∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50) =0×12+f(49)+f(50)=f(1)+f(2)=2+0=2. 故选C.
跟踪演练2 (1)定义在R上的函数f(x)满足f(-x)=f(x,x≥1,
若对任意的 x∈[m,m+1],不等式 f(1-x)≤f(x+m)恒
成立,则实数m的最大值为

2023年高考数学客观题专题六 函数与导数

2023年高考数学客观题专题六 函数与导数

2.函数的奇偶性:
(1)奇函数、偶函数的定义:
如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),则称
函数y=f(x)是偶函数;
如果对于函数则
称函数y=f(x)是奇函数.
(2)奇、偶函数的性质:
①偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
A∩B= (
)
A.(1,2)
B.[1,2]
C.[1,2)
D.(1,2]
【答案】D
【解析】由题意得x-1>0,解得x>1,则集合B={x|x>1}.
而集合A={x|-1≤x≤2},
于是A∩B={x|1<x≤2}.故选D.
6.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是( )
1
D.-4
)
3.若奇函数y=f(x)的图象关于直线x=2对称,且f(3)=3,则f(-1)=
【答案】-3
【解析】y=f(x)的图象关于直线x=2对称,则f(3)=f(1)=3.
y=f(x)为奇函数,则f(-1)=-f(1)=-3.
.
1
4.函数f(x)=ln(+1)+
4 − 2 的定义域为
(
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数
y=f(x)有零点.
2.定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一
条曲线,并且有:f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即
存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
指数、对数的运算性质:
(1)幂的运算性质:aman=am+n;

高考求函数解析式方法及例题

高考求函数解析式方法及例题

函数专题之解析式问题求函数解析式的方法把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式。

求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方f(x)的解析式。

,∴f(x)=2x+7待定系数法()f x 22(2)f x -=(2)f x --设二次函数满足且图象在轴上的截距为1,在轴截得的线段长为,求的解析式。

x y ()f x 例题:解法一、1222x x a∆-==2248b ac a ∴-=21()212f x x x ∴=++1c =又1,2,12a b c ===解得2()(0)f x ax bx c a =++≠设(2)(2)f x f x -=--由40a b -=得解法二、(0)1f =41a k ∴+=1222x x-=222k a-∴=1,12a k ∴==-221()(2)121212f x x x x ∴=+-=++()y f x =2x =-得的对称轴为(2)(2)f x f x -=--由∴2()(2)f x a x k=++设二 【换元法】(注意新元的取值范围)已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。

三【配凑法(整体代换法)】若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的式子,再换元求出)(x f 的式子。

换元法()f x 211(1)(1)1f x x+=-2211(2)()f x x x x+=+例题:根据条件,分别求出函数的解析式22()(1)12f t t t t∴=--=-11tx+=(1)解:令11t x=-1t ≠则且2()2f x x x=-(1)x ≠即换元法2()2f x x ∴=-(2)x ≥凑配法x1x x+用替代式中的12x x+≥又考虑到211()()2f x x x x+=+-(2)解:【例题】已知f(x-1)= 2x -4x ,解方程f(x+1)=0 分析:如何由f(x-1),求出f(x+1)是解答此题的关键 解1:f(x-1)==2)1(-x -2(x-1)-3,∴f(x)=2x -2x-3 f(x+1)=2)1(+x -2(x+1)-3=2x -4,∴2x -4=0,x=±2解2:f(x-1)=2x -4x ,∴f(x+1)=f[(x+2)-1]=2)2(+x -4(x+2)=2x -4,∴2x -4=0,x=±2 解3:令x-1=t+1,则x=t+2,∴f(t+1)=2)2(+t -4(t+2)=2t -4 ∴f(x+1)=2x -4,∴2x -4=0,∴x=±2评注:只要抓住关键,采用不同方法都可以达到目的。

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲-函数与方程和零点问题与嵌套函数(解析版)

