《9.2中心对称与中心对称图形》同步练习含详细答案

合集下载

中心对称与中心对称图形中档题30道解答题附答案

中心对称与中心对称图形中档题30道解答题附答案

9.2 中心对称与中心对称图形中档题汇编(3)相等两部分的直线.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.的长为:=23.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.中,11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.x+613.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.∴∴14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.OD=OB=DB=115.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8.cosB==,18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa=Sb=Sc=Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?Sa=Sb=Sc=Sd=S19.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.BD==OB=DE=(﹣﹣x﹣22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来▱ABA′B′,▱BCB′C′,▱CA′C′A.25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.、、。

八下数学《同步练习》9.2中心对称与中心对称图形

八下数学《同步练习》9.2中心对称与中心对称图形

八下数学《同步练习》9.2中心对称与中心对称图形隨堂练习1.正方形既是___图形,又是___图形,它有____条对称轴,对称中是_________。

2.观察黑体印刷字“一、羊、口、王、田、旦”,它们都是_____图形,其中_____也是____图形。

3.有人认为:等边三角形绕其三条高的交点旋转1200后能与原来的图形完全重合,所以它是中心对称图形,你认为对还是错?请说明理由:_________________________。

4.扑克牌中的黑桃5和方块4,牌面图案为中心对称图形的是________。

5.下列说法中,正确的有()①线段的两个端点关于它的中点对称;②正方形一组对角的顶点关于对角线交点对称;③长方形一组对边关于对角线交点对称;④成中心对称的两个图形一定全等;⑤如果两个图形全等,那么这两个图形一定关于某点成中心对称;⑥如果两个三角形的对应点连线都经过一点,那么这两个三角形成中心对称。

A.2个B.3个C.4个D.5个6.下列图形中,中心对称图形的是()A.①②B.②③C.②④D.③④7.下列图形中,既是轴对称图形又是中心对称图形的是()A.角B.等边三角形C.线段D.平行四边形8、把两块全等的三角形拼在一起(如图),这两个三角形成中心对称吗?如果成中心对称,找出对称中心。

课后复习9.画中的两个三角形成中心对称,请找出对称中心。

10.已知△ABC和点O画出△A’B’C’,使它与△ABC关于点O对称。

11.观察10个阿拉伯数字,其中有中心对称图形吗?它们分别是哪些数字?拓展延伸12.设计图案:(1)图①中,等边三角形ABC的三个顶点都在圆上,请把这个图形补成一个中心对称图形。

(2)将图②中的正方形纸片沿虚线剪开,可得到4个全等的直角三角形的一个正方形。

你会用所得的5张纸片分别拼出一个轴对称图形和一个中心对称图形吗?请画出你的作品。

9.2 中心对称与中心对称图形(解析版)

9.2 中心对称与中心对称图形(解析版)

