概率与统计测试题

合集下载

概率与统计常用分布测试题

概率与统计常用分布测试题

概率与统计常用分布测试题一、选择题1. 概率密度函数(probability density function, PDF)是描述连续型随机变量概率分布的函数。

下列哪种分布不是连续型随机变量的概率分布?a) 正态分布b) 二项分布c) 均匀分布d) 指数分布2. 下列哪种分布是用来描述二项试验中成功(success)的次数?a) 正态分布b) 泊松分布c) 几何分布d) 二项分布3. 对一组数据进行统计分析时,我们通常首先要计算其均值(mean)和标准差(standard deviation)。

下列哪种分布的均值和方差可以完全确定其分布?a) 正态分布b) 泊松分布c) 均匀分布d) 指数分布4. 如果一个随机变量服从标准正态分布(standard normal distribution),那么其均值和方差分别为多少?a) 均值为1,方差为1b) 均值为0,方差为1c) 均值为0,方差为0d) 均值为1,方差为05. 在概率论与数理统计中,可以使用卡方检验(chi-square test)来检验随机变量的拟合优度。

下列哪种分布被广泛地应用于卡方检验?a) 正态分布b) 假设检验分布c) 卡方分布d) 学生 t 分布二、填空题1. 二项分布是离散型随机变量的概率分布,其中每一次试验的结果只有成功(success)和失败(failure)两种可能。

一般来说所描述的试验是独立重复的。

一个二项分布的概率质量函数(probability mass function, PMF)可以表示为 P(X = k) = C(n, k) * p^k * (1-p)^(n-k)。

请问,试验次数为n,成功概率为p的二项分布的期望值(expectation)和方差(variance)分别是多少?期望值: ____________方差: ____________2. 泊松分布是描述单位时间或空间内事件发生次数的离散型随机变量的概率分布。

概率论与数理统计第一章测试题

概率论与数理统计第一章测试题

第一章 随机事件和概率一、选择题1. 设A, B, C 为任意三个事件, 则与A 一定互不相容的事件为(A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃2.对于任意二事件A 和B, 与 不等价的是(A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3. 设 、 是任意两个事件, , , 则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤.C ()()P A P A B > .D ()()P A P A B ≥4. 设 , , , 则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立.C 事件A 与B 相互对立 .D 事件A 与B 互不独立5. 设随机事件 与 互不相容, 且 , 则 与 中恰有一个发生的概率等于( ).A p q + .B p q pq +-.C ()()11p q -- .D ()()11p q q p -+-6. 对于任意两事件 与 , ( ).A ()()P A P B - .B ()()()P A P B P AB -+.C ()()P A P AB - .D ()()()P A P A P AB +- 7. 若 、 互斥, 且 , 则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A >.C ()()()P AB P A P B = .D ()0P B A =8. 设 , 则下列结论中正确的是( ).A 事件A 、B 互不相容 .B 事件A 、B 互逆.C 事件A 、B 相互独立 .D A B ⊃9. 设 、 互不相容, , 则下列结论肯定正确的是( ).A A 与B 互不相容 .B ()0P B A >.C ()()()P AB P A P B = .D ()()P A B P A -=10. 设 、 、 为三个事件, 已知 , 则 ( ).A 0.3 .B 0.24 .C 0.5 .D 0.2111. 设A, B 是两个随机事件, 且0<P(A)<1, P(B)>0, , 则必有(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠(C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠12. 随机事件A, B, 满足 和 , 则有(A )Ω=⋃B A (B )φ=AB (C ) 1)(=⋃B A P (D )0)(=-B A P13. 设随机事件A 与B 互不相容, , , 则下面结论一定成立的是(A )A, B 为对立事件 (B ) , 互不相容 (C ) A, B 不独立 (D )A, B 独立14.对于事件A 和B, 设 , P(B)>0, 则下列各式正确的是(A ))()|(B P A B P = (B ))()|(A P B A P = (C ) )()(B P B A P =+ (D ))()(A P B A P =+15. 设事件A 与B 同时发生时, 事件C 必发生, 则(A )1)()()(-+≤B P A P C P (B )1)()()(-+≥B P A P C P(C ) )()(AB P C P = (D ))()(B A P C P ⋃=16. 设A,B,C 是三个相互独立的随机事件, 且0<P(C)<1。

初中数学统计与概率测试题(含答案)

初中数学统计与概率测试题(含答案)

初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。

请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。

请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。

概率论与数理统计测试题及答案

概率论与数理统计测试题及答案

概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P AB P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布 (A)2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -.4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1ni i X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为0.1、0.2、0.3,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为0.1的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率. 3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y ≥1}. 5.(10分)设随机变量(X,Y)的概率密度为6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数θ 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(μ,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度. 一、填空题(每小题3分,共15分)1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=0.5,P(A 2)=0.3,P(A 3)=0.2,P(B|A 1)=0.1,P(B|A 2)=0.2,P(B|A 3)=0.3 (3)分(1) P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) (5)分=0.5⨯0.1+0.3⨯0.2+0.2⨯0.3=0.17 (7)分(2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,0.1), 33{}0.10.9(0,1,2,3)k k k P X k C k -=== (3)分………7分(2)P{X ≥1}=1-P{X=0}=0.271 ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, ………10分241(3){/4/2}sin 2P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=0.5,E (Y )=0.3,E (XY )=0.1 (4)分Cov (X ,Y )=E (XY )-E (X )E (Y )=-0.05 (6)分P{X +Y ≥1}=0.2+0.4+0.1=0.7 ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分 (2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分2()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分 两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。

概率与统计测试题(含答案)

概率与统计测试题(含答案)

概率与统计测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2012·淄博一中期末)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数分别是()A.15,16,19B.15,17,18 C.14,17,19 D.14,16,202 (2012·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为()A.10% B.15% C.30% D.45%3.(2012·黄冈期末)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为()A.156 B.17 C.114 D.3144.(2012·福州市期末)如图所示,正方形的四个顶点分别为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y=x2经过点B,现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是()A.12 B.14 C.13 D.255.(2012·巢湖质检)在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为λ1,λ2,平均数分别为μ1,μ2,则下列判断正确的是()A.λ1>λ2,μ1<μ2B.λ1>λ2,μ1>μ2C.λ1<λ2,μ1<μ2D.λ1<λ2,μ1>μ26.(2012·丰台区期末)有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有()A.24种B.48种C.96种D.120种7.(2012·蚌埠二中质检)(3y+x)5展开式的第三项为10,则y关于x的函数图象的大致形状为()8.(2012·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a,则a的值为()A.0.1 B.0.2 C.0.3 D.0.49.将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系是()A.点P在直线l2的右下方B.点P在直线l2的右上方C.点P在直线l2上D.点P在直线l2的左下方10.(2011·河北冀州期末)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为()A.1 B.2 C.3 D.411.(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.π12B.1-π12 C.π6D.1-π612.(2011·江西吉安质检)下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产品x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为y=0.7x+0.35,那么表中t的值为()A.4.5 B.3.5 C.3.15 D.3第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2011·浙江宁波八校联考)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.14.如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________.15.(2012·豫南九校联考)(1-ax)2(1+x)6的展开式中,x3项的系数为-16,则实数a的值为________.16.(2012·河北冀州期末)从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于...1,则取出这样的子集的概率为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2012·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:8281797895889384乙:9295807583809085(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x-甲=85,x-乙=85,甲的方差为S2甲=35.3,S2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B,其概率为P(B).则P(A)+P(B)=P(A+B)成立吗?请说明理由.概率与统计测试题第1页,共18页概率与统计测试题第2页,共18页概率与统计测试题 第3页,共18页概率与统计测试题 第4页,共18页18.(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人. (1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.19.(本小题满分12分) 某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:表1:甲系列 表2:乙系列现该运动员最后一个出场,之前其他运动员的最高得分为115分.(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率; (2)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望E (ξ).20.(本小题满分12分) (2011·河北冀州期末)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率;(2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和期望E (ξ)的值.21.(本小题满分12分) (2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.22.(本小题满分14分)(2012·辽宁铁岭六校联考)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:b ^=∑i =1nx i y i -n x -y -∑i =1n x 2i -n x -2=∑i =1n(x i -x -)(y i -y-)∑i =1n(x i -x -)2,a ^=y --b ^x -)概率与统计测试题 第5页,共18页概率与统计测试题 第6页,共18页阶段性测试题十(统计与概率)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