高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3C .()3,4D .()4,5【答案】B【分析】利用零点存在性定理求解即可【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=, 因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln ah a a =-,则()1e a h a a'=-,令()1e a m a a =-,则()21e a m a a '=+,∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =xa x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =xa x考虑函数()e xg x x =,则()()2e 1x x g x x-'=, 当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增; 故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④C .②③④D .①③④【答案】D【分析】根据给定函数,计算(2)-f x 判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点,所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,, ()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根, 此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1x x f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根, 综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上的公切线之间,故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个.故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327x xg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ②当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4 C .(]3,4 D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=, 因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点,所以()()166m f +<且()()11010mf +>,即7e11e m m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞.故选: C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩设()e ex x xg x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅, 由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解. 【详解】当13x ≤≤时,由210ax x -<+恒成立可得,211a x x⎛⎫<- ⎪⎝⎭恒成立, 令2211111()()24f x x x x ⎛⎫=-=-- ⎪⎝⎭,1113,,13x x ⎡⎤≤≤∴∈⎢⎥⎣⎦,∴当111,123x ⎡⎤=∈⎢⎥⎣⎦,即当2x =时, ()f x 取得最小值为()()min124f x f ==-, 因为211a x x⎛⎫<- ⎪⎝⎭恒成立,所以()min a f x <,即14a <-.故选:B .例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( ) A .6eB.(2eC.(2eD .2e【答案】AB【分析】本题的含义是不等式左边的最大值小于等于右边的最小值,t 是常数, 因此先要算出左边的最大值和右边的最小值,再计算不等式即可.【详解】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增, 所以对[0,)x ∀∈+∞,()()102f x f ≥=; ()()42e xg x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=- ,当1x >时,()'0g x < ;当01x <<时,()'0g x > ,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2e,⎡+∞⎣内, (2e +与2e 均不在区间()2e,⎡+∞⎣内; 故选:AB .【题型】八、一元二次不等式能成立问题31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( )A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞(C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【分析】由题意得到20x x a -+≤有解,进而由根的判别式列出不等式,求出实数a 的取值范围.【详解】若p ⌝是真命题,由题意知不等式20x x a -+≤有解,140a ∴∆=-≥,解得:14a ≤. 因此,实数a 的取值范围是1,4⎛⎤-∞ ⎥⎝⎦. 故选:A例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.【答案】)+∞【分析】利用不等式的基本性质分离参数,利用函数的单调性求相应最值即可得到结论.【详解】由2210x x λ-+<可得,221x x λ>+, 因为1,22x ⎡⎤∈⎢⎥⎣⎦,所以12x x λ>+,根据题意,min 12x x λ⎛⎫+ ⎪⎝⎭>即可, 设()12f x x x =+,易知()f x在12⎛ ⎝⎭单调递减,在2⎫⎪⎪⎝⎭单调递增, 所以()min f x f ==⎝⎭所以λ>故答案为:)+∞。

第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)

第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)
范围是________.
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2

