第十单元概率与统计初步测试题教学提纲
中职数学教学课件:第10章 概率与统计初步
可以使用拟合线来预测因变量的 值。
模型
y = ax + b,其中a是斜率,b是 截距。
拟合线
最佳拟合线是通过最小二乘法得 到的直线。
多元线性回归分析初步
定义
多元线性回归分析是用来研究多 个因变量和一个或多个自变量之 间的线性关系。
预测
可以使用拟合线来预测因变量的 值。
模型
y = a1x1 + a2x2 + ... + anxn + b,其中a1, a2, ..., an是斜率,b 是截距。
可靠性。
THANKS
感谢您的观看
^2D(Y),
D(XY)=E(X^2)D(Y)+E(Y
^2)D(X)。
期望的性质
2
E(aX+bY)=aE(X)+bE(Y)
,E(XY)=E(X)E(Y)。
方差的定义
3 设X是一个随机变量,它
的取值范围为全体实数, 称D(X)为X的方差。
Part
05
回归分析初步
一元线性回归分析
定义
一元线性回归分析是用来研究一 个因变量和一个自变量之间的线 性关系。
连续型随机变量的概率密度函数
概率密度函数的定义:连续型随 机变量的概率密度函数是描述随
机变量取值概率分布的函数。
概率密度函数的性质:非负性、 规范性、归一性。
常见连续型随机变量的概率密度 函数:正态分布、指数分布、均
匀分布等。
正态分布及其性质
正态分布的定义
如果一个随机变量的概率密度函数满足以下条件,则称它为正态 分布。
随机变量及其分布
01
02
03
随机变量
定义随机变量,并介绍随 机变量的概念和性质。
人教版小学四年级下册数学第10单元 总复习 统计与概率 (2)
1. “平均数在生活中的应用”是教学的难点。
复习时,不仅要让学生理解“平均数”是如何计算出来的,不要让他们体会到平均数是一个比较“虚”的数。
在此基础上,我又进行了拓展延伸——已知三门学科的平均成绩及其中两门学科的成绩,让学生计算出剩下一门学科的分数。
因为这个例子学生非常熟悉,所以很快他们就找到了解决问题的方法。
2. 复式条形统计图是在单式条形统计图基础上教学的,因此,要充分利用学生已有的统计知识和数学活动经验。
这样,学生更加有兴趣,同时体验了数学与生活的密切联系。
通过对原有统计知识的复习,让孩子们又重拾起对复式条形统计图的记忆。
第1页共1页。
《概率与统计》单元测试卷
《概率与统计》单元测试卷一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一所中学有高一、高二、高三共三个年级的学生1600名,其中高三学生400名.如果通过分层抽样的方法从全体高中学生中抽取一个容量为80人的样本,那么应当从高三年级的学生中抽取的人数是( ) A .10 B .20 C .30 D .402.从总体中抽取的样本数据共有m 个a ,n 个b ,p 个c ,则总体的平均数x 的估计值为( )A .3a b c ++ B .3m n p++ C .3ma nb pc++ D .ma nb pc m n p++++3.甲、乙两人独立地解同一问题,甲解出这个问题的概率是14,乙解出这个问题的概率是12,那么其中至少有1人解出这个问题的概率是( )A .34 B .18C .78D .584.若*(31)()n x n N -∈的展开式中各项的系数和为128,则2x 项的系数为( )A .189B .252C .-189D .-2525.甲、乙、丙、丁四名射击选手在选拨赛中所得的平均环数x 及其方差S 2如下表所示,则选送参加决赛的最佳人选是A .甲B .乙C .丙D .丁6.已知n 为奇数,且n ≥3,那么112217777n n n n nn n C C C ---+⋅+⋅+⋅⋅⋅+⋅被9除所得的余数是( )A .0B .1C .7D .87.某仪表显示屏上有一排八个编号小孔,每个小孔可显示红或绿两种颜色灯光.若每次有且只有三个小孔可以显示,但相邻小孔不能同时显示,则每次可以显示( )种不同的结果. A .20 B .40 C .80 D .1608.现有20个零件,其中16个一等品,4个二等品.若从20个零件中任取2个,那么至少有一个是一等品的概率是( )A .11164220C C C B .111619220C C C C .2162201C C - D .11216416220C C C C +9.七张卡片上分别写有0、0、1、2、3、4、5,现从中取出三张后排成一排,组成一个三位数,则共能组成( )个不同的三位数.A.100 B.105 C.145 D.15010.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是()A.40243 B.1027C.516D.10243二.填空题:本大题共6小题,每小题5分,共30分.11.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装宽带,调查结果如下表所示:则该小区已安装宽带的户数估计有户12.如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:(1)样本数据落在范围[5,9)的频率为_______;据(2)样本数据落在范围[9,13)的频数为_______. 13.在某市高三数学统考的抽样调查中,对以上(含90分)的成绩进行统计,其图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____________人.14.方程2551616x x x C C --=的解集是____________________. 15.若某人投篮的命中率为p ,则他在第n 次投篮才首次命中的概率是________________.16.从1到10这10个数中任取不同的三个数,相加后能被3整除的概率是_____________.答卷二.填空题:11 12 13 14 1516三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)有A 、B 、C 、D 四封信和1号、2号、3号三个信箱,若四封信可以随意投入信箱,投完为止.(1)求3号信箱恰好有一封信的概率;(2)求A 信没有投入1号信箱的概率.18.(本小题满分12分)一个口袋中装有三个红球和两个白球.第一步:从口袋中任取两个球,放入一个空箱中;第二步:从箱中任意取出一个球,记下颜色后放回箱中.若进行完第一步后,再重复进行三次第二步操作,分别求出从箱中取出一个红球、两个红球.19.(本小题满分12分)若非零实数m 、n 满足2m +n =0,且在二项式12()m n ax bx(a>0,b>0)的展开式中当且仅当常数项是系数最大的项,(1)求常数项是第几项;(2)求a的取值范围.b20.(本小题满分12分)在一次由甲、乙、丙三人参加的围棋争霸赛中,比赛按以下规则进行,第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者.根据以往战绩可知,甲胜乙的概率为,乙胜丙的概率为,丙胜甲的概率为,(1)求比赛以乙连胜四局而告终的概率;(2)求比赛以丙连胜三局而告终的概率.21.(本小题满分12分)在矩形ABCD中,AB=4,BC=3,E为DC边的中点,沿AE将ΔAED折起,使二面角D-AE-B 为60°.(1)求DE 与平面AC 所成角的大小; (2)求二面角D-EC-B 的大小.(1) (2)22。
中职数学(基础模块上册 语文版)教学分析:第十单元 概率与统计初步