概率论与数理统计自测题

概率论与数理统计自测题

概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

概率与统计测试题及详解

概率与统计测试题及详解

统计与概率一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011·淄博一中期末)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数分别是( )A .15,16,19B .15,17,18C .14,17,19D .14,16,20[答案] B [解析]50600+680+720=140,600×140=15,680×140=17,720×140=18,故选B.2.(文)(2011·山东实验中学期末)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是( )A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样[答案] B[解析] ①总体中高收入、中等收入、低收入家庭有明显差异,故用分层抽样;②总体容量与样本容量都较小,故采用简单随机抽样.(理)(2011·黄冈期末)某市进行一次高三数学质量抽样检测,考试后统计所有考生的数学成绩服从正态分布,已知数学成绩平均分为90分,60分以下的人数占5%,则数学成绩在90分至120分之间的考生人数所占百分比约为( )A .10%B .15%C .30%D .45%[答案] D[解析] ∵正态曲线对称轴为μ=90,P(x<60)=0.05, ∴P(90<x<120)=12(1-2P(x<60))=0.45,故选D.3.(文)(2011·四川资阳市模拟)对总数为m 的一批零件抽取一个容量为25的样本,若每个零件被抽取的概率都为14,则m 的值为( )A .200B .150C .120D .100 [答案] D[解析] ∵25m =14,∴m =100. (理)(2011·黄冈期末)某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A.156 B.17 C.114D.314[答案] C[解析] 从9块试验田中选3块有C 39种选法,其中每行每列都有一块试验田种植水稻的选法有6种,∴p =6C 39=114.4.(文)连掷两次骰子得到的点数分别为m 和n ,向量a =(m ,n)和向量b =(1,-1)的夹角为θ,则θ为锐角的概率是( )A.56B.16C.712D.512[答案] D[解析] ∵夹角θ为锐角,∴错误!,∴错误!, 又∵m ,n ∈{1,2,3,4,5,6},∴满足条件的结果数为15. 而连掷两次骰子得到的结果数为36, ∴满足条件的概率是P =1536=512. (理)(2011·福州市期末)如图所示,正方形的四个顶点分别为O(0,0)、A(1,0)、B(1,1)、C(0,1),曲线y =x 2经过点B ,现将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是( )A.12B.14C.13D.25[答案] C[解析] 阴影部分的面积S =⎠⎛01x 2dx =13x 3|10=13,正方形面积为1,∴p =13,故选C.5.(文)(2011·福州市期末)如图是歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .a 1、a 2的大小不确定[答案] B[解析] ∵甲、乙分数在70、80、90各分数段的打分评委人数一样多,故只须看个位数的和,乙的个位数总和37,甲的个位数字和为20+m<37,∴a 2>a 1,故选B.(理)(2011·巢湖质检)在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为λ1,λ2,平均数分别为μ1,μ2,则下列判断正确的是( )A.λ1>λ2,μ1<μ2 B .λ1>λ2,μ1>μ2 C .λ1<λ2,μ1<μ2 D .λ1<λ2,μ1>μ2[答案] B[解析] 由茎叶图知λ1=20.5,λ2=18.5,μ1=19.9,μ2=18.9,∴λ1>λ2,μ1>μ2,故选B.6.(文)(2011·温州八校期末)已知α,β,γ是不重合平面,a ,b 是不重合的直线,下列说法正确的是( )A .“若a ∥b ,a ⊥α,则b ⊥α”是随机事件B .“若a ∥b ,a ⊂α,则b ∥α”是必然事件C .“若α⊥γ,β⊥γ,则α⊥β”是必然事件D .“若a ⊥α,a∩b=P ,则b ⊥α”是不可能事件 [答案] D[解析]⎭⎪⎬⎪⎫a ∥b a ⊥α⇒b ⊥α,故A 错;⎭⎪⎬⎪⎫a ∥b a ⊂α⇒b ∥α或b ⊂α,故B 错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C 错;如果两条直线垂直于同一个平面,则此二直线必平行,故D 为真命题.(理)(2011·丰台区期末)有5名同学被安排在周一至周五值日,已知同学甲只能值周一或周二,那么5名同学值日顺序的编排方案共有( )A .24种B .48种C .96种D .120种[答案] B[解析] 先安排甲有2种方法,其余4名同学可安排余下4天的任意一天值日,∴共有2A 44=48种不同安排方法.7.(文)已知函数f(x)=sin aπ3x ,a 等于抛掷一颗骰子得到的点数,则y =f(x)在[0,4]上至少有5个零点的概率是( )A.13B.12C.23D.56 [答案] C[解析] 抛掷一颗骰子共有6种情况.当a =1,2时,y =f(x)在[0,4]上的零点少于5个;当a =3,4,5,6时,y =f(x)在[0,4]上的零点至少有5个,故P =46=23,选C.(理)(2011·蚌埠二中质检)(3y +x)5展开式的第三项为10,则y 关于x 的函数图象的大致形状为( )[答案] D[解析] T 3=C 25(3y)5-2(x)2=10xy =10,∴y =1x(x>0),故选D.8.(2011·咸阳模拟)样本容量为100的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[2,10)内的频率为a ,则a 的值为( )A .0.1B .0.2C .0.3D .0.4[答案] D[解析] 样本数据落在[2,10)内的频率为a =(0.02+0.08)×4=0.4.9.将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,则复数P 1+P 2i 所对应的点P 与直线l 2:x +2y =2的位置关系是( )A .点P 在直线l 2的右下方B .点P 在直线l 2的右上方C .点P 在直线l 2上D .点P 在直线l 2的左下方[答案] D[解析] 易知当且仅当a b ≠12时,两条直线只有一个交点,而a b =12时有三种情况:a =1,b =2(此时两直线重合);a =2,b =4(此时两直线平行);a =3,b =6(此时两直线平行).而投掷一颗骰子两次的所有情况有6×6=36种,所以两条直线相交的概率P 2=1-336=1112;两条直线平行的概率为P 1=236=118,P 1+P 2i 所对应的点为P(118,1112,易判断点P(118,1112在直线l 2:x +2y =2的左下方,选D.10.(2011·河北冀州期末)某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y|的值为( )A .1B .2C .3D .4[答案] D[解析] 由条件知⎩⎪⎨⎪⎧x +y +10+11+9=50x -102+y -102+1+1=10,∴⎩⎪⎨⎪⎧x =12y =8或⎩⎪⎨⎪⎧x =8y =12,∴|x -y|=4.11.(2011·北京学普教育中心联考版)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6D .1-π6[答案] B[解析] 以点O 为圆心,半径为1的半球的体积为V =12×43πR 3=2π3,正方体的体积为23=8,由几何概型知:点P 到点O 的距离大于1的概率为P(A)=1-238=1-π12B.12.(2011·江西吉安质检)下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产品x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A.4.5 C .3.15 D .3[答案] D[解析] 线性回归直线过样本点的中心(x -,y -),∵x -=4.5,y -=11+t4,∴11+t 4=0.7×4.5+0.35,∴t =3,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·浙江宁波八校联考)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.[答案] 1211[解析] 抽样比150 3000=1 20,第1组抽出号码为11,故第61组抽出号码为11+20×(61-1)=1211.14.(文)设集合A ={x|x 2-3x -10<0,x ∈Z},从集合A 中任取两个元素a ,b 且a·b≠0,则方程x 2a +y 2b=1表示焦点在x 轴上的椭圆的概率为________.[答案]310[解析] A ={x|-2<x<5,x ∈Z}={-1,0,1,2,3,4},由条件知,(a ,b)的所有可能取法有:(-1,1),(-1,2),(-1,3),(-1,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(1,-1),(2,-1),(3,-1),(4,-1),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共20种,方程x 2a +y 2b =1表示焦点在x 轴上的椭圆,应有a>b>0,∴有(2,1,),(3,1),(4,1),(3,2),(4,2),(4,3)共6种,∴所求概率P =620=310. (理)如图是一个正方体纸盒的展开图,若把1,2,3,4,5,6分别填入小正方形后,按虚线折成正方体,则所得到的正方体相对面上的两个数的和都相等的概率是________.[答案]115[解析] 6个数任意填入6个小正方形中有6!=720种方法;将6个数分三组(1,6),(2,5),(3,4),每组中的两个数填入一对面中,共有不同填法6×2×2×2=48种,故所求概率P =48720=115. 15.(文)(2011·浙江宁波八校联考)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.[答案]37[解析] ∵|AB →|=k 2+1≤4,∴-15≤k≤15, ∵k ∈Z ,∴k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0得2k +4=0,∴k =-2,∵BC →=AC →-AB →=(2-k,3),由AB →·BC →=0得k(2-k)+3=0,∴k =-1或3, 由AC →·BC →=0得2(2-k)+12=0,∴k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,∴所求概率p =37.(理)(2011·豫南九校联考)(1-ax)2(1+x)6的展开式中,x 3项的系数为-16,则实数a的值为________.[答案] 2或3[解析] 展开式中x 3的系数为1×C 36-2aC 46+a 2C 56=-16,∴a 2-5a +6=0,∴a =2或3.16.(文)(2011·山西太原调研)在圆O 上有一定点A ,则从这个圆上任意取一点B ,使得∠AOB≤30°的概率是________.[答案]16[解析] 如图∠AOE =∠AOF =30°,当点B 落在EAF 上时,∠AOB≤30°, ∵∠EOF =60°,∴所求概率p =60°360°=16.