【上好课】2021-2022学年八年级数学下册同步备课系列(苏科版)9.2 中心对称与中心对称图形一、单选题1.学校举办了“送福迎新春,剪纸庆佳节”比赛.请问以下参赛作品中,是中心对称图形的是()A.B.C.D.【答案】D【解析】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.3.下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等【答案】B【解析】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.4.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是( )A.点EB.点FC.点G【答案】D【解析】解:由于四边形ABCD 与四边形EFGH 都是菱形,且关于直线BD 上某个点成中心对称,根据中心对称的定义可知,点B 的对称点是H .故选D .5.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )A .第一张B .第二张C .第三张D .第四张【答案】A【解析】解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A .6.如图,ABC V 与A B C ¢¢¢V 关于O 成中心对称,下列结论中不一定成立的是( )A .ABC A CB ¢¢¢Ð=ÐB .OA OA ¢=C .BC B C ¢¢=D .OC OC ¢=【答案】A【解析】解:∵对应点的连线被对称中心平分,∴OA OA ¢=,OC OC ¢=,即B 、D 正确,∵成中心对称图形的两个图形是全等形,∴对应线段相等,即BC B C ¢¢=,∴C 正确,故选A .7.如图,已知长方形的长为10,宽为4,则图中阴影部分的面积为( )A .20B .15C .10D .25【答案】A 【解析】解:根据题意观察图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得:图中阴影部分的面积即是长方形面积的一半,×40=20cm2.则图中阴影部分的面积=12故选:A.8.如图所示,在33´的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【答案】C【解析】如图所示:5种不同的颜色即为使整个图案构成一个轴对称图形的办法.故选:C.二、填空题9.ABO V 与11A B O V 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点(4,2)A ,则点1A 的坐标是________.【答案】(-4,-2)【解析】∵△ABO 与△A1B1O 关于点O 成中心对称,点A (4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).10.如图是一个中心对称图形,点A 为对称中心,若3AC =,5AB =,4BC =,则CC ¢的长为______.【答案】6【解析】∵图形是一个中心对称图形,A 为对称中心,∴3AC AC ¢==,∴6CC AC AC ¢¢=+=,故答案为:6.11.平面直角坐标系中,点()3,2P -关于点()1,0Q 成中心对称的点的坐标是_______.【答案】(-1,2)【解析】解:如图,设Q (1,0),连结PQ 并延长到点P ′,使P ′Q =PQ ,设P ′(x ,y ),则x <0,y >0.过P 作PM ⊥x 轴于点M ,过P ′作PN ⊥x 轴于点N .在△QP ′N 与△QPM 中,QNP QMP NQP MQP QP QP Ð=ÐìïÐ==¢Ð¢í¢ïî,∴△QP ′N ≌△QPM (AAS ),∴QN =QM ,P ′N =PM ,∴1-x =3-1,y =2,∴x =-1,y =2,∴P ′(-1,2).故答案为(-1,2).三、解答题12.在直角坐标平面内,点A1、B1、C1的坐标如图所示.(1)请写出点A1、B1、C1的坐标:点A1的坐标是 ;点B1的坐标是 ;点C1的坐标是 .(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是 .(3)若点B1与点B关于原点对称,则点B的坐标是 .(4)将C1沿x轴翻折得到点C,则点C的坐标是 .(5)分别联结AB、BC、AC,得到△ABC,则△ABC的面积是 .【答案】(1)(3,0);(﹣5,﹣3);(3,2);(2)(0,3);(3)(5,3);(4)(3,﹣2);(5)252.