第十单元概率与统计初步一教学要求1.掌握分类计数原理和分步计数原理.2.理解随机事件,频率和概率的概念.3.理解概率的简单性质.4.了解直方图与频率分布的概念.5.了解总体与样本的概念.6.了解样本的抽样方法.7.理解均值标准差的概念;会用样本均值、标准差估计总体均值、标准差.8.了解相关关系及一元线性回归分析.9.培养学生的计算工具使用技能,数据处理技能和分析与解决问题能力.二教材分析和教学建议(一)编写思路1.由浅入深,强调基础概率与统计这部分知识,对于中职的学生来讲,无论是在概念、公式的含义上,还是在解题的思路上,都有一定难度,由于他们的数学基础水平低,学习起来困难会多一些.但是概率统计作为应用知识的一部分,更是一种重要的思想方法,一种思维方式,是他们应该学习和了解的.因此,本单元概率与统计初步在编写中,遵照大纲精神,选择了概率统计中最基础最重要的知识,由浅入深,多讲实例,淡化理论,强调理解与应用.在概率部分,只介绍了随机事件和频率的概念;给出了概率的统计定义和概率的简单性质;在统计方面,则在复习初中学过的简单统计知识的基础上,只介绍了样本的概念与抽样方法,用样本估计总体的方法.2.多讲实例,淡化理论为了降低难度,便于学生理解与掌握,教材中的概念大多是通过实例引入的,对于一些公式,则略去了推导与证明,只是作了一些必要的说明,如互斥事件的概率加法公式,相互独立事件的乘法公式等.在这里,教材都通过例题讲解了公式的使用方法,强调了对公式的直接应用.3.加强计算器及计算机相关软件的使用本单元中,样本的抽取,总体的频率分布,均值与标准差,用样本估计总体的均值与标准差,回归分析等部分由于涉及的一些计算比较复杂,都需要使用计算器或计算机相关软件,从而培养学生的计算工具的使用技能,数据表格处理技能及分析,解决问题能力.教材在各相应部分安排了应用计算器和计算机相关软件解题的内容.4.重点与难点本单元的重点概念是:随机事件,频率,概率,总体,个体,样本,频率分布,均值,标准差等.重要方法是:简单随机抽样的方法,用样本估计总体的方法,回归分析的方法.重要思想是:随机思想、统计思想.本单元的难点是:概率的概念,样本对总体的估计,回归分析,用概率统计知识解决实际问题.(二)课时分配本单元教学约需16课时,分配如下(仅供参考):10.1计数原理约2课时10.2随机事件与概率约2课时10.3概率的简单性质约2课时10.4直方图与频率分布约2课时10.5总体与样本约1课时10.6抽样方法约1课时10.7均值与标准差约2课时10.8用样本估计总体约1课时10.9一元性回归约1课时归纳与总结约2课时(三)内容分析与教学建议10.1计数原理1.教材通过对两个具体实例进行分析,引进了分类计数的加法原理和分类计数的乘法原理.实际上这两个原理本身就是人们通过大量实践经验归纳抽象出来的,因此称为“基本原理”.在本单元中,它们是概率统计计算的依据.2.教学时,在给出原理之前,一定要使学生获得必要的感性认识,对引例要讲得清晰明确.(1)叙述和讲解例题时,要准确使用分类及分步等术语;(2)将分类及分步的具体内容列举出来;(3)讲过加法原理之后,在讲乘法原理的引例的时候,一定要和加法原理的引例加以比较,突出它们的区别;(4)让学生直接参与基本原理的引入,除了解答教材中提出的问题外,还可以让学生自己举出一些类似实例,以使学生由被动接受变为主动思考,然后由师生一起归纳出基本原理.3.两个原理都讨论“做一件事”,确定“完成这件事所有的不同方法的种数”但这里所指的“做一件事”是一个比较抽象的概念,它不同于学生在小学、初中解应用题时遇到的“做一件工作”、“完成一项工程”等,其含义比这要广泛得多,讲解例题时,要着重说明该题的“做一件事”究竟指的是什么.例如:(1)从甲地到乙地;(2)从甲地经乙地到丙地;(3)从三个班中任选一名三好学生;(4)从三个班中各选一名三好学生;(5)由5个数字组成没有重复数字的两位偶数.这些都是原理中所说的“做一件事”.明确了什么叫“做一件事”,才能去分析完成这件事可以采取什么方法,是分类还是分步,从而确定该题是使用分类计数的加法原理还是分类计数的乘法原理.4.教材明确指出了两个基本原理的区别,这在教学中要结合实例加以阐述和强调,同时要注意:(1)“做一件事,完成它可以有n类方式”,这里是对完成这件事的所有方式的一个分类.分类时,首先要根据问题的特点确定一个分类的标准,然后在这个确定的标准下进行分类.标准不同,分类的结果就不同.其次,分类应满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同类的两种方法都是不同的方法,只有满足这些条件,才能正确使用分类计数的加法原理.(2)“做一件事,完成它需要分成n个步骤”,这里是指完成这件事的任何一种方法,都要分成n步执行.和分类计数的加法原理一样,分步时,首先要根据问题的特点确定一个分步的标准,然后在这个确定的标准下进行分步.标准不同,分成的步骤数也可以不同.一个合理的分步还必须满足两个要求:第一,完成这件事必须而且只需连续完成这n步.这就是说,分别选自这n个步骤的n个方法,对应了完成这件事的一种做法;第二,做每一个步骤时,选用的方法和做上一个步骤时选用的方法是无关的,并且每一个步骤的完成方法种数正好是完成这个步骤所有方法的种数.只有满足这些条件,才能正确使用分步计数的乘法原理.5.例题的教学,要紧密联系基本原理,有意识地培养学生从两个基本原理出发思考问题的习惯.简单的问题,可以单独使用分类计数的加法原理或分类计数的乘法原理,有些问题常常同时要用到两个基本原理或可以分别用两个原理去做.稍复杂一些的问题,在具体“分类”和“分步”时,学生常常感到困难,因此需要多多练习,不断积累经验,逐步做到恰当分类,合理分步.10.2随机事件与概率1.本节内容包括随机现象,随机试验,随机事件,频率等基本概念及概率的统计定义.2.通过观察几个例子,教材接连给出了随机现象,随机试验,随机事件这三个概念,它们之间虽然没有概念的种属关系,但彼此是有关联的,都是在前一个概念的基础上,定义后面的概念,接下来与事件有关的概念也是这样给的,这种给出的形式密度虽显稍大,但是学生并不难理解,反而会感到前后关联,容易接受.为了便于学生理清层次,可给出下面的链式:现象→随机现象→随机试验→随机事件(含必然事件和不可能事件)→基本事件→复合事件.为了使学生更好地理解这些概念,教师可根据实际,多举一些例子.其中搞清基本事件的个数是个难点,教学中应注意培养学生这方面的能力.3.研究随机现象的规律性是通过随机试验进行的.关于随机试验,有如下严格的定义:(1)试验在相同条件下,可以重复进行;(2)每次试验的结果不止一个,而且所有可能结果事先都是明确的;(3)每次试验在其最终结果揭晓前,无法预言会发生哪一个结果.4.随机事件在一次试验中是否发生,不能事先确定,但是在大量重复试验的情况下,它的发生会呈现出一定的规律性,怎样观察和发现这种规律性呢?这种规律性是通过什么体现出来呢?通过观察事件在大量重复试验中所发生的频率,可以发现这种规律.频率是这样一个量,即该事件发生的次数与试验总次数的比值,频率随试验次数的不同而不同.这一点通过教材中的例子可以清楚地反映出来.5.频率具有稳定性.这种稳定性把随机事件发生的可能性大小客观地反映出来,利用这种稳定性,教材给出了概率的统计定义.可以认为概率是频率在理论上的期望值.例如,对一批零件进行抽查计算,得出这批零件合格品的概率是98%,那么,如果将这批零件全部装箱,其中每箱装1000个,那么可以估计平均每箱含有合格品980个,这是箱中含有合格品数的理论上的期望值.但在实际情况中,每箱的合格品数可能略多于980个也可能略少于980个.6.对于必然事件,因为每次试验中它一定发生,试验重复进行n次,它也发生n次,因此它的频率总是1;对于不可能事件,因为每次试验中它一定不发生,试验重复进行n次,它发生的次数应是0,因此它的频率总是0.7.概率的统计定义实质是给出了概率的近似值,用抛掷硬币这个传统,经典的试验,说明一个事件的频率稳定在它的概率左右,是多数教科书的编者所采取的方法,这个试验简单,做起来方便,不需要什么成本,任何人随时随地都可以做,所以教学中教师也不妨让学生做一做,亲自试验体验一下.8.事件的频率和事件的概率是两个不同的概念,随机事件的频率与试验次数有关的一个相对数量,是随着试验的不同而不同.而事件的概率反映的是随机事件的某种本质属性,是与试验次数无关而客观存在的一个确定的数.频率是概率的表现形式,概率决定着频率的变化趋势,概率才是随机现象的本质属性.9.本节教学内容的重点是随机事件等有关概念和概率的统计定义,频率的计算,概率的确定.难点是搞清基本事件的个数,确定某事件的概率及分析概率问题的思想方法,解题思路.概率问题的思考方法,学生接受起来比较困难,为此,应加强概念教学,加强对容易混淆的概念的区别与比较,来加深学生对有关概念的理解.10.3概率的简单性质1.本节内容包括概率的四个简单性质:(1)必然事件的概率等于1,不可能事件的概率等于0;(2)对于任何事件A,有0≤P(A)≤1;(3)如果A,B是互斥事件,那么P(A+B)=P(A)+P(B);(4)如果A,B是相互独立事件,那么P(A·B)=P(A)·P(B).2.