(理)(2011·河北冀州期末)从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于...1,则取出这样的子集的概率为________. [答案]835[解析] 从8个数中任取4个共有C 48=70种取法,两数之和为1的取法有:-1+2,-2+3,-3+4,0+1共4种,要使取出的四个数中任何两数之和不等于1,则每组中的两个数只能取1个,故共有24种取法,故所求概率p =1670=835.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2011·山西太原调研)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据,并写出乙组数据的中位数;(2)经过计算知甲、乙两人预赛的平均成绩分别为x -甲=85,x -乙=85,甲的方差为S 2甲=35.3,S 2乙=41.现要从中选派一人参加数学竞赛,你认为选派哪位学生参加较合适?请说明理由.(3)若将预赛成绩中的频率视为概率,记“甲在考试中的成绩不低于80分”为事件A ,其概率为P(A);记“乙在考试中的成绩不低于80分”为事件B ,其概率为P(B).则P(A)+P(B)=P(A +B)成立吗?请说明理由.[解析] (1)作出如图所示茎叶图,易得乙组数据的中位数为84.(2)派甲参赛比较合适,理由如下: ∵x -甲=85,x -乙=85,S 2甲=35.5,S 2乙=41, ∴x -甲=x -乙,S 2甲<S 2乙,∴甲的成绩较稳定,派甲参赛比较合适. (3)不成立.由已知可得P(A)=68,P(B)=78,P(A)+P(B)=138.而0<P(A +B)<1.所以P(A)+P(B)=P(A +B)不成立.[点评] P(A +B)=P(A)+P(B)成立的条件是A 和B 互斥,而此问题中的A 和B 是不互斥的,故P(A)+P(B)=P(A +B)不成立.18.(本小题满分12分)某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示,若130~140分数段的人数为2人.(1)估计这所学校成绩在90~140分之间学生的参赛人数; (2)估计参赛学生成绩的中位数;(3)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组,若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求出的两人为“黄金搭档组”的概率.[解析] (1)设90~140分之间的人数是n ,由130~140分数段的人数为2人,可知0.005×10×n=2,得n =40.(2)设中位数为x,则0.35+(x-110)×0.045=0.2+(120-x)×0.045,解得x=3403≈113,即中位数约为113分.(3)依题意,第一组共有40×0.01×10=4人,记作A1、A2、A3、A4;第五组共有2人,记作B1、B2从第一组和第五组中任意选出两人共有下列15种选法:{A1,A2}、{A1,A3}、{A1,A4}、{A2,A3}、{A2,A4}、{A3,A4};{A1,B1}、{A2,B1}、{A3,B 1}、{A4,B1};{A1,B2}、{A2,B2}、{A3,B2}、{A4,B2};{B1,B2}设事件A:选出的两人为“黄金搭档组”,若两人成绩之差大于20,则两人分别来自于第一组和第五组,共有8种选法,故P(A)=815.19.(本小题满分12分)(文)(2011·湖南长沙一中期末)某班高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90)之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90)间的矩形的高为425÷10=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中,至少有一个在[90,100]之间的基本事件有9个,故至少有一份分数在[90,100]之间的概率是915=0.6.(理)某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列中的两个动作的得分是相互独立的.根据赛前训练统计数据,某运动员完成甲系列和乙系列的情况如下表:表1:甲系列 表2:乙系列(1)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;(2)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望E(ξ). [解析] (1)若该运动员希望获得该项目的第一名,应选择甲系列 理由如下:选择甲系列最高得分为100+40=140>115可能获得第一名 而选择乙系列最高得分为90+20=110<115,不可能获得第一名 记“该运动员完成K 动作得100分”为事件A “该运动员完成D 动作得40分”为事件B 则P(A)=34,P(B)=34记“该运动员获得第一名”为事件C 依题意得P(C)=P(AB)+P(A -B) =34×34+14×34=34. ∴运动员获得第一名的概率为34.(2)若该运动员选择乙系列,ξ的可能取值是50,70,90,110,则P(ξ=50)=110×110=1100,P(ξ=70)=110×910=9100,P(ξ=90)=910×110=9100;P(ξ=110)=910×910=81100ξ的分布列为∴E(ξ)=50×1100+70×100+90×100+110×100=104.20.(本小题满分12分)(文)(2011·广东佛山市质检)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽样进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图,并求p 、x 的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选到的领队中恰有1人年龄在[40,45)岁的概率.[解析] (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06,频率直方图如下:第一组的人数为1200.6=200,频率为0.04×5=0.2,所以n =2000.2=1000.由上可知,第二组的频率为0.3,所以第二组的人数为1000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以x =150×0.4=60.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60 30=2 1,所以采用分层抽样法抽取6人,[40,45)岁中抽取4人,[45,50)岁中抽取2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的有(a ,b)、(a ,c)、(a ,d)、(a ,m)、(a ,n)、(b ,c)、(b ,d)、(b ,m)、(b ,n)、(c ,d)、(c ,m)、(c ,n)、(d ,m)、(d ,n)、(m ,n),共15种;其中恰有1人年龄在[40,45)岁的有(a ,m)、(a ,n)、(b ,m)、(b ,n)、(c ,m)、(c ,n)、(d ,m)、(d ,n),共8种.所以选取的2名领队中恰有1人年龄在[40,45)岁的概率为P =815.(理)(2011·河北冀州期末)甲、乙、丙、丁4名同学被随机地分到A 、B 、C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到A 社区的概率; (2)求甲、乙两人不在同一个社区的概率;(3)设随机变量ξ为四名同学中到A 社区的人数,求ξ的分布列和期望E(ξ)的值. [解析] (1)设甲、乙两人同时到A 社区为事件E A ,则 P(E A )=A 22C 24A 33=118,即甲、乙两人同时到A 社区的概率是118.(2)设甲、乙两人在同一社区为事件E ,那么 P(E)=3A 22C 24A 33=16,所以,甲、乙两人不在同一社区的概率是 P(E -)=1-P(E)=56.(3)随机变量ξ可能取的值为1,2,事件“ξ=i(i =1,2)”是指有i 个同学到A 社区,则P(ξ=2)=C 24A 22C 24A 33=13.所以P(ξ=1)=1-P(ξ=2)=23,ξ的分布列是∴E(ξ)=1×23+2×13=43.21.(本小题满分12分)(文)(2011·巢湖市质检)《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.据《法制晚报》报道,2010年8月1日至8月28日,某市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,下图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图完成下表:(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.[解析] (1)(3)因为血液酒精浓度在[70,80)范围内有12人,[80,90)范围内有8人,要抽取一个容量为5的样本,[70,80)内范围内应抽3人,记为a ,b ,c ,[80,90)范围内应抽2人,记为d ,e ,则从总体中任取2人的所有情况为(a ,b),(a ,c),(a ,d),(a ,e),(b ,c),(b ,d),(b ,e),(c ,d),(c ,e),(d ,e),恰有一人的血液酒精浓度在[80,90)范围内的情况有(a ,d),(a ,e),(b ,d),(b ,e),(c ,d),(c ,e),共6种,设“恰有1人属于醉酒驾车”为事件A ,则P(A)=610=35.(理)(2011·黄冈市期末)为预防“甲型H1N1流感”的扩散,某两个大国的研究所A 、B 均对其进行了研究.若独立地研究“甲型H1N1流感”疫苗,研究成功的概率分别为13和14;若资源共享,则提高了效率,即他们合作研究成功的概率比独立研究时至少有一个研制成功的概率提高了50%.又疫苗研制成功获得经济效益a 万元,而资源共享时所得的经济效益只能两个研究所平均分配.请你给A 研究所参谋:是否应该采取与B 研究所合作的方式来研制疫苗,并说明理由.[解析] 若A 研究所独立地研究“甲型H1N1流感”疫苗,则其经济效益的期望为 0×23+a×13=a3万元.而两个研究所独立地研究时至少有一个研制成功的概率为 1-⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12所以两个研究所合作研究成功的概率为 12×(1+50%)=34于是A 研究所采用与B 研究所合作的方式来研制疫苗,所获得的经济效益的期望为0×14+12a×34=38a 万元,而38a>13a ,故应该建议A 研究所采用与B 研究所合作的方式来研制疫苗. 22.(本小题满分12分)(2011·辽宁铁岭六校联考)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:b ^=∑i =1nx i y i -n x -y-∑i =1nx 2i-n x -2=∑i =1nx i-x -y i-y -∑i =1nx i-x -2,a ^=y --b ^x -)[解析] (1)设抽到不相邻两组数据为事件A ,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有4种,所以P(A)=1-410=35. 故选取的2组数据恰好是不相邻2天数据的概率是35(2)由数据,求得x -=13(11+13+12)=12,y -=13(25+30+26)=27,3x -y -=972.∑i =13x iy i=11×25+13×30+12×26=977,∑i =13x 2i=112+132+122=434,3x -2=432. 由公式求得b ^=∑i =1nx iy i-n·x -·y -∑i =1nx 2i-n x -2=977-972434-432=52,a ^=y --b ^x -=27-52×12=-3,所以y 关于x 的线性回归方程为y ^=52x -3.(3)当x =10时,y ^=523=22,|22-23|<2;同样,当x =8时,y ^=52×8-3=17,|17-16|<2.所以,该研究所得到的线性回归方程是可靠的.。