当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析

高考数学二轮复习 专题06 三角函数的图像与性质讲学案 文-人教版高三全册数学学案

高考数学二轮复习 专题06 三角函数的图像与性质讲学案 文-人教版高三全册数学学案

专题06 三角函数的图像与性质1.三角函数y =A sin (ωx +φ)( A >0,ω>0)的图象变换,周期及单调性是高考热点.2.备考时应掌握y =sin x ,y =cos x ,y =tan x 的图象与性质,并熟练掌握函数y =A sin (ωx +φ)(A >0,ω>0)的值域、单调性、周期性等.1.任意角和弧度制(1)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.(2)把长度等于半径长的弧所对的圆心角叫做1弧度的角. (3)弧长公式:l =|α|r ,扇形的面积公式:S =12lr =12|α|r 2.2.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0). (2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 3.诱导公式公式一sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α公式二sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α公式三sin(-α)=-sin α,cos(-α)=cos α,tan(-α)=-tan α4.同角三角函数基本关系式sin2α+cos2α=1,tanα=sinαcosα(cosα≠0).5.正弦、余弦、正切函数的性质对称性对称中心:(kπ,0)(k∈Z).对称轴:x =π2+kπ(k∈Z)对称中心:(π2+kπ,0)(k∈Z). 对称轴:x =kπ(k∈Z)对称中心:(kπ2,0)(k∈Z)6.函数y =A sin(ωx +φ)的图象 (1)“五点法”作图设z =ωx +φ,令z =0、π2、π、3π2、2π,求出x 的值与相应的y 的值,描点连线可得.考点一 三角函数图象及其变换例1、(1)(2016·高考全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝⎛⎭⎪⎫2x -π6 B .y =2sin ⎝⎛⎭⎪⎫2x -π3C .y =2sin ⎝⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3【答案】A且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-π6(k ∈Z),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.优解:代入特殊点检验排除. 当x =π3,y =2时,排除B ,D.当x =-π6,y =-2时,排除C ,故选A.(2)(2016·高考全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.【答案】23π【解析】通解:化简后平移函数y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的图象可由函数y =sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度得到.【方法规律】1.已知图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法 (1)求A ,B ,已知函数的最大值M 和最小值m ,则A =M -m2,B =M +m2.(2)求ω,已知函数的周期T ,则ω=2πT.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知),或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间还是下降区间).②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点⎝ ⎛⎭⎪⎫-φω,0作为突破口,具体如下:“第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点; (2)看左右移动方向,左“+”右“-”;(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.【变式探究】1.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z,故选D.考点二 三角函数性质及应用例2、(1)(2016·高考全国卷Ⅱ)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z)B .x =k π2+π6(k ∈Z) C .x =k π2-π12(k ∈Z) D .x =k π2+π12(k ∈Z) 【答案】B【解析】通解:写出解析式求对称轴.函数y =2sin 2x 的图象向左平移π12个单位长度,得到的图象对应的函数表达式为y =2sin 2⎝ ⎛⎭⎪⎫x +π12,令2⎝ ⎛⎭⎪⎫x +π12=k π+π2(k ∈Z),解得x =k π2+π6(k ∈Z),所以所求对称轴的方程为x =k π2+π6(k ∈Z),故选B.优解:由对称轴平移得对称轴.y =2sin 2x 的对称轴为x =π4+k 2π,向左平移π12个单位长度得x =π4-π12+k 2π=k π2+π6.(k ∈Z),故选B.(2)(2016·高考全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B【方法技巧】 求解三角函数的性质问题的常用方法及技巧 1.求单调区间的两种方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ)(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间.2.判断对称中心与对称轴:利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.三角函数的周期的求法 (1)定义法;(2)公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (3)利用图象.【变式探究】设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增考点三 三角函数的图象与性质的综合应用例3、已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx (0<ω<2),且f (x )的图象过点⎝ ⎛⎭⎪⎫5π12,32. (1)求ω的值及函数f (x )的最小正周期;(2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎝ ⎛⎭⎪⎫α2=536,求cos ⎝ ⎛⎭⎪⎫2α-π3的值.解:(1)f (x )=23sin ⎝ ⎛⎭⎪⎫ωx +π6cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin 2ωx +32cos 2ωx +32【方法技巧】三角函数解析式化简的基本思路1.将“sin x cos x ”化为12sin 2x ,将sin 2x 或cos 2x 降幂.2.函数解析式成为“a sin x +b cos x ”后,利用辅助角公式化为a 2+b 2sin(x +φ),⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2.3.利用整体思想,对于a 2+b 2sin(ωx +φ)型的三角函数. 视“ωx +φ”为整体,利用sin x 的性质来求解.【变式探究】已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+1112π=5912π.1.(2017·高考全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15【解析】选A.解法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.解法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A.2.(2017·高考全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 23.【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( )A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65.所以选A.1.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A )31010 (B )1010(C )1010 (D )31010【答案】C2.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.3.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.【2016年高考四川文数】22cossin 88ππ-= .【答案】2【解析】由二倍角公式得22cossin 88ππ-=cos42=π5.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 6.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B7.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 8.【2016高考新课标3文数】函数sin 3y x x =-的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 9.【2016高考浙江文数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 【答案】B10.【2016高考山东文数】函数f (x )=3sin x +cos x )3x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π【答案】B【解析】()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B. 11.【2016年高考四川文数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x =的图像上所有点向右移6π个单位,故选D. 12.【2016高考新课标2文数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B13.【2016年高考北京文数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6πB.32t = ,s 的最小值为6πC.12t =,s 的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 14.【2016高考新课标3文数】函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π 【解析】因为sin 32sin()3y x x x π=+=+,sin 32sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin 3y x x =的图像可由函数sin 3y x x =+的图像至少向右平移32π个单位长度得到. 