由于必然事件的频率总是1,所以它的概率等于1,由于不可能事件的频率总是0,所以它的概率等于0;根据,0≤W(A)≤1,不难得到0≤P(A)≤1,这里的事件A显然是随机事件、必然事件、不可能事件三者的统称.3.性质(3)是互斥事件的概率加法公式.互斥事件是指在一次随机试验中,不可能同时发生的两个事件,在众多事件中,辨认、识别互斥事件,举出互斥事件和非互斥事件的例子,是使学生理解并掌握这一概念的方法.教师可以学生熟悉的实例,让学生多做一些这样的练习.所谓“A+B”事件,是指在同一试验中,A或B中有一个发生它就发生的事件.教材中提到的“A或B中至少有一个发生”的事件就是指“A+B”事件.实际上,对于“A+B”事件,不论A与B是不是互斥事件,总是存在的.互斥事件的概率加法公式,教材是直接给出的,没有加以证明,教材主要是要求学生能理解其含义,掌握其使用条件,会用来计算即可.例1是互斥事件的概率加法公式的直接应用.4.对立事件是互斥事件的一部分,即其中必有一个发生的两个互斥事件叫做对立事件.这就告诉我们,对立事件首先是互斥事件,但互斥事件不都是对立事件,只有那些必有一个发生的两个互斥事件才叫做对立事件.教材给出了对立事件计算公式的一个简单证明,只需学生了解即可,例2是对立事件计算公式的直接应用.5.教材借助于实例给出了相互独立事件的描述性定义,要确切地表示它,需要涉及条件概率的概念,但是本教材没有出现条件概率的概念,因此,为了让学生能正确理解两个事件的相互独立关系,可以让学生自己举一些相互独立事件的例子,共同分析相互独立的两个事件中“一个事件的发生与否对另一个事件发生的概率没有影响”这一特征.同时要将“相互独立”与“互斥”两个概念加以区别,让他们在对比中理解和掌握相互独立这一概念.6.如果事件A与B是相互独立的,那么事件A与B,A与B,A与B也相互独立.这一性质很重要,例4,例5就应用了这个性质,从而使计算得到了简化.讲解时应加以强调,以引起学生重视.7.本节教材重点是互斥、对立及相互独立事件的概念及有关计算,难点是三种事件关系的区别.10.4直方图与频率分布1.本节的内容是直方图与频率分布及学习用样本频率分布来估计总体频率分布的方法、步骤.2.在获取了样本资料以后,要对样本数据进行整理.先根据样本资料列频率分布表,再画频率分布直方图,这是由样本估计总体分布的基本方法.这从理论上讲并不难,只是具体操作起来比较麻烦,教学中应结合例题把列频率分布表和画频率分布直方图的步骤、要领讲清,要让学生自己动手,通过实际操作掌握方法,要让学生知道,对样本数据的整理是统计工作的基本功,尽管麻烦但很重要,因此要多加练习,培养自己认真细致的实战作风,从而提高计算能力,提高工作能力.3.频率分布表可以清楚地反映样本数据的分布规律,列这个表需要四个步骤,即:(1)计算极差;(2)决定组距与组数;(3)确定各组分点;(4)列频率分布表.前三步是对数据的整理,决定组距与组数需要根据具体情况灵活处理,第四步列频率分布表时,需要依次计算各个频率,计算量大些,要仔细耐心,算完之后可以将所有的频率相加看是否得1,以进行检验.完成这四步之后,可以利用其结果,画频率分布直方图.4.频率分布直方图可以将频率分布表中反映出来的规律直观形象地表示出来.画频率分布直方图之前需要建立一个坐标系,横轴表示数据,将各组数据的分点标在横轴上;纵轴表示频率与组距的比值.各个小长方形的面积等于相应各组的频率,这样频率分布直方图就以图形的面积形式反映了数据落在各个小组内的频率大小.在频率分布直方图中,由于各小长方形的面积等于相应各组的频率,而各组频率的和等于1,因此各小长方形的面积的和等于1.5.利用Excel表格做直方图,培养学生数据处理能力是大纲明确提出的要求,为了便于学生掌握,教材给出了具体步骤,可让学生按照步骤来操作.6.本节教学的重点是频率分布表,频率分布直方图的绘制;难点是样本数据的整理.10.5总体与样本1.本节的内容是复习总体与样本的概念.2.关于总体与个体,不是笼统地指总体与个体本身,而是指总体与个体的某一数量指标,例如:灯泡的使用寿命,玉米的产量,学生的身高等.因此总体可以看做是某些数据的集合.3.样本是总体这个集合的一个子集.它由总体中的一部分个体组成,这部分个体的数量叫做样本的容量.4.本节教学的重点是掌握总体与样本的概念,理解二者之间的关系.10.6抽样方法1.本节的内容是样本抽取的三种方法:简单随机抽样法,系统抽样法,分层抽样法.2.在讲解每一种抽样方法时,应结合具体问题进行演示与讲解,首先要讲清简单随机抽样,系统抽样,分层抽样三种抽样方法的原理与步骤,并通过对具体问题的解决让学生进3. 统计的基本思想方法是用样本估计总体,即用局部推断整体,这就要求样本应具有良好的代表性,而这完全取决于抽样方法的客观合理性.可见,抽样是选取样本的基础,样本的选取是否恰当,对于研究总体是十分关键的.因此在教学中,要提高对抽样方法重要性的认识.4.本节只讲了具体的抽取方法,关于如何确定样本容量的内容,由于大纲没有涉及,所以本教材也没有做定量的介绍,样本容量的大小,一般取决于下面几个因素:(1)总体中每个个体的差异较大,样本容量就要大些;(2)抽样调查的力量大(人员多,财力强,时间长等),则应要求较小的误差,反之则可允许较大的误差,而误差的大小决定或影响着样本容量的大小;(3)对抽样调查结果愿意承担较小的风险,则应加大样本容量,反之则可适当减少样本容量;(4)在其他条件相似的条件下,不同的抽样方法也可影响到样本容量的大小.5.还应该提出的是,完全随机的样本,在现实中是很少的,因为每一次抽取总是要直接或间接地通过人的判断来执行.也就是说,随机抽样只是一种理想的情况,况且在实际问题中,有时考虑到一些具体因素(例如抽样的代价),也可能有意识的不采用随机抽样的方法.由样本推断总体必然会有误差,但是这种误差是我们可以掌握的,我们可以通过概率论和数理统计的理论和方法,对这些误差进行估计和适当的控制.6.本节教学的重点和难点是对三种抽样方法的掌握.10.7 均值与标准差1.本节的内容是均值与标准差的意义及计算方法.2.上一节给出了用样本频率分布来估计总体频率分布的方法,可以使我们对总体的统计规律有一个直观,完整的了解,但在很多情况下,我们并不需要知道总体的分布状况,而只需要知道它的某些特征就够了,例如,在测量某零件的长度时,由于种种偶然因素的影响,零件长度的测量值每次测量不尽相同,是一个随机变量,一般我们只关心这一零件的平均测量长度及测量结果的精确度,即要求知道测量长度的平均值与离散程度.又如,对一个射手的射击技术的评定,除了根据他多次射击的平均命中环数之外,还要看他各次射击命中的环数与平均命中环数的偏差(也就是射击的散布程度)大不大,偏差越大,表明射击命中点越分散,射击的技术越不稳定.由这些例子可以看出,我们引进一些用来表示平均值和衡量离散程度的量,这些量能够刻画随机变量的主要性质,我们称之为随机变量的数字特征,其中最重要的是均值与标准差.数字特征及其运算在概率统计中起着重要作用,利用它们可以使许多问题的解决大大简化.3.对于均值的计算,教材给出了两种情况及两个计算公式,它们是:x =1n (x 1+x 2+…+x n )=1n ∑i =1n x i ; x =x 1·f 1n +x 2·f 2n +…+x k ·f k n =∑i =1k x i ·f i n. 教学中,要让学生能根据不同情况选择不同的公式.4.对于标准差的概念,本节只是明确了它的意义,即“它可以用来衡量一组数据的波动大小,标准差越大,说明这组数据波动越大”.因此本节主要强调标准差的计算及两组标准差大小的比较.5.本节教学的重点和难点是均值与标准差的计算.10.8 用样本估计总体1.本节内容是对总体均值与标准差的估计.2.用样本的均值x 估计总体均值和用样本的标准差估计总体标准差都属于无偏估计. 所谓“无偏估计”就是使估计量符合下面三个标准:(1)无偏性.设θ^(x 1,x 2,…,x n )是总体中某参数θ的估计量,若E (θ^)=θ,则称θ^是θ的无偏估计量.我们用x =1n ∑i =1n x i 去估计总体均值E (x )=m ,因为 E (x )=E ⎝ ⎛⎭⎪⎪⎫1n ∑i =1n x i =1n ∑i =1n E (x i )=1n ·n ·m =m . 所以估计量x 是满足无偏性的.同样用样本标准差S 去估计总体标准差也具有无偏性.(2)有效性.设θ^1与θ^2都是θ的无偏估计量,若D (θ^1)<D (θ^2),则称θ1比θ2更有效.用x 和S 来估计总体的均值和标准差比其他估计量更有效.(3)一致性.