概率论与数理统计期末考试试卷

概率论与数理统计期末考试试卷

一、填空题:(每题3分,共30分.请把答案填在题中横线上.)1.设C B A ,,是三个随机事件,则事件“C B A ,,不同时发生”可以表示为: .2. 三个人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4,问三人中至少有一个人能将此密码译出的概率是____________.3.设离散型随机变量X 的分布函数为()F x ,则{}P a X b <≤= .4.设X 的概率密度函数是{}111()10.520x f x P X ⎧-<<⎪=-<<=⎨⎪⎩,则其它 . 5.若(2,4)X N ,令__________Y =,则(0,1)Y N . 6. 设随机变量X 的方差()D X 存在,则[]()D X '= .7.已知随机变量X 有2(),()E X D X μσ==,根据契比雪夫不等式,则{}3P X μσ-<≥ .8.已知离散型随机变量X 服从参数为2的泊松分布,则()D X = .9.设12,,n X X X 是来自总体X 的样本,则11ni i X X n ==∑,2S = .10.评价估计量的标准有无偏性、有效性和 .1.用3个机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别为0.94,0.9,0.95,求全部产品中的合格率.2.已知随机变量X 的分布律为1240.50.30.2Xp ⎛⎫⎪⎝⎭,求()F x 及{}1 2.5P X -<<.3.设连续型随机变量X 的分布函数为20()0xA Be x F x -⎧+>=⎨⎩其它,试求:(1)A 、B 的值;(2)概率密度函数()f x .4. 已知随机变量X 、Y 相互独立,二维随机变量(,)X Y 的联合概率分布如下,请将表内空白处填入适当的数.试卷装订线5. 袋中有2只黑球,2只白球,3只红球,从中任取2只,用ξ表示取到黑球的只数,以η表示取到白球的只数(1)求(,)ξη的联合分布律; (2)求(2)P ξη+≥,22(1)P ξη+≤.6.设随机变量1234,,,X X X X 相互独立,且有(),()5,1,2,3,4i i E X i D X i i ==-=,设12341232Y X X X X =-+-,求 1(),(),X YE Y D Y ρ.三、应用题(每题8分,共16分)1.设电站供电网有10000盏电灯,夜晚每一盏开灯的概率是0.8,假定开、关时间彼此独立,估计夜晚同时开着的灯数在7900与8100之间的概率.2.一个车间生产铁钉,从某天的产品里随机抽取9个,量得结果如下(单位:毫米): 215,0.09x s ==,已知铁钉长度服从正态分布,求平均长度的双侧置信区间(0.05α=). 以下数据有可能在计算过程中要用到 0.025(2.5)0.9938,(8) 2.306t Φ==测验题(一)一、填空1、设123,,A A A 是三个事件,则这三个事件中至少有两个发生的事件是 。