【解析】解:(1)在直角坐标平面内,点A1、B1、C1的坐标如图所示:点A1的坐标是(3,0);点B1的坐标是(﹣5,﹣3);点C1的坐标是(3,2),故答案为:(3,0);(﹣5,﹣3);(3,2);(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是(0,3),故答案为:(0,3);(3)若点B1与点B关于原点对称,则点B的坐标是(5,3),故答案为:(5,3);(4)将C1沿x轴翻折得到点C,则点C的坐标是(3,﹣2),故答案为:(3,﹣2);(5)分别连接AB、BC、AC,得到△ABC,则△ABC的面积是:2555122´´=,故答案为:252.13.图中的两个四边形关于某点对称,找出它们的对称中心.【答案】见解析【解析】解:如图,点O即为所求14.如图,已知AD是ABCD的中线,画出以点D为对称中心、与ABDD成中心对称的三角形.【答案】见解析【解析】解:延长AD,且使AD A D¢D的中线,所以B点关于中心D的对称点为C,连接=,因为AD是ABCD为所求作的三角形,如图所示.'A C,则'A CD15.如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,按下列要求涂上阴影(1)在(图1)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形;(2)在(图2)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【解析】(1)添加图形如下:(2)添加图形如下:16.已知△OAB在平面直角坐标系中的位置如图所示,请解答以下问题:(1)按要求作图:先将△OAB绕原点O逆时针旋转90°,得到△OA1B1,再作出△OA2B2,使它与△OA1B1关于原点成中心对称;(2)直接写出点A1的坐标;点B2的坐标.【答案】(1)见解析(2)(﹣1,3);(2,﹣2)【解析】(1)如图,△OA1B1,△OA2B2即为所求;(2)点A1的坐标(﹣1,3);点B2的坐标(2,﹣2).故答案为:(﹣1,3);(2,﹣2).17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )对称.【答案】(1)见解析(2)见解析(3)−2,0【解析】(1)点A(1,3),B(4,4),C(2,1)分别向左平移4个单位后的对应点的坐标分别为A1(−3,3),B1 (0,4),C1(−2,1),依次连接这三个点得到平移后的△A1B1C1,如图所示.(2)△ABC的三个顶点A(1,3),B(4,4),C(2,1)绕原点O旋转180゜后可得对应点A2,B2,C2的坐标分别为(−1,−3),(−4,−4),(−2,−1),依次连接这三个点得到旋转后的△A2B2C2,如图所示;(3)如(2)中图所示,连接12C C 、12A A 、12B B ,可得12,C C 关于(−2,0)对称设直线12A A 的解析式为y =kx +b ,则有:333k b k b -+=ìí-+=-î解得:36k b =-ìí=-î 即直线12A A 的解析式为36y x =--当2x =-时,y =0,则(−2,0)是12,A A 的对称中心;同理可求得直线12B B 的解析式为24y x =+当2x =-时,y =0,则(−2,0)是12,B B 的对称中心;综上所述,△A 1B 1C 1与△A 2B 2C 2关于点(−2,0)对称.18.在一次数学探究活动中,小强只用一条直线就把矩形分割成面积相等的两部分.(1)在如图所示的三个矩形中,请你大胆尝试,画出符合上述要求的直线(注:①所画直线经过的特殊点必须标注清楚,②一个矩形只画一种).(2)根据你的分割法:只用一条直线就把矩形分割成面积相等的两部分,你认为这样的直线有条?(3)由上述实验操作过程,你发现所画的这条直线的特征是;(4)经验迁移:如图④,在正方形ABCD中,AB=6,点E在边AD上,且AE=2.若直线l经过点E,并将该正方形的面积平分,与正方形的BC边交于点F,求线段EF的长.【答案】(1)见解析;(2)无数;(3)经过对角线的交点(矩形的对称中心);(4)【解析】解:(1)①直线经过矩形对角线,如图,,②直线经过一组对边中点,如图,,③直线经过矩形对称中心,如图,,此处可借助△OAE≌△OCF,证面积被平分.(2)只要经过矩形的对称中心,便可以平分矩形面积,所以有无数条,故答案为无数,(3)分析图形得到平分矩形面积的直线都经过了矩形的对称中心(对角线的交点),故答案为经过对角线的交点(矩形的对称中心).(4)根据题意,连接AC,BD交于点O,过E,O的直线交BC于点F,过点E作EG⊥BC于点G.如图,,∵四边形ABCD是正方形,∴AB=BC=6.OA=OC,∠FCO=∠OAE=45°,∵∠FOC=∠AOE,∴△FOC≌△AOE(ASA),∴AE=CF=2,∴GF=6﹣2﹣2=2,在Rt△EFG中,EG=AB=6,GF=2,∴EF=。