我们希望,当n 越来越大,n →∞时,估计量θ^对θ的估计越精确,越一致.如果P (||θ^ (n)-θ<ε=1,则称θ^(n )是θ的一致估计量,可以证明,样本均值x 是总体均值的一致估计量,S 也是总体标准差的一致估计量.关于无偏估计的概念不必告诉学生.3.计算均值与标准差可以利用计算器和计算软件,这样可以使繁杂的计算变得简单.4.本节教学内容的重点和难点是对总体均值与标准差的无偏估计. 10.9 一元线性回归1.本节内容是一元线性回归方程的建立.2.变量之间的关系,有一种是确定性关系,如正方形的面积S 与边长x 之间的关系S =x 2就是确定性关系; 圆的周长C 与圆的半径r 之间的关系C =2πr 也是确定性关系.变量之间除了具有确定性关系之外,还存在一种非确定性关系——相关关系.例如施肥量与亩产量之间虽然不能确定出准确的函数关系式,但它们之间却具有相关性;又如,高中毕业生毕业考试成绩与高考成绩,虽然不具有确定性关系,即二者之间不可能建立精确的函数表达式,但它们的关系也非常密切,一般来说,毕业成绩好的学生高考成绩也比较好.具有相关关系的变量之间,存在着一定的统计规律性,线性回归就是研究这种规律的手段之一.3.观察散点图是求回归直线方程前非常重要的步骤.如果所有的散点大体上散布在某一条直线附近,就可以认为y 对x 的回归函数类型为直线型.通过观察散点图,可以画出不止一条直线,那么,其中哪一条直线最能代表变量y 与x 的关系呢?为了不涉及更多的线性相关的知识,可以认为在整体上与这几个点最接近的一条直线,就是所求的直线,并设为y ^=a +bx ,此处应提醒学生这个解析式不同于一次函数解析式的表示方法.4.再由y ^=a +bx 得到y ^=a ^+b ^x 时,教材没有给出a ^,b ^的求解过程,只是说“利用微积分的知识可以算得,当a ^,b ^为下列值时,所得回归直线最好” ,然后就是结论:a ^=y -b ^x ,b ^=S xy S xx, 其中,x =1n ∑i =1n x i ,y =1n ∑i =1n y i , S xy =∑i =1nx i y i -n xy ,S xy =∑i =1n x 2i -n x 2.这里,只要求学生会用这些公式计算,求出a ^,b ^即可.对于这些较复杂的计算,还是训练学生使用计算器和计算软件计算为好.5.教学中应告诉学生,回归方程y ^=a ^+b ^x 与具有函数关系的直线方程y =a +bx 不同.满足函数关系y =a +bx 的任意一点(x i ,y i )一定落在直线y =a +bx 上,而有相关关系的两个变量的任一观测点(x i ,y i )都不能保证严格地落在直线y ^=a ^+b ^x 上.6. 本节教学内容的重点是一元线性回归方程的建立,难点是方程系数a ^,b ^的计算.(四)复习建议1.学完全单元之后,学生需要对全章知识要点有一个清楚的了解,教材以填空题的形式对全单元内容作了归纳与总结,目的是让学生参加归纳与总结的过程,以达到复习的效果.2.本单元从知识结构上分为三部分:计数原理、概率与统计.计数原理部分分别介绍了分类计数的加法原理和分步计数的乘法原理;概率部分在介绍了随机事件,随机试验,基本事件,频率等基本概念之后给出了概率的统计定义,并安排了概率的简单性质等内容;统计部分在复习了总体,个体,样本等概念之后,介绍了抽取样本的三种方法,在用样本推断总体方面,给出了用样本频率分布推断总体频率分布的频率分布直方图,用样本均值推断总体均值,用样本标准差推断总体标准差的估计,最后简单介绍了相关关系及回归分析.3.在本单元的复习中,应结合专业,加强实践,做到理论能联系实际.例如:关于抽取样本的内容比较繁琐,实际操作上有许多程序,写下来颇费纸张,这部分复习时,就应以实践为主,可以找一个学生熟悉的例子,用适当的方法搞一次抽样调查,在实践中,教师和学生共同总结这部分内容.4.在本单元的复习中,应加强计算器和计算软件的使用教学,在“归纳与总结”中,特意安排了一个计算器和计算软件使用的例题,目的是希望教师能在复习中集中指导 一下计算器和计算软件的使用,提高学生使用计算工具和数据处理的能力.。
小学数学六年级下册统计与概率复习提纲
小学数学六年级下册《统计与概率》复习提纲1、考点分析:近几年的考题多以填空、选择、分析统计图表回答问题等题型出现,是必考内容,复习中要注意培养学生分析问题和解决问题的能力。
2、知识要点:统计表的意义、种类(单式和复式)和制作方法;条形统计意义、种类(单式和复式)和制作方法;折线统计图意义、种类(单式和复式)和制作方法;扇形统计图意义和制作方法;各种统计图的特点;平均数的意义和求平均数的方法;可能性。
㈠统计表典型题例:⑴东风化肥厂1997年第二季度生产情况如下:四月份计划生产1800千克,实行生产2400千克.五月份计划生产2200千克,实行生产2800千克.六月份计划生产2400千克,实行生产3000千克.算出完成计划的百分数制成统计表.______________________统计表填表后请回答以下问题.①四月份实际生产占第二季度实际生产的百分之几?②第二季度完成计划的百分之几?综合练习:(此是补充练习,十二册教材上的题是必做题。
下同)(1)结合统计表中的数据,解答问题。
②月销售额超过下半年月平均销售额的月份有哪些?(2)小明在操场上插几根长短不同的竹竿,在同一时间里测量竹竿长和相高度是()米。
(3)某公司由四股东合伙经营,年终公司获得纯总利润700万元,按股莹莹家3口人,小明家3口人,白丽家3口人,敏敏家4口人,大伟家5口人,云云家4口人,江河家4口人,冬冬家2口人,小飞家3口人,丽丽家①五②五年级人数最多的班比人数最少的班的人数多百分之几?(6)家电商场1994年~1996彩电和冰箱销售情况如下:1994年:彩电800台;冰箱300台。
1995年:彩电1100台;冰箱500台。
1996年:彩电1400台;冰箱800台。
请制成统计表㈡条形统计典型题例:出条形统计图。
(2)从图中可以看出,这棵柳树6年中哪一年到哪一年树长得最快?长了多少厘米?综合练习:(1)小明站在一个路口统计半小时各种车辆通过的数量,并制成了右面的条形统计图,请你根据图中的数据填空:①这个路口平均每分钟通过()辆车。
(完整版)职高数学第十章概率与统计初步习题及答案.doc
(完整版)职高数学第十章概率与统计初步习题及答案.doc第 10 章概率与统计初步习题练习 10.1.11、一个三层书架里,依次放置语文书12 本,数学书14 本,英语书 11 本,从中取出 1 本,共有多少种不同的取法?2、高一电子班有男生28 人,女生19 人,从中派1 人参加学校卫生检查,有多少种选法?3、某超市有4 个出口,小明约好和朋友在出口处见面,请问他们见面的地方有多少种选择?答案:1、 372、 473、4练习 10.1.21、一个三层书架里,依次放置语文书12 本,数学书14 本,英语书 11 本,从中取出语文,数学和英语各 1 本,共有多少种不同的取法?2、将 5 封信投入 3 个邮筒,不同的投法有多少种?3、某小组有8 名男生, 6 名女生,从中任选男生和女生各一人去参加座谈会,有多少种不同的选法?答案:1、12× 14× 11=1848(种)2、3×3× 3× 3× 3=3 5 (种)3、8× 6=48(种)练习 10.2.11、掷一颗骰子,观察点数,这一试验的基本事件数为--------------- ()A、 1 B 、 3 C 、 6D 、 122、下列语句中,表示随机事件的是-------------------------- ()A、掷三颗骰子出现点数之和为19 B 、从54 张扑克牌中任意抽取 5 张C、型号完全相同的红、白球各3 个,从中任取一个是红球D 、异性电荷互相吸引3、下列语句中,不表示复合事件的是-------------------------- ()A、掷三颗骰子出现点数之和为8 B 、掷三颗骰子出现点数之和为奇数C、掷三颗骰子出现点数之和为 3 D 、掷三颗骰子出现点数之和大于13答案:1、 C2、B3、 C练习 10.2.21、某学校要了解学生对自己专业的满意程度,进行了5 次“问卷”,结果如表2-1 所示:表 2-1被调查500 502 504 496 505人数 n满意人404 476 478 472 464数 m满意频m率n(1)计算表中的各个频率;(2)学校学生对自己所学专业满意的概率P(A)约是多少?2、某数控班要了解学生对五门任课教师的满意程度,进行了“问卷”,结果如表 2-2 所示:表 2-2被调查 5052544950 人数 n满意人 3747464748数 m满意频率m n( 1)计算表中的各个频率;( 2)学生对任课教师的满意的概率P(A)约是多少?