数的概率与统计练习题

数的概率与统计练习题

数的概率与统计练习题一、选择题1. 在一副扑克牌中,红桃的数量是黑桃的两倍,方块的数量是梅花的三倍,那么在这副扑克牌中,梅花的数量是黑桃的几倍?A. 1倍B. 2倍C. 3倍D. 4倍2. 如图所示,一个骰子的每个面上都标有1至6的数字。

若一个人掷这个骰子两次,那么两次掷骰子赢的概率是多少?A. 1/12B. 1/6C. 1/4D. 1/23. 甲、乙、丙、丁四名学生依次从一堆石子中取球,每次可以取1个、2个或3个。

最后一颗石子由谁取到就算谁赢。

如果甲先取球,那么乙获胜的概率是多少?A. 3/8B. 1/4C. 3/16D. 1/84. 一张卡片标有字母A、B、C、D、E,从中随机抽取一张卡片。

抽到辅音字母的概率是多少?A. 1/5B. 1/2C. 2/5D. 4/55. 某班有35个学生,其中15个学生喜欢唱歌,20个学生喜欢跳舞,并且5个学生既喜欢唱歌又喜欢跳舞。

现从这班学生中随机抽取一个学生,抽到既喜欢唱歌又喜欢跳舞的概率是多少?A. 1/7B. 1/5C. 1/6D. 1/4二、填空题1. 一袋中有8个红球和4个蓝球,现从袋中连续取球3次,取到的都是红球的概率是多少?答案:7/332. 一种水果篮中有5个苹果、3个橙子和2个香蕉,现从篮子中随机取出3个水果,取出的水果中至少有1个橙子的概率是多少?答案:13/183. 有3个红桃、4个黑桃和5个方块,现从中随机取出2个扑克牌,取到两者都是红桃的概率是多少?答案:1/224. 一组数据中,35%的数小于12,40%的数大于16,那么这组数据中小于12或大于16的概率是多少?答案:75%5. 一副扑克牌中有52张牌,其中4张是红桃A和4张是黑桃A。

现从中随机抽取2张牌,抽到两张A的概率是多少?答案:1/221三、解答题1. 班级有40个学生,其中25个学生擅长语文,30个学生擅长数学。

假设每个学生只擅长其中一门学科,那么至少有多少个学生既擅长语文又擅长数学?答案:15个学生2. 一个正方形瓷砖被分成了9个小正方形,并且每个小正方形中都标有一个数字(1至9)。

初一数学上册《概率与统计》综合测试题(含答案)

初一数学上册《概率与统计》综合测试题(含答案)

初一数学上册《概率与统计》综合测试题
(含答案)
一、选择题
1. 某班级有60名学生,其中40人喜欢篮球,30人喜欢足球,15人既喜欢篮球又喜欢足球。

请问有多少人即不喜欢篮球也不喜欢足球的?
A. 35人
B. 20人
C. 10人
D. 5人
答案:B
2. 某商品原价是400元,现在打8折出售。

小明使用一张100元的折扣券购买该商品,他需要支付多少钱?
A. 300元
B. 320元
C. 360元
D. 380元
答案:C
...
二、填空题
1. 某场比赛共有12名选手参加,其中4名选手是女生,那么男生选手的人数是__8__人。

2. 一个色子被投掷6次,请问至少出现一次6的概率是
__11/36__。

...
三、解答题
1. 简述事件和样本空间的概念。

事件是指试验中可能发生的某个结果或一些结果的集合。

样本空间是指一个试验中所有可能结果的集合。

2. 请说明条件概率的计算方法。

条件概率是指在已知某个条件下,另一个事件发生的概率。

计算条件概率的方法是将事件A和B同时发生的概率除以事件B发生的概率。

...
以上是初一数学上册《概率与统计》综合测试题及答案。

希望能对您有所帮助!。

《概率论与数理统计》检测题

《概率论与数理统计》检测题

《概率论与数理统计》检测题(考试时间:90分钟)姓名 班级 分数一、填空题(每小题3分,共30分)1、设C B A ,,为三事件,则事件“C B A ,,同时发生”应表示为: 。

2、若B A ,互斥,则=AB 。

3、在n 重贝努利概型中,设每次实验中事件A 发生的概率为p ,则A 恰好发生k 次的概率为 。

4、某时间段内光顾某商店的顾客数ξ应服从 分布。

5、设某地区人群的身高服从正态分布)5,173(2N ,则该地区人群的平均身高为 。

6、设连续型随机变量ξ的分布密度为:⎪⎩⎪⎨⎧≥<-=1|| , 0 1|| , 1)(2x x x A x f ,则=A。

7、设随机变量X 的密度为)(x f ,则)(b X a P <<= 。

8、设),,,(21n x x x Λ是取自总体X 的样本,则总体期望的矩估计量为 。

9、若)1,0(~N ξ,)(~2n χη,且相互独立,则统计量nf /ηξ=服从 分布。

10、设总体X 服从正态分布),(2σμN ,2σ未知,随机抽样得到样本方差为2S ,若要对μ进行检验,则采用 检验法。

二、计算题(每小题7分,共42分)1、设有两个事件A ,B 的概率)(A P =0.5,)(B P =0.6,)(AB P =0.3,求A ,B 至少有一个发生的概率。

2、甲乙两射手各自对目标进行一次射击,已知甲的命中率为0.6,乙的命中率为0.5,求“两人都命中目标”的概率。

3、设随机变量X 服从=λ10的普阿松分布,求“1≥X ”的概率。

4、设连续型随机变量X 的密度为⎪⎩⎪⎨⎧-∈-=其他,0]1 , 1[,11)(2x x x πφ,求EX 。

5、设总体X 的分布密度为⎩⎨⎧<≥=-0,00,)(x x e x x θθφ,(0>θ),今从X 中抽取10个样本,得数据如下:1050,1250,1080,1200,1300,1250,1340,1060,1150,1150,求参数θ的极大似然估计。