15.【2016高考新课标3文数】在ABC △中,π4B,BC 边上的高等于13BC ,则cos A ( )(A 310 (B 10(C )1010 (D )31010【答案】C16.【2016高考新课标2文数】若3cos()45πα-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725- 【答案】D【解析】2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.17.【2016高考新课标3文数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【2015高考新课标1,文2】o o o o sin 20cos10cos160sin10- =( )(A )3-(B 3(C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =osin30=12,故选D. 【2015江苏高考,8】已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3【解析】12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 【2015高考福建,文19】已知函数f()x 的图像是由函数()cos g x x 的图像经如下变换得到:先将()g x 图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移2个单位长度.(Ⅰ)求函数f()x 的解析式,并求其图像的对称轴方程; (Ⅱ)已知关于x 的方程f()g()x x m 在[0,2)内有两个不同的解,.(1)求实数m 的取值范围; (2)证明:22cos )1.5m ( 【答案】(Ⅰ) f()2sin x x ,(kZ).2xk;(Ⅱ)(1)(5,5);(2)详见解析.【解析】解法一:(1)将()cos g x x 的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到当1m<5时,+=2(),2();2当5<m<1时, 3+=2(),32();2所以2222cos )cos 2()2sin ()12()1 1.55m m (【2015高考山东,文16】设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫==⎪⎝⎭,求ABC ∆面积的最大值. 【答案】(I )单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(II )ABC ∆ 23+ 【解析】(I )由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=- sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【2015高考重庆,文9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C . 【2015高考山东,文3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【2015高考新课标1,文8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.1. 【2014高考湖南卷第9题】已知函数()sin(),f x x ϕ=-且230()0,f x dx π=⎰则函数()f x 的图象的一条对称轴是( )A.56x π=B.712x π=C.3x π=D.6x π= 【答案】A【考点定位】三角函数图像、辅助角公式2. 【2014高考江苏卷第5题】已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是 .【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角. 3. 【2014辽宁高考文第9题】将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 【答案】B【考点定位】函数sin()yA x ωϕ=+的性质.4. 【2014四川高考文第3题】为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 【答案】A【解析】1sin(21)sin 2()2y x x =+=+,所以只需把sin 2y x =的图象上所有的点向左平移12个单位.选A.【考点定位】三角函数图象的变换.5. 【2014全国1高考文第6题】如图,图O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数)(x f ,则],0[)(π在x f y =的图像大致为( )POAM【答案】CPOAMD POAM D【考点定位】解直角三角形、三角函数的图象.6. 【2014高考北卷文第14题】设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==-,则()f x 的最小正周期为 .【答案】π【解析】由)(x f 在区间]2,6[ππ上具有单调性,且)6()2(ππf f -=知,函数)(x f 的对称中心为)0,3(π,由)32()2(ππf f =知函数)(x f 的对称轴为直线127)322(21πππ=+=x ,设函数)(x f 的最小正周期为T ,所以,6221ππ-≥T ,即32π≥T ,所以43127T =-ππ,解得π=T . 【考点定位】函数)sin()(ϕω+=x A x f 的对称性、周期性, 7. 【2014高考安徽卷文第11题】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称, 则ϕ的最小正值是________.【答案】83π【考点定位】三角函数的平移、三角函数恒等变换与图象性质.8. 【2014浙江高考文第4题】为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位【答案】D【解析】sin 3cos3234y x x x π⎛⎫=+=+ ⎪⎝⎭,故只需将23y x =向左平移4π个单位.【考点定位】三角函数化简,图像平移.9. 【2014陕西高考文第2题】函数()cos(2)6f x x π=-的最小正周期是( ).2A π.B π .2C π .4D π【答案】B【解析】由周期公式2T w π=,又2w =,所以函数()cos(2)6f x x π=-的周期22T ππ==,故选B . 【考点定位】三角函数的最小正周期.10. 【2014大纲高考文第16题】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .【答案】(],2-∞.【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫'=-+=-+=-+∈ ⎪⎝⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【考点定位】三角函数的单调性11. 【2014高考江西文第16题】已知函数()sin()cos(2)f xx a x θθ=+++,其中,(,)22a R ππθ∈∈-(1)当4a πθ==时,求()f x 在区间[0,]π上的最大值与最小值;(2)若()0,()12f f ππ==,求,a θ的值.【答案】(1最小值为-1. (2)1.6a πθ=-⎧⎪⎨=-⎪⎩【考点定位】三角函数性质12. (2014·福建卷)已知函数f(x)=2cos x(sin x +cos x). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x)的最小正周期及单调递增区间.【解析】思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.思路二 先应用和差倍半的三角函数公式化简函数f(x)=2sin xcos x +2cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.[]由2kπ-π2≤2x+π4≤2kπ+π2,k∈Z,解得kπ-3π8≤x≤kπ+π8,k∈Z.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x+π4≤2kπ+π2,k∈Z,得k π-3π8≤x≤kπ+π8,k∈Z,所以f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤kπ-3π8,kπ+π8,k∈Z.13. (2014·北京卷)函数f(x)=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f(x)的最小正周期及图中x 0、y 0的值; (2)求f(x)在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六函数与方程及函数的应用
班级:小组:学生姓名:
1.[2014·沈阳模拟]若一根蜡烛长20cm ,点燃后每小时燃烧5cm ,则燃烧剩下的高度h(cm
与燃烧时间t(小时)的函数关系用图象表示为( )
2.[2014·长沙模拟]已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y =-13
x 3
+81x -234,则使该生产厂家获取最大年利润的年产量为( )
A.13万件
B.11万件
C.9万件
D.7万件
3.[2014·长春模拟]某汽车销售公司在A 、B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=
4.1x -0.1x 2
,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆这种品牌汽车,则能获得的最大利润是( )
A.10.5万元
B.11万元
C.43万元
D.43.025万元
4.[2014·上海模拟]某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )
A.略有盈利
B.略有亏损
C.没有盈利也没有亏损
D.无法判断盈亏情况
5.[2014·武汉模拟]国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过部分的14%纳税;超过4000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为( )
A.3000元
B.3800元
C.3818元
D.5600元
6.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )
A.25元B.20.5元
C.15元D.12.5元
7.[2014·陕西五校模拟]台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( )
A.0.5小时B.1小时
C.1.5小时D.2小时
8.[2014·浙江温州月考]
某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )
A.10元B.20元
C.30元 D.40
3

9.[2014·苏州高三质检]某厂去年的产值为1,若计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年这五年内,这个厂的总产值约为________.(保留一位小数,取1.15≈1.6)。

相关文档
最新文档