答案:1、( 1) 0.808, 0.948, 0.948,0.952,0.919 (2) 0.952、( 1) 0.74, 0.904, 0.852,0.959,0.96 (2)0.9练习 10.2.31、在掷一颗骰子的试验中,下列 A 和 B 是互斥事件的是 ---------------------()A 、 A={ 1,5 } ,B= { 3, 5, 6}B 、A={ 2,3 } ,B= { 1,3, 5}C 、 A={ 2,3, 4,5 },B= { 1,2} D、A={ 2, 4, 6} ,B= { 1, 3}2、在100 张奖券中有2 张中奖,从中任抽一张,则中奖的概率是------------()A 、1 B、1C、1D、1100502553、任选一个两位数,它既是奇数,又是偶数的概率是--------------------- ()A 、7B、 21C、 51D、 0979090答案:1、 D2、 B3、 D练习 10.3.11、某地区为了掌握 70 岁老人身体三高状况,随机抽取 150 名老人测试体验,请指出其中的总体、个体、样本与样本容量.2、要测定一批炮弹的射程,随机抽取 30 颗炮弹通过发射进行测试 . 指出其中的总体、个体、样本与样本容量. 3、在某班级中,随机选取 15 名同学去参加学校的学生代表大会,指出其总体、个体、样本与样本容量.答案:1、该地区所有抽取的 150 名70 岁老人的身体三高情况是总体,每一个70 岁老人的身体三高情况是样本,样本容量是70 岁老人的身体情况是个体,被150. 2、一批炮弹是总体,每个炮弹是个体,被抽取的3、某班级中所有学生是总体,每一名学生是个体,30 颗炮弹是样本,样本容量是 30.被选取的 15 名学生是样本,样本容量是15.练习 10.3.21、某中职学校共有20 名男足球运动员,从中选出3人调查学习成绩情况,调查应采用的抽样方法是 ---------------- ()A、随机抽样法B、分层抽样法C、系统抽样法D、无法确定2、请用抽签法从某班40 人中抽出8 人参加学校的教学质量调查会议,写出抽取的过程。
统计和概率初步全面知识点和练习题(精品)
◆知识点二:随机事件的概率
【5】下列说法不正确的是 A、某种彩票中奖的概率是
1 ,买 1000 张该种彩票一定会中奖 1000
B、了解一批电视机的使用寿命适合用抽样调查 C、若甲组数据的标准差 S 甲=0.31 乙组数据的标准差 S 乙=0.25 则乙组数据比甲组数据稳定 D、在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件
Байду номын сангаас
【19】有三张卡片(形状、大小、质地都相同) ,正面分别写上整式 x+1,x,3。将这三张卡片背面向上洗匀, 从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式作为分子,第二次抽取 的卡片上的整式作为分母. (1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解) ; (2)试求抽取的两张卡片结果能组成分式 的概率. ..
【9】小明的讲义夹里放了大小相同的试卷共 12 页,其中语文 4 页、数学 2 页,英语 6 页,他随机地从讲义夹中 抽出 1 页,抽出的试卷恰好是数学试卷的概率为
【10】将圆形转盘均匀分成红、黄、绿三个扇形区域,随意转动转盘,则指针落在红色区域的概率 【11】从 1 ,2,3,…, 19 ,20 这二十个整数中任意取一个数,这个数是 3 的倍数的概率是 .
【5】小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张, 读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为 1,2,3,5 的四张牌给小莉,将数字为 4,6,7,8 的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑 克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去. (1)请用数状图或列表的方法求小莉去上海看世博会的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
中职数学基础模块知识点、典型题目系列---10.统计与概率(适合打印,经典)
第十章 概率与统计初步第1节 计数原理一、分类计数原理(加法原理)完成一件事,有n 类方式。
第一类方式有1k 种方法,第2类方式有2k ,...第n 类方式有n k 种方法,那么完成这件事的方法共有n k k k N +⋅⋅⋅++=21(种)二、分步计数原理(乘法原理)完成一件事,有n 个步骤,完成第1步有1k 种方法,完成第2步方式有2k ,...完成第n 步方式有n k 种方法,那么完成这件事的方法共有n k k k N •⋅⋅⋅••=21(种)第2节 随机事件三、事件随机事件:可能发生,可能不发生(表示:A,B,C ) 必然事件:一定发生(表示:Ω) 不可能事件:一定不发生(表示:Φ)举例说明生活中哪些是随机事件,哪些是必然事件,哪些是不可能事件。
事件的描述:加大括号 A={抛掷一枚硬币,出现正面向上}任意抛掷一颗骰子,观察掷出的点数。
事件A={点数是1},B={点数是2}.C={点数不超过2}之间存在着什么联系呢?基本事件:不能再分的最简单事件 复合事件:基本事件组成的事件 二、概率回忆频率的概念,频数:出现的次数总数频数频率=举例:抛掷一枚硬币25次,出现13次正面向上,则正面向上的频率为2513;大量重复地抛一枚硬币,发现事件A 发生的频率稳定在21,事件A 发生的概率为21概率:在大量重复试验中,事件发生的频率的稳定值记为()A P 。
频率与概率的区别:1、频率是试验中的近似值,概率是理论上的准确值;2、概率是频率在大量试验中的稳定值。
三、事件的概率的性质1.对于任意事件A ,有()10≤≤A P2.必然事件的概率为1,()1=ΩP ;3.不可能事件的概率为0,();0=ΦP第3节 古典概型一、古典概型 满足(1)有限性:基本事件有有限个;(2)等可能性:每个基本事件发生的可能性相等。
的试验称为古典概型。
举例:1.在圆内随机找一点,如果找出的每个点都是等可能的,这是古典概型吗? 分析:满足等可能性不满足有限性2.在射击训练中,结果有“命中10环”,“命中9环”,“命中8环”,“命中7环”,“命中6环”,“命中5环”,“不中环”,你认为这是古典概型吗? 分析:满足有限性不满足等可能性。
中职数学单招一轮总复习《概率与统计初步》复习课件
第4页
互斥事件概率加法公式 相互独立事件概率乘法公式
众数、中位数、平均数、方 差、标准差 频率分布直方图
章节导航
知识点1 分类计数与分步计数 知识点2 排列、组合与二项式 知识点3 随机事件及其概率 知识点4 总体、样本和抽样方法 知识点5 用样本估计总体 知识点6 一元线性回归分析
第5页
目录
01
活学活练
三、解答题
书架上层有15本不同的英语书,下层有12本不同的数学书. (1)从中任取一本书,共有多少种不同的取法? (2)从中抽取英语、数学各一本,有多少种不同的取法?
第 18 页
课堂小结
第 19 页
这小结我们学习了分类计数与分步计数包括:概念、表 示、画法、基本性质 ,希望大家课下多加复习,理解排列与 组合的意义。
Amn
(n
n m)
n (n
1)(n
2)
(n m 1) ,m,n N ,且 m
n.
根据排列数的概念和公式,排列数有以下性质.
性质1 性质 2 列有.
用.
典例精讲
第 14 页
变式训练2 5名同学选报百米、跳高、铅球三个项目,每人只能报一项,共有(
)种报名方法.
A.15
B.75
C.81
D.243
活学活练
一、单项选择题
第 15 页
1.袋中有2个红球、3个白球和4个蓝球,从中任意摸取1个球,共有( )
种取法.
A.2
B.5
C.9
D.24
2.用数字0,1,2,3可以组成的三位数有( )个.