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案

初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。

数学中的概率分布与统计分析测试题

数学中的概率分布与统计分析测试题

数学中的概率分布与统计分析测试题在我们的日常生活和各种科学研究中,数学中的概率分布与统计分析扮演着至关重要的角色。

从预测天气变化到评估投资风险,从医学研究中的临床试验到市场调查中的消费者行为分析,概率分布和统计分析为我们提供了理解和处理不确定性的有力工具。

接下来,让我们通过一系列测试题来深入探究这一重要的数学领域。

一、选择题(每题 5 分,共 30 分)1、下列哪个是离散型概率分布?()A 正态分布B 均匀分布C 二项分布D 指数分布2、对于一个均值为 5,标准差为 2 的正态分布,随机变量落在区间1, 9的概率约为()A 068B 095C 0997D 无法确定3、假设 X 服从参数为λ的泊松分布,且 P(X = 2) = P(X = 3),则λ的值为()A 2B 3C 6D 无法确定4、在统计中,用于描述数据集中趋势的量是()A 方差B 标准差C 中位数D 极差5、已知一组数据的方差为 4,若每个数据都乘以 2,则新数据的方差为()A 8B 16C 4D 326、对于两个相互独立的随机变量 X 和 Y,其方差分别为 4 和 9,则它们的和的方差为()A 13B 25C 5D 无法确定二、填空题(每题 5 分,共 30 分)1、二项分布的参数为 n 和 p,若 n = 10,p = 03,则其均值为_____。

2、正态分布的概率密度函数为 f(x) = 1/(σ√(2π)) e^((x μ)^2/(2σ^2)),其中μ 为_____,σ 为_____。

3、已知随机变量 X 服从区间0, 5上的均匀分布,则其概率密度函数为_____。

4、一组数据 1, 2, 3, 4, 5 的中位数是_____。

5、样本均值的计算公式为_____。

6、若随机变量 X 服从标准正态分布,即 X ~ N(0, 1),则 P(X <196) =_____。

三、计算题(每题 20 分,共 40 分)1、已知某工厂生产的零件长度服从正态分布 N(10, 05^2),从生产的零件中随机抽取一个,求其长度在 95 到 105 之间的概率。

小学四年级概率与统计练习题

小学四年级概率与统计练习题

小学四年级概率与统计练习题题目:小学四年级概率与统计练习题第一部分:概率计算1. 某班级有30个学生,其中20个是男生,10个是女生。

请问从班级中随机选择一个学生,他是女生的概率是多少?2. 一副标准扑克牌共有52张牌,其中红心和黑桃各有13张,梅花和方块各有13张。

请问从一副扑克牌中随机抽取一张牌,它是红心的概率是多少?3. 一枚公平的硬币抛掷一次,正面朝上的概率是多少?4. 甲、乙、丙三个学生参加一场考试,其考试成绩如下:甲:60分乙:80分丙:90分请问从他们中随机选择一个人,他的考试成绩大于70分的概率是多少?第二部分:数据统计与图表1. 下图是小明家的月度用水量统计表,请根据图表回答问题。

![image](image_link)a. 小明家一月份的用水量是多少?b. 二月份的用水量比一月份多还是少?c. 三月份的用水量是多少?d. 四月份的用水量比三月份多还是少?2. 下表是某小学四年级学生的身高统计表,请根据表格回答问题。

| 班级 | 身高范围(cm) | 学生数量 ||------|---------------|----------|| 1班 | 120 - 130 | 5 || 1班 | 131 - 140 | 8 || 1班 | 141 - 150 | 6 || 2班 | 120 - 130 | 4 || 2班 | 131 - 140 | 6 || 2班 | 141 - 150 | 7 |a. 1班的学生数量是多少?b. 2班身高在131cm以上的学生数量是多少?c. 班级1和班级2的学生数量总共是多少?d. 身高在141cm以上的学生数量是多少?第三部分:数据分析1. 某班级12个学生参加一场语文测试,他们的得分如下: 78, 86, 92, 73, 64, 80, 89, 77, 85, 91, 68, 79a. 这组数据的平均分是多少?b. 这组数据的中位数是多少?c. 这组数据的众数是多少?d. 这组数据的范围是多少?2. 某小区住户的家庭成员数统计如下:| 家庭成员数 | 家庭数量 ||------------|----------|| 1人 | 10 || 2人 | 15 || 3人 | 20 || 4人 | 25 || 5人以上 | 30 |a. 该小区共有多少个家庭?b. 平均每个家庭有几人?c. 家庭成员数最多的家庭有多少人?请按照题号完成相应的题目。

概率论数理统计复习测验题

概率论数理统计复习测验题

模拟试卷一、单项选择题:(每题2分,共14分)1.同时掷两颗骰子,消失的点数之和为10的概率为( )a 1 n 1 「5 c 7A. -B.—C∙— D.—4 12 12 122,设A,3为相互独立的随机大事,则下列正确的是( )A.P(B | A)=尸(A | B) B, P(B∣ A)=尸(A)C. P(A∖ B) = P(B)D. P(AS) = P(A)P(B)3.一个随机变量的数学期望和方差都是2,那么这个随机变量不行能听从()A.二项分布B.泊松分布C.指数分布D.正态分布4.设X听从正态分布N(2,4),Y听从参数为2的泊松分布,且X与丫相互独立,则D(2X-Y) =.A.14B.16C.18D.205.设x与y是任意两个连续型随机变量,它们的概率密度分别为力和心(χ),则.A.∕1 (x) + f2(x)必为某一随机变量的概率密度B.3(/。

) +力。

))必为某一随机变量的概率密度C./;(工)-力*)必为某一随机变量的概率密度D.力。

)力(幻必为某一随机变量的概率密度6.设X,,X2√-,Xπ是总体X的简洁随机样本,O(X) = ,,记1 n 1 //x=-Yx if s2 =——y(X,.-X)2,则下列正确的是建 /=1 "1 /=1A. S是。

的无偏估量量B. S是。

的极大似然估量量c.S2是,的无偏估量量 D.S与又独立7.假设检验时,当样本容量肯定时,若缩小犯第一类错误的概率,则犯其次类错误的概率( ).A.变小B.变大C.不变D.不确定1O2,在三次独立试验中,大事A消失的概率相等,若已知A至少消失一次的概率等于则27大事A在一次试验中消失的概率为3,若X〜N(l,4), y~N(L3)且X与y独立,则X — y〜4.设x和y是两个相互独立且听从同一分布的连续型随机变量,则P{X>Y}=.5.设随机变量X的分布未知,E(X) = μ , D(X) = σ29则采用切比雪夫不等式可估量P(∖X~μ∖< 2。

(完整版)概率论与数理统计试题及答案.doc

(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。

1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。

若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。

6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。

《概率论与数理统计》检测题

《概率论与数理统计》检测题

⎪⎪《概率论与数理统计》检测题(考试时间:90 分钟)姓名 班级分数一、填空题(每小题 3 分,共 30 分)1、设 A , B , C 为三事件,则事件“ A , B , C 同时发生”应表示为:。

2、若 A , B 互斥,则 AB = 。

3、在 n 重贝努利概型中,设每次实验中事件 A 发生的概率为 p ,则 A 恰好发生 k 次的概率为 。

4、某时间段内光顾某商店的顾客数 ξ 应服从分布。

5、设某地区人群的身高服从正态分布 N (173,52 ) ,则该地区人群的平均身高为。

⎧ A 6、设连续型随机变量 ξ 的分布密度为: f (x ) = ⎨ 1 - x 2⎪⎩0 , | x |< 1 , | x | ≥ 1 ,则 A =。

7、设随机变量 X 的密度为 f (x ) ,则 P (a < X < b ) = 。

8、设 (x 1 , x 2 ,L , x n ) 是取自总体 X 的样本,则总体期望的矩估计量为。

9、若 ξ ~ N (0,1) ,η ~ χ 2(n ) ,且相互独立,则统计量 f =ξ η / n服从分布。

10、设总体 X 服从正态分布 N (μ,σ 2 ) ,σ 2 未知,随机抽样得到样本方差为 S 2,若要对 μ 进行检验,则采用检验法。

二、计算题(每小题 7 分,共 42 分)1、设有两个事件 A , B 的概率 P ( A ) =0.5, P (B ) =0.6, P ( AB ) =0.3,求 A , B 至少有一个发生的概率。