高职单招总复习:数学
第2页
第10章 概率与统计初步
考情聚焦
第3页
考查方向
中职数学概率与统计初步教案
中职数学概率与统计初步教案一、教学目标(1)掌握随机事件、概率、古典概型及其概率计算公式,能正确应用这些知识解决一些简单的实际问题。
(2)通过实验、观察、类比、联想,培养学生的观察问题、分析问题和解决问题的能力,培养他们的归纳能力。
(3)体会概率统计的思想方法,让学生理解概率是度量某一事件发生的可能性的数,是刻画随机现象的量,是确定随机变量可能的取值以及取值的概率大小的学科。
(4)通过对典型问题的讨论,培养与激发学生学习数学的兴趣,调动学生学习的积极性,培养勇于探索大胆创新的精神。
(5)通过对简单随机现象抽样过程中可能性的大小的实际问题的探究,认识概率的意义和作用。
体验统计与概率的意义和方法,体验数学来源于生活、服务于生活的应用价值。
二、教学重点、难点重点:古典概型的特征及概率计算公式,简单随机抽样中每个样本点被抽到的概率是相等.难点:古典概型的特征及概率计算公式的应用.三、教学过程设计(一)创设情景,引入概念1. 掷一枚均匀的硬币两次:请学生猜猜看,恰好得到一次正面的概率是多少?为什么?2. 抛一颗骰子:请学生猜猜看,得到点数小于3的概率是多少?为什么?得到点数小于3包含哪些基本事件?为什么得到点数小于3这个结果?事件可能发生也可能不发生。
它是确定事件还是不确定事件?那么它的概率怎样求?这些事件可能发生的可能性是一样的吗?如果不一样应该怎样算出它的概率呢?那么掷骰子试验中哪些条件符合古典概型的特点呢?(投影或课件显示古典概型概念)3. 从一批产品质量监督中抽取样本:产品质量监督结果有两种:合格品和不合格品,用古典概型求出全体产品的质量情况,但事实上是要知道抽到合格品的概率是多少。
若抽到的产品是一个不均匀的总体(由不同质量的零件装配而成),为了求抽到合格品的概率应该怎样求呢?(教师板书课题:古典概型及其概率计算)(二)新知学习例1 甲袋中有2个白球和3个黑球,乙袋中有3个白球和2个黑球,现从甲袋中随机取出1个球放入乙袋中,再从乙袋中随机取出一个球,得到两个球的组合:(1)样本点集合;(2)写出试验的基本事件;(3)代入古典概型计算公式进行计算.引导学生思考以下问题:问题(1)样本点集合怎样表示?这个试验有多少样本点?有哪些?这其实就是列举法。
基础模块下:第10章概率检测题
第10章概率与统计初步检测题一、选择题1.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘飞机。
一天中,火车有4班,汽车有2班,飞机由1班.那么一天中乘坐这些交通工具从甲地到乙地共有不同的走法( )A .8种B 。
7种C. 12种D. 24种2.先后抛掷均匀的一角、五角、一元硬币各一枚,可能出现的事件的种数为( )A .7种B 。
8种C. 9种D. 10种3。
某商场由4个大门,若从一个门进去,购买商品后在从另一个门出去,不同的进出方法的种数为( )A .6种B 。
12种C 。
16种 D. 18种4.现有不同的4封信,要投到3个不同的邮箱中,则不同的投寄方法共有( )A .64种B 。
81种C 。
12种 D. 7种5。
在一次读书活动中,推荐了6本科普作品,10本文学作品,某人从中各选一本,不同的选法共有( )A .16种B 。
60种C 。
12种D 。
18种6。
若x 、y 分别在0、1、2、…、9中取值,则点(,)P x y 在第一象限中的点的个数是( )A .100 B. 99C. 121D. 817.由数字3、4、5可以组成没有重复数字的三位数的个数为( )A .2B 。
4C 。
6 D. 88。
乘积()()()a b c m n x y z +++++展开后,展开式的项数为( )A .8 B. 9C. 11D. 189。
某射手在一次射击中命中5环的概率是0.28,命中7环的概率是0.24,则命中5环或7环的概率为( )A .0.28 B. 0.24C 。
0.5 D. 0.5210。
某产品分甲、乙、丙三个等级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0。
02,丙级品的概率为0。
0。
1,则任意抽取一件,得到次品的概率为( )A .0.01 B. 0.02C 。
0。
03 D. 0。
0411.冰箱里放了形状相同的3罐可乐、2罐橙汁和4罐冰茶,小明从中任意取出1罐饮用。
中职数学第十章概率与统计初步小测(2018级)
2019-2020学年第一学期2018级中职数学第十章《概率与统计初步》测试卷(时间:45分钟,总分:100分)班级:姓名:座号:一、选择题:(5′×10=50′)二、填空题:(5′×10=50′)1.从5本不同的语文书和6本不同的数学书,任取一本书,共有种取法.2.有男生5人,女生7人,从中抽取一人,抽到男生的概率是.3. 掷一颗质地均匀的骰子出现点数是4 的概率为 .4. 抛掷一颗正方体的骰子,设骰子的构造是均匀的,则掷得1点的概率为.5. 在100张奖券中,有4张中奖券,从中任取1张中奖的概率是 .--中任取两个不同的数,则这两个数之积为正数的概率等于.6. 从2,1,1,2,37. 抽屉里有4只白袜子,6只黑袜子,一个盲人从中拿三只袜子出来,能配成一双同色袜子的概率为.8. 已知5件产品中有3件正品,2件次品,若从中任意取出1件产品,则取出的产品是正品的概率是.9. 把一枚硬币任意地抛掷一次,则出现反面向上的概率为.10. 从某工厂生产的某一批零件中,随机抽取10件,测得质量为(单位:克):5. 1, 5. 0, 5.0, 4.8,5.1, 5.2, 5.0, 5.0, 4.9, 5.1,则总体是,个体是,样本是,样本容量是 ..一、选择题:(5′×10=50′)1.从5 种外文书,7 种中文书中任取一种书的方法有()种A 10B 11C 12D 132.从5 种外文书,7 种中文书中任取中、外文书各一本的方法有()种A 15B 25C 35D 453.一个不透明的袋中装有除颜色外其余均相同的4个红球和9个白球,从中随机摸出一个球,则摸到白球的概率是()A413B49C19D9134.从唐华、张凤、薛贵3个候选人中,选出2个人分别担任班长和团支部书记,会有多少种选举结果()A 2 B 3 C 5 D 65.用数字1、2、3、4可以组成多少个无重复数字的3位数()A 123B 100C 64D 246.下列现象中不是随机现象的有()A 种子播种到田地里发芽B 明天下雨C 买一种奖券中奖D 在标准大气压下,100℃水沸腾7.已知12件同类产品中,有10件是正品,2件是次品,从中任意抽出3个的必然事件是()A 3件都是正品B 至少有一件是正品C 3件都是次品D 至少有一件是次品8.从1,2,3这三个数中,任选2个数组成集合,不属于该种实验的基本事件为()A {1,2}B {1,3}C {2,3}D {0,3}9.邮政大厅有3个邮筒,现将4封信逐一投入邮筒,共有多少种投法()A 3B 4C 64D 8110.设一个口袋内装有一个白球和一个黑球,则事件“从中任意取出一个球,是白球”为()A 必然事件B 不可能事件C 随机事件D 必然事件或不可能事件。
中职教育数学《概率与统计初步》专题复习
A、①②③④ B、①④⑤ C、①②③④⑤ D、②③
4、下列说法正确的是( D )
A、事件A、B中至少一个发生的概率一定比事
件A、B恰有一个发生的概率大;
B、事件A、B同时发生的概率一定比事件A、B
中恰有一个发生的概率小;
C、互斥事件一定是对立事件,对立事件不一
定是互斥事件;
D、互斥事件不一定是对立事件,对立事件一
排列数。用
表示。
(3)排列数公式:
!
−1 −2 ⋯ −+1 =
=__________________________________。
( − )!
(4) 全排列: 个不同元素全部取出的一
个________,叫做
个不同元素的一个全排
排列
列。于是排列数公式写成阶乘的形式为:
63 ∙ 42 =120种选法。
(2)方法1:至少1名女运动员包括以下几种情
况:1女4男,2女3男,3女2男,4女1男。由分
类计数原理可得总法数为
41 ∙ 64 +42 ∙ 63 + 43 ∙ 62 + 44 ∙ 61 =246种
方法2: “至少1名女运动员”的反面是“全是
男运动员”可用间接求法求解,从10个人中任
定是互斥事件。
5、一射手对同一目标独立地进行4次射击,已知
80
至少命中一次的概率为 ,则此射手的命中率为
81
( B )
1
2
A、
B、
4
2
C、
5
3
1
D、
3
设此射手每次射击命中的概率为p,分析可得,至少命中
一次的对立事件为射击四次全都没有命中,
统计与概率教案及练习题(新课标人教版六年级下)
统计与概率(一)教学内容:小学数学六年级下册P109-110例1。
教学目标:1.使学生加深认识统计的意义,进一步认识统计表,掌握整理数据编制统计表的方法,能根据统计表作简单的分析。
2.使学生进一步认识简单的统计图,明确条形统计图和折线统计图各自的特点和作用,能在看懂统计图内容的基础上作简单的分析。
3. 感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。
重点、难点:1.教学重点:运用统计图解决实际生活中的问题。
2.教学难点:能根据实际情况选择合适的统计图。
教学准备:教学挂图、小黑板、课件等。
教学过程一、复习引入,提示课题。
统计在我们的生活中有着广泛的应用,例如,公司要了解一种产品的销售情况,就需要了解顾客群体,需求状况等数据,统计就是帮助人们整理和分析数据的知识方法。
这节课我们就一起来复习统计的初步知识。
板书课题:统计图统计表二、回顾整理,建构网络1.总体回顾。
师:我们以前都学过哪些统计的知识?(1)组织学生独立回答.(2)教师做适当评价和补充。
学生可能的回答有:我们学过简单的统计表,还有统计图。
统计表里分为单式统计表和复式统计表。
统计图里分为条形统计图、折线统计图和扇形统计图,引导学生说一说上述统计图表的优缺点。
2.学生自主整理。
师:同学们说的很全面,我们以前学习了这么多关于统计的知识,现在就请同学们用你们喜欢的方法,把这些知识进行系统的整理下。
(1)独立整理(2)组内交流。
(教师巡视指导,参与小组活动)(3)交流汇报。
(师多找几个小组汇报,在对比中引导学生完善知识结构,优化整理方法,并完善板书。
)3.师:谁知道统计知识有什么用处?(1)找不同学生独立回答.(1)教师做适当评价和补充。
在日常生活、生产和科学研究中,经常需要用到统计知识。
例如,为了了解学生的身体发育情况,经常要测量学生的身高和体重,把测量得到的数据进行收集和整理,再制成统计表或统计图进行分析。
又如,工厂要了解每天、每周、每月、或者每年的生产进度或产量,就需要进行统计;要了解本单位的工作效率,产品的质量,计算产品的合格率等,也需要进行统计。
10专题十 概率与统计初步
目标被击中的概率为 P=0.8×(1-0.7) +(1-0.8) ×0.7+0.8×0.7 =0.94.
热点考向解析
【小结】
(1) 若事件A,B相互独立,则 ① 事件A与BA与BA与B都相互独立; ②P( AB) =P( A) P( B) . (2)如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率为 P������(k)= ������������������������������(1 − ������)������−������(k=0,1,2,…,n).解题时要注意:在独立重复试验中,试验结果只有发生与不 发生两种情况;在每次试验中,事件发生的概率相同.
1
2.投掷两枚硬币,出现一枚正面向上,一枚反面向上的概率为_____2___.
3.国庆阅兵中,某兵种 A,B,C三个方阵按一定次序通过主席台,先后顺序是随机的,则B先
于A,C通过的概率为( B).
A
1 6
B
1 3
C
1 2
D
2 3
4.从甲、乙等5名学生中随机选出2人,则甲被选中的概率是( B).
A
1 5
(3) 目标被击中的概率.
热点考向解析
【解析】
(1) 由相互独立事件的概率公式知,两人都击中目标的概率为 P=0.8 ×0.7 = 0.56.
(2) 恰有一个人击中目标包含两个互斥事件:甲击中乙不击中或甲不击中乙击中,
恰好有一个人击中目标的概率为 P=0.8×(1-0.7) +(1-0.8) ×0.7 =0.38.
真题回放
1.[2016 年高考题]袋中有6个红色球、3个黄色球、4个黑色球,从袋中任取一个球,则取到 的球不是黑色球的概率为_______19_3_____.
统计与概率初步
第十章 统计与概率初步 10.1 数据的收集与表示【课前热身】 1、(2009年杭州市) 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A .调查全体女生B .调查全体男生C .调查九年级全体学生D .调查七、八、九年级各100名学生 2、(2009年宁波市)下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 3、(2009年新疆)要反映乌鲁木齐市一天内气温的变化情况宜采用( ) A .条形统计图 B .扇形统计图 C .频数分布直方图 D .折线统计图 4、(2009年湘西自治州)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,40是( )A .个体B .总体C .样本容量D .总体的一个样本 【典例精析】 例1、(2009年齐齐哈尔市)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”);(2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________; (3)、求该地区喜爱娱乐类节目的成年人的人数.例2、(2009仙桃)“戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A .顾客出面制止;B .劝说进吸烟室;C .餐厅老板出面制止;D .无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将统计图①补充 完整;(3)在统计图②中,“无所谓”部分所对应的圆心角是_________度; (4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有__________万人.并根据统计信息,谈谈自己的感想.(不超过30个字)【中考演练】1、(2009年河南)下列调查适合普查的是 ( ) (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间2、(2009年宜宾)已知数据:23231-,,,,π.其中无理数出现的频率为3、、(2009年安徽)如图,将小王某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .A 、20%B 、40%C 、60%D 、80%4、 (2009年宜宾)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)5、(2009年南充)某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图3所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有 人.节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°6、(2009肇庆)如图1是1998年参加国际教育评估的15个国家学生的数学平均成绩的统计图,则平均成绩大于或等于60的国家个数是( ) A .4 B .8 C .10 D .127(09湖南邵阳)为了解09届本科生的就业状况,今年3月,某网站对09届本科生的签约状况进行了网络调查.截止3月底,参与网络调查的12000人中,只有4320人已与用人单位签约.在这个网络调查中,样本容量是____________. 8、(2009呼和浩特)初三(1)班有48名学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去野生动物园的学生数”的扇形圆心角为120°,请你计算想去其他地点的学生有 人 9、(2009年深圳市)随着网络的普及,越来越多的人喜欢到网上购物。
第十单元复习统计与概率
姓 名
王强
李雷
卢浩
杨志
成绩/下
88
94
102
96
四(1)班第二小组的女生1分钟跳绳成绩统计表
姓 名
李红
刘思
周小杰
成绩/下
92
104
98
男生和女生相比,谁的成绩好?
男生的平均成绩:(88+94+102+96)÷4=95(下)
女生的平均成绩:(92+104+98)÷3=98(下)
98>95,女生的成绩好。
二、巩固练习,应用反馈
六(1)班有40名同学,数学期中考试有2名同学因故缺考,这时班级的平均分是78分,缺考的同学补考后都得98分,这个班数学期中考试的平均分是多少?