2、甲乙两射手各自对目标进行一次射击,已知甲的命中率为 0.6,乙的命中率为 0.5,求“两人都命中 目标”的概率。

3、设随机变量 X 服从 λ = 10 的普阿松分布,求“ X ≥ 1 ”的概率。

⎧ 14、设连续型随机变量 X 的密度为φ (x ) = ⎨π 1- x 2 ⎪⎩ 0, , x ∈[-1,1]其他 ,求 EX 。

概率统计考试题库

概率统计考试题库

1
16. 设一个质点等可能地落在 xoy 平面上的三角形域 D 内 (其中 D 是 x=0,y=0,x+y=2 所 围成的),设事件 A 为:质点落在直线 y=1 的下侧,求 P( A) 。 17. 设甲、乙两人相约在 8:009:00 之间到车站乘车,已知两人到达车站的时刻是独立的, 等可能的,并设该车站在 8:15,8:30,8:45 和 9:00 各有一班车开出,并且两人见车就乘无 须互相等待,记事件 A 为两人刚好乘上同一班车,求事件 A 的概率。 18. 在线段 AD 上任取两点 B,C,将 AD 分为 AB,BC,CD,记事件 E 为: “这三个线段 能构成三角形。 ”求事件 E 的概率。 19. 任意取两个不超过 2 的正数,记事件 A 为:两正数的乘积介于 1 与 2 之间,求事件 A 的概率。 20. 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头, 它们在一昼夜内任何时刻到达是 等可能的,如果甲船的停泊时间是一小时,乙船是二小时,求它们中的任何一艘都不需要等 待码头空出的概率。 21. 从装有 3 个白球,3 个黑球的甲箱中,随机地取出二个球,放入装有 4 个白球与 4 个黑 球的乙箱中,然后再从乙箱中取出一球,求此球为白球的概率。 22. 不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为 90%,第二 个品种的种子发芽率为 96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求: (1)从中任取一粒种子,它能发芽的概率; (2)如果取到的一粒种子能发芽,那么它是第一个品种的概率是多少? “好的” , “一般的”与“差的” ,统计资料表明,对于 23. 某保险公司把被保险人分成三类: 上述三种人而言,在一年内出问题的概率依次为 0.05,0.15,和 0.30,如果“好的”被保险 人占总的保险人数的 20%, “一般的”占 50%, “差的”占 30%,试问在固定的一年中出问 题的人在总保险人数中占多大的比例?如某人在这一年内未出问题,他是属于“好的”的概 率为多少? 24. 在 18 盒同类电子元件中有 5 盒是甲厂生产的,7 盒是乙厂生产的,4 盒是丙厂生产的, 其余是丁厂生产的,该四厂的产品合格品率依次为 0.8,0.7,0.6,0.5,现任意从某一盒中 任取一个元件,经测试发现是不合格品,试问该盒产品属于哪一个厂生产的可能性最大? 25. 无线电通讯中,由于随机干扰,当发出信号“”时,收到信号为“”."不清”和“” 的概率依次为 0.7,0.2 和 0.1,当发出信号“”时,收到信号为“” , “不清” ,和“” 的概率为 0.9,0.1 和 0,如果整个发报过程中“” , “”出现的概率分别为 0.6,0.4,求收 到信号“不清”的概率?又当收到信号为“不清”时,原发信号是什么信号的可能性大? 26. 某校射击队共有 20 名射手,其中一级射手 4 人,二级射手 8 人,三级射手 7 人,四级 射手 1 人,一,二,三,四级射手能通过预选赛进入正式比赛的概率分别为 0.9,0.7,0.5, 0.2,求任选一名射手能进入正式比赛的概率。 27. 两台机床加工同样的零件,第一台出现废品的概率为 0.05,第二台出现废品的概率为 0.02,加工的零件混放在一起,若第一台车床与第二台车床加工的零件数为 54,求: (1)任意地从这些零件中取出一个为合格品的概率; (2)若已知取出的一个零件为合格品,那末,它是由哪台机床生产的可能性较大? 28. 已知产品中 96%为合格品,现有一种简化的检查方法,它把真正的合格品确认为合格 品的概率为 0.98, 而误认废品为合格品的概率为 0.05, 求在简化法检查下被认为是合格品的 一个产品确实是合格品的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级概率与统计测试题考号 班 姓名1.六个人站成一排,其中某三人相邻的概率为 ( ): A .51 B .201 C .301 D .1201 2.有10名学生,其中4名男生,6名女生,从中选出2名,恰好是2名男生或2名女生的概率为( ) A .452B .152C .31 D .157 3.抛两个各面上分别标有1,2,3,4,5,6的均匀的正方体玩具,“向上的两个数之和为3”的概率为 ( ) A .31 B .61 C .361 D .181 4.投掷两颗骰子,求同时出现奇数点的概率:( )A 、21B 、 41C 、 61D 、以上都不对5.将3个相同的球放到4个盒子中,假设每个球放入哪个盒子是等可能的,并且每个盒子能容纳的球不限,则有3个盒子各放一个球的概率( )A 、 3344P B 、 334)43(41⋅⋅C C 、 364C D 、以上都不对 6.从装有白球3个、红球4个的箱子中,把球一个一个地取出来,到第五个恰好把白球全部取出的概率是 (A )354 (B )71 (C )356(D )72 7.下列说法正确的是:(A)甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样(B)期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好(C)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好(D)期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好8.从某鱼池中捕得1200条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得1000条鱼,计算其中有记号的鱼为100条,试估计鱼池中共有鱼的条数为A 、 10000B 、 12000C 、 1300D 、130009.一个年级有12个班,每个班有50名学生,随机编为1~50号,为了了解他们在课外的兴趣爱好要求每班是40号学生留下来进行问卷调查,这里运用的抽样方法是(A ) 分层抽样 (B )抽签法 (C )随机数表法 (D )系统抽样法10.八人分两排坐,每排4人,其中甲必须在前排,乙、丙二人排在同一排的不同排法的概率是11.从5个男生和3个女生中选5人担任5门不同学科的课代表,求女生甲必须担任语文课代表,男生甲必须担任课代表,但不担任数学课代表的概率12.甲袋内有8个白球,4个红球;乙袋内有6个白球,4个红球.现从两个袋内各取1个球.计算:①取得两个球颜色相同的概率;②取得两个球颜色不相同的概率.13.有5件不同的玩具全部分给3个儿童,求每人至少一件的概率14.任意从1,2,…,100中取出50个球并按从小到大顺序排列,试求第10个数为20的概率(只要列式)15.6位同学到A 、B 、C 三处参加活动,求:①每处均有2位同学的概率;②A 处恰有3位同学的概率.16.将数字1,2,3,4填入标号为1,2,3,4的4个方格中,每格填一个数字,则方格的标号与所填数字均不相同的概率为 。

17.某人忘记了电话号码的最后两个数字,但他记得最后一位是奇数,求他一次接通电话的概率统计2.从总体中抽一个样本,2、3、4、8、7、6,则样本平均数为x =3。

从总体中抽一个样本,3、7、4、6、5,则样本标准差为4.若样本a 1,a 2,a 3的方差是2,则样本2a 1+3,2a 2+3,2a 3+3的方差是 。

5. (反面)10件产品中有2件次品,取出的2件中最多有1件次品的概率为 .6.(反面)在一次口试中,要从10道题中随机地抽出3道进行回答,答对其中两道题就获得及格.某考生能回答这10道题中的8道题,那么这位考生及格的概率是 .11.从正方体的6个面中选取3个面,其中有2个面不相邻的选法A .8种B .12种C .16种D .20种15.72)2)(1(-+x x 的展开式中3x 的系数是 答案2002高考:21,133,B ,1008,A ,概率:A ,D ,4544,3029,158、157,8110、729160,D ,B ,53,143,563,A ,8180,919C 4080C /50100C ,D ,83,501,统计:D ,5,2,8,D ,B ,二项式定理:1,54,316816-x C ,10、11、12、13、14,-20,C ,45,800,C ,C ,C ,1、38、38、2318+、2318-,B ,B ,2004年高考中的概率统计与期望方差题分析概率统计是近代数学的重要分支,在现实生活中应用十分广泛,同时概率统计与排列组合又是紧密联系的.从 2004年各省的高考试题来看,要求同学们必须了解随机事件的概率、等可能事件、互斥事件、对立事件、相互独立事件、n 次独立重复试验、抽样方法、概率分布列、数学期望与方差等基本概念.会灵活运用排列组合公式计算等可能事件的概率、会用互斥事件的概率加法公式、相互独立事件的概率乘法公式、会用n 次独立重复试验k 次发生的概率公式、期望与方差计算公式进行相关运算.下面对2004年高考试题中的有关题目进行分析研究.例 1(湖南理科第5题)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100 的样本,记这项调查为①;在丙地区中有20个销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次为( ).A .分层抽样、系统抽样B .分层抽样、简单随机抽样C .系统抽样、分层抽样D .简单随机抽样、分层抽样解:回归定义。

本题考查了分层抽样、简单随机抽样的定义,选项 B .例 2(湖南文科第 19题)甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为1/4 ,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为 1/12,甲、丙两台机床加工的零件都是一等品的概率为2/9.(I) 分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(II)从甲、乙、丙加工的零件中各取一个检验,求至少有一个是正品的概率.解: (I)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有,即,由①③得代入②得27[P(C)]2-51P(C)+22=0解得P(C)=2/3 或11/9(舍去),将P(C)=2/3分别代入③、②可得P(A)=1/3,P(B)=1/4,即甲、乙、丙三台机床各自加工零件是一等品的概率分别为1/3,1/4,2/3.(II)记D为从甲、乙、丙三台机床各自加工零件中各取一个检验,至少有一个一等品的事件.则=,故从甲、乙、丙加工的零件中各取一个检验,为至少有一个是正品的概率为5/6.例3(湖北文科第15题)某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女生中抽取的人数为80人,则n=___________.解:由分层抽样的定义知,从各个不同层面抽取的个体的概率相同,由已知为 8%,故样本容量为(200+1200+1000)×8%=192.例4(湖北文科 21题)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可采用,单独采用甲、乙、丙、丁预防措施后,此突发事件不发生的概率(记为P)和所需费用如下表:预防措施方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过 120万元的前提下,请确定一个预防方案使得此突发事件不发生的概率最大.分析:本小题考查概率的基础知识以及运用概率知识解决实际问题的能力.解:方案 1:单独采用一种预防措施的费用均不超过 120万元,由表可知采用甲措施使得此突发事件不发生的概率最大,其概率为0.9.方案 2:联合采用两种预防措施,总费用不超过 120万元,由表可知联合甲、乙两种预防措施使得此突发事件不发生的概率最大,其概率为1-(1-0.9)(1-0.7)=0.97方案 3:联合采用三种预防措施,总费用不超过 120万元,故只能联合乙、丙、丁三种预防措施,此时此突发事件不发生的概率为1-(1-0.8)(1-0.7)(1-0.6)=0.976.综合上述三种预防措施方案,在总费用不超过 120万元的前提下,联合使用乙、丙、丁三种预防措施,可使此突发事件不发生的概率最大.例 4(湖北理工科第 13题)设随机变量的概率分布为P(=k)为常数,k=1,2,3……则a=___________.分析:由随机变量的概率分布的定义知:所有概率之和为1,而此概率列为首项是a/5,公比是1/5的等比数列,由公式S=,解之得a=4.例 5(湖北理工科第 21题)某突发事件,在不采取任何措施的情况下以生的概率为0.3,一旦发生将造成400万元的损失,现有甲、乙两种相互独立的预防措施可供采用,单独采用甲、乙两种预防措施所需的费用分别为45万元和30万元,采用相应措施后此突发事件不发生的概率分别为0.9和0.85.若预防方案允许甲、乙两种相互独立的预防措施可单独采用、联合采用、不采用,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.)分析:本题考查概率和数学期望等概念及应用概率知识解决实际问题的能力.解:①不采取预防措施时,总费用即损失的期望值为 400×0.3=120万元.②若单独采用甲,则预防措施所需的费用为 45万元,损失的期望值为400×(1-0.9)=40万元所以总费用为45+40=85万元.③若单独采用乙,则预防措施所需的费用为 30万元,损失的期望值为400×(1-0.85)=60万元所以总费用为30+60=90万元.④若联合采用甲、乙,则预防措施所需的费用为 45+30=75万元,损失的期望值为400×(1-0.85)(1-0.9)=6万元所以总费用为75+6=81万元.综合①②③④比较其总费用可知,应选择联合采取甲、乙两种预防措施可使总费用最少.例 6(天津文科第 18题)从4名男生和2名女生中任选3人参加演讲比赛.(Ⅰ)求所选 3人都是男生的概率;(Ⅱ)求所选 3人中恰有1名女生的概率;(Ⅲ)求所选 3人中至少有1名女生的概率.解:(Ⅰ)所选 3人都是男生的概率为:.(Ⅱ)所选 3人中恰有1名女生的概率为:.(Ⅲ)所选 3人中至少有1名女生的概率为:.也可采用对立事件的概率公式,至少有 1名女生,其对立事件为都是男生,由(Ⅰ)知更快.例 7(全国卷理科18题)一接待中心有 A、B、C、D四部热线电话,已知某一时忘刻电话A、B占线的概率均为0.5,电话D、C占线的概率均为0.4, 各部电话是否占线相互之间没影响.假设该时刻有部电话占线,试求随机变量的概率分布和它的期望.解:逐步计算,得,,,=0.04.于是得随机变量的概率分布列为:所以.例 8(浙江理工科第 18题)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取一个球,放回后第二次再任取一个球(假设取到每个球的可能性相同),记第一次与第二次取到期球的标号之和为。

相关文档
最新文档