(1)先根据正常参加考试的人数及平均分求出正常参加考试的同学的总分数,然后求出补考同学的总分数,最后求出全班同学的总分数。
2.体会统计在日常生活中的作用,感受数学知识的魅力。
教学重点
深刻理解平均数的意义
教学难点
体会统计在日常生活中的作用
拟用学法
小组合作探究
媒体资源或教具
教师准备:多媒体课件
教学过程设计
教师指导
学生活动
学习效果与检测
一、创设情境,提出问题。(5分钟)
四(1)班第二小组的男生和女生进行1分钟跳绳比赛,成绩如下。
(2)用全班同学的总分数除以全班同学的人数,即可求出全班同学的平均分。
78×(40-2)+98×2=3160(分)
3160÷40=79(分)
三、课堂总结。(4分钟)
1.总结本节课的学习内容。
2.布置课后学习内容。
1.思考老师提出的问题,可以动笔写一写,以备讨论时发言。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十单元 概率与统计初步测试题一、填空题1.从10名理事中选出理事长,副理事长、秘书长各一名,共有________种可能的人选.答案:720试题解析:由分步计数原理有10⨯9⨯8=720种.2.已知A 、B 为互相独立事件,且()36.0=⋅B A P ,()9.0=A P ,则()=B P ________. 答案:0.4试题解析:由())()(B P A P B A P ⋅=⋅有()=B P 0.36/0.9=0.4.3.已知A 、B 为对立事件,且()A P =0.37,则()=B P ________.答案:0.63试题解析:由概率性质1)()(=+A P A P 有()=B P 1-()A P =1-0.37=0.63.4.抛掷一枚骰子,“5”点朝上的概率等于________,抛掷两每骰子,“5”点同时朝上的概率等于________. 答案:61;361 试题解析:由基本事件的定义可知,投掷骰子的基本事件数是6,“5”点朝上是其中之一;由分步计数原理有3616161=⨯. 5.北京今年5月1日的最低气温为19℃为________事件;没有水分,种子仍然发芽是________事件.答案:随机,不可能试题解析:由随机事件和不可能事件定义可知.6.投掷两个骰子,点数之和为8点的事件所含有的基本事件有________种. 答案:5种7.5个人用抽签的方法分配两张电影票,第一个抽的人得到电影票的概率是________.答案:52 试题解析:第一个人抽签的基本事件数是5,抽中电影票的基本事件数是2. 8.由0,1,2,3,4可以组成________个没有重复数字的四位数.答案:96试题解析:由分步计数原理可知4⨯4⨯3⨯2⨯1=96.9.若采取分层抽样的方法抽取样本容量为50的电暖气,一、二、三等品的比例为2:5:3,则分别从一、二、三等品中抽取电暖气数为________个,________个,________个.答案:10,25,15试题解析:一等品个数:10503522=⨯++;二等品个数:25503525=⨯++; 三等品个数:15503523=⨯++. 10.某代表团共有5人,年龄如下:55,40,43,31,36,则此组数据的极差为__________.答案:24试题解析:由极差定义可知.11.一个容量为n 的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=_______.答案:n=200试题解析:由频率的定义可知.12.为了解某小区每户每月的用水量,从中抽取20户进行考察,这时,总体是指,个体是指,样本是指,样本容量是. 答案:某小区住户的每月用水量,某小区每户每月的用水量,抽取的20户每月的用水量,20试题解析:由总体、个体、样本、样本容量定义可知.二、选择题1.阅览室里陈列了5本科技杂志和7本文艺杂志,一个学生从中任取一本阅读,那么他阅读文艺杂志的概率是( ).A 、75B 、125C 、127 D 、51 答案:C 试题解析:127757=+. 2.某商场有4个大门,若从一个门进去,购买上商品后再从另一个门出来,不同的走法共有( )种.A 、3B 、7C 、12D 、16答案:C试题解析:由分步计数原理可得:1234=⨯.3.如果x ,y 表示0,1,2,···,10中任意两个不等的数,P(x ,y)在第一象限的个数是( ).A 、72B 、90C 、110D 、121答案:B试题解析:由分步计数原理可得:90910=⨯.4.任意抛掷三枚均匀硬币,恰有一枚正面朝上的概率是( ).A 、41B 、31C 、83D 、43 答案:C试题解析:3⨯21⨯21⨯21=83. 5.甲、乙、丙三人射击的命中率都是0.5,它们各自打靶一次,那么他们都没有中靶的概率是( ).A 、 0.5B 、0.25C 、 0.3D 、 0.125答案:D试题解析:(1-0.5)⨯(1-0.5)⨯(1-0.5)=0.125.6. 掷两枚骰子,事件“点数之和为6”的概率是( ).A 、111B 、91C 、365 D 、61 答案:C事件“点数之和为6”包含了5个基本事件,因此点数之和为6的概率为36. 7.两个盒子内各有3个同样的小球,每个盒子中的小球上分别标有1,2,3三个数字。
从两个盒子中分别任意取出一个球,则取出的两个球上所标数字的和为3的概率是( ).A 、91B 、92C 、31D 、32 答案:B试题解析:标数字的和为3的概率=92. 8.一个电影院某天的上座率超过50%,该事件为( ).A 、必然事件B 、随机事件C 、不可能事件答案:B试题解析:由随机事件定义可知.9.从4个蔬菜品种中选出3个,分别种植在不同土质的3块土地上进行试验,不同的种植方法共有( )种.A 、4B 、12C 、24D 、72答案:C试题解析:有分步计数原理可得:24234=⨯⨯.10.均值为19的样本是( ).A 、14,17,25B 、11,18,29C 、16,20,21D 、5,21,30答案:C试题解析:19)212016(31=++=x . 11.下面属于分层抽样的特点的是( ).A 、从总体中逐个抽样B 、将总体分成几层,分层进行抽取C 、将总体分成几个部分,按事先确定的规则在各部分抽取D 、将总体随意分成几个部分,然后再进行随机选取答案:B试题解析:由分层抽样的特点可知.12.下列命题正确的是( ).A 、)()()(B P A P B A P ⋅=⋅ B 、1)()(=+A P A PC 、)()()(B P A P B A P +=+D 、)(1)(B P A P -=答案:B试题解析:由概率的性质可知.三、解答题1.一部记录影片在4个单位轮映,每一单位放映1场,可有几种轮映次序?解:由分步计数原理有4×3×2×1=24种.试题解析:上映第一场时有4个单位可以选择,上映第二场时剩下3个单位可以选择,上映第三场时剩下2个单位可以选择,上映第4场时便只有1个单位可以选择,因此完成一部记录影片在4个单位轮映这件事,可根据分步计数原理有4×3×2×1=24种轮映次序.2.由数字0~5这6个数字可以组成多少个没有重复数字的5位数?其中有多少个是5的倍数?解:(1)5×5×4×3×2=600个;(2)末位是0有5×4×3×2=120个;末位是5有4×4×3×2=96个; 所以5的倍数有120+96=216个.试题解析:(1)因为首位不能为0,因此可从1~5这5个数字中选取;千位数字可以为0,因为数字不能重复,则可在1~5剩下的4个数字及0这5个数字中选取;百位则在0~5剩下的4个数字中选取;十位在0~5剩下的3个数字中选取;个位在0~5剩下的2个数字中选取.因此根据分步计数原理完成由数字0~5这6个数字可以组成没有重复数字的5位数的个数为5×5×4×3×2=600个;(2)5的倍数即能被5整除的数,也就是末位为0或5的数.末位是0的:因为末位为0,数字又不能重复,万位可有1~5这5个数字供选择,千位则在1~5剩下的4个数字中选取;百位在1~5剩下的3个数字中选取;十位在1~5剩下的2个数字中选取.根据分步计数原理,末位为0的没有重复数字的5位数的个数为5×4×3×2=120个;末位是5的:因为末位为5,首位不能为0 ,数字又不能重复,万位可有1~4这4个数字供选择,千位则在1~4剩下的3个数字及0这4个数字中选取;百位在0~4剩下的3个数字中选取;十位在0~4剩下的2个数字中选取.根据分步计数原理,末位为5的没有重复数字的5位数的个数为有4×4×3×2=96个;所以5的倍数有120+96=216个.3.从数字0~9这10个数字中任选2个不同的数字作为点的坐标,表示的不同点有多少个?其中,在坐标轴上的点有多少个?解:(1)10×10=100个;(2)10+9=19个.试题解析:(1)点的横纵坐标是可以相同的,因此横坐标有10种选择,纵坐标也有10种选择,根据分步计数原理从数字0~9这10个数字中任选2个不同的数字作为点的坐标,表示的不同点有10×10=100个;(2)坐标轴上的点(除原点外,原点横纵坐标都为0)特点是横坐标为0或是纵坐标为0,横坐标为0的点在y 轴上,当横坐标为0时,纵坐标可以是0~9中的任一数字,因此有10种选择(包括了原点);纵坐标为0的点在x 轴上,当纵坐标为0时,横坐标可以是1~9中的任一数字,(0,0)点因为已经有了,不能再选,因此有9种选择.根据分类计数原理,在坐标轴上的点有10+9=19个.4. 一个均匀材料制作的正方形骰子,六个面上分别标以数字1,2,3,4,5,6,连续抛掷两次,求第一次点数小于第二次点数的概率.解:设“第一次点数小于第二次点数的概率”为事件A ,则P(A)=3615= 125.数小于第二次点数的概率=125.解: 2512507512=++. 试题解析:事件A 发生的次数与试验次数的比值nm ,叫做事件A 发生的频率,记做nm A W =)(,本题中247512=++=m ,5077512136=+++++=n ,因此样本在区间20~50上的频率为2512507512=++.(2)计算两班成绩的标准差;(保留小数点后两位)(3)判断哪个班级的水平更稳定?解:(1)5285278235242230++++=甲x =254 5283280228244235++++=乙x =254 (2)由标准差公式1)(...)()(2221--++-+-=n x x x x x x S n 可求=2甲S 654.5, 则8.525≈甲S ; =2S 乙663.5,则76.25≈乙S ; (3)乙S >甲S ,所以甲班的水平更稳定些.试题解析:(1)由均值公式()n n i i x x x nx n x +++==∑=...11211可得; (2)由标准差公式1)(...)()(2221--++-+-=n x x x x x x S n 可得;(3)标准差显示数据的离散程度,甲班的标准差小,说明它的离散程度低,成绩比乙班更稳定.。