9.2 中心对称和中心对称图形

9.2 中心对称和中心对称图形

简单1、如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′O′C.∠ACB=∠C′A′B′D.△ABC≌△A′B′C′【分析】根据中心对称的性质解答.【解答】解:∵△ABC与△A′B′C′关于点O成中心对称,∴点A与点A′是对称点,BO=B′O′,△ABC≌△A′B′C′,∠ACB=∠A′B′C′,∴结论∠ACB=∠C′A′B′错误.故选C.2、下列图形中不是轴对称图形但是中心对称图形的是()A.等边三角形B.矩形C.菱形D.平行四边形【分析】根据轴对称及中心对称的概念,结合选项进行判断.【解答】解:A、等边三角形是轴对称图形,但不是中心对称图形,故本选项错误;B、矩形是轴对称图形,也是中心对称图形,故本选项错误;C、菱形是轴对称图形,也是中心对称图形,故本选项错误;D、平行四边形不是轴对称图形,是中心对称图形,故本选项正确;故选D.3、正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()A.(2,0)B.(3,0)C.(2,-1)D.(2,1)【分析】正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.【解答】解:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选:B.4、已知点P关于原点对称点P1的坐标是(-2,3),则点P关于y轴的对称点P坐标是()2的A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,得出P(2,-3),再利用平面内两点关于y轴对称时:纵坐标不变,横坐标互为相反数,从(-2,-3).而得出P2【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴P(2,-3),又∵平面内两点关于y轴对称,纵坐标不变,横坐标互为相反数,(-2,-3),∴P2故选C.5、下面的扑克牌中,牌面是中心对称图形的是___________.A.①④B.①②C.②④D.①③【分析】根据中心对称图形的概念和扑克牌的花色求解.【解答】解:由于黑桃9与梅花3中间的图形旋转180°后无法与原来重合,故不是中心对称图形;只有①和③是中心对称图形.故选D6、如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转___________度角后,两张图案构成的图形是中心对称图形.A.30B.60C.120D.180【分析】根据中心对称图形的概念并结合图形特征进行分析.【解答】解:正三角形要想变成和正偶数边形有关的多边形,边数最少也应是6边形,而六边形的中心角是60°,所以至少旋转60°角后,两张图案构成的图形是中心对称图形.故选B7、下列命题中正确的是()A.轴对称图形是中心对称图形B.中心对称图形是轴对称图形C.关于中心对称的两个三角形全等D.两个全等三角形一定关于某一点成中心对称【分析】根据轴对称、中心对称、全等三角形的有关性质进行判断即可.【解答】A.轴对称图形不一定是中心对称图形,故本选项错误,B.中心对称图形不一定是轴对称图形,故本选项错误,C.关于中心对称的两个三角形全等,正确,D.两个全等三角形不一定关于某一点成中心对称,故本选项错误,故选;C.8、已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A.B.C.D.【分析】根据中心对称的定义,观察四张牌的中间的图形,找出是中心对称的牌就是旋转的牌.【解答】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.9、下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:①此图形是中心对称图形,也是轴对称图形,故此选项正确;②此图形不是中心对称图形,是轴对称图形,故此选项错误;③此图形是中心对称图形,也是轴对称图形,故此选项正确;④此图形是中心对称图形,也是轴对称图形,故此选项正确.故既是轴对称图形又是中心对称图形的个数是3.故选:C.10、下列几何图形中,既是中心对称图形又是轴对称图形的个数是()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第二个图形、第四个图形既是中心对称图形又是轴对称图形,共2个.故选B.11、在以下绿色食品、回收、节能、节水四个标志中,既不是轴对称图形也不是中心对称图形的有()个.A.1B.2C.3D.4【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形是轴对称图形,不是中心对称图形,第2、3、4个图形既不是轴对称图形,也不是中心对称图形.故选C.1、顺次连接正六边形的三个不相邻的顶点.得到的图形,该图形( )A .既是轴对称图形也是中心对称图形B .是轴对称图形但并不是中心对称图形C .是中心对称图形但并不是轴对称图形D .既不是轴对称图形也不是中心对称图形【分析】根据正多边形的性质和轴对称图形与中心对称图形的定义解答.【解答】解:此图形是等边三角形,等边三角形是轴对称图形但并不是中心对称图形, 故选:B .2、如图1,有两个全等的正三角形ABC 和ODE ,点O 、C 分别为△ABC 、△ODE 的重心;固定点O ,将△ODE 顺时针旋转,使得OD 经过点C ,如图2所示,则图2中四边形OGCF 与△OCH 面积的比为( )A .1:1B .2:1C .4:1D .4:3【分析】设正三角形的边长是x ,则图1中四边形OGCF 是一个内角是60°的菱形,图2中△OCH 是一个角是30°的直角三角形,分别求得两个图形的面积,即可求解. 【解答】解:设正三角形的边长是x ,则高长是23x .故选D3、如图,阴影部分组成的图案既关于y轴成轴对称,又关于坐标原点O成中心对称,若点A的坐标是(2,1),则点M、N的坐标分别是()A.M(2,1),N(2,-1)B.M(2,-1),N(-2,-1)C.M(-2,1),N(-2,-1)D.M(-2,1),N(2,-1)【分析】根据A,M两点关于y轴对称,则它们的纵坐标不变,横坐标互为相反数,利用关于原点对称横纵坐标互为相反数得出即可.【解答】解:根据题意,知A、M两点关于y轴对称,则M(-2,1).A,N关于原点对称,A的坐标是(2,1),则N(-2,-1).故选C.4、如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A .2种B .3种C .4种D .5种【分析】利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.【解答】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种. 故选:C .5、如图,在Rt △ABC 中,斜边AB 长为83,直角边BC 长为12,若扇形ACE 与扇形BDE 关于点E 中心对称,则图中阴影部分的面积约为( )A .27B .42C .56D .108【分析】“扇形ACE 与扇形BDE 关于点E 中心对称”则阴影部分的面积等于S △A B C ,根据已知条件求出S △A B C 即可. 【解答】解:AC2=AB2-BC2=48 AC=43图中阴影部分的面积=S △A B C =21•AC •BC =21•43×12=243,≈42.故选B.6、一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【分析】先根据旋转对称图形的定义得出这个正多边形是正八边形、再根据轴对称图形和中心对称图形的定义即可解答.【解答】解:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.7、已知平面直角坐标系中点A、B、C的坐标分别为(0,-1)、(0,2)、(3,0),若从四个点M(3,3)、N(3,-3)、P(-3,1)、Q(-3,0)、中选一个,分别与点A、B、C一起作为顶点组成四边形,则组成的四边形是中心对称图形的个数有()A.4B.3C.2D.1【分析】分别将A、B、C、M、N、P、Q等点在坐标系中标出,作出四边形,找出中心对称图形的个数.【解答】解:如图所示,组成的中心对称图形有3个.四边形BACM和四边形BANC,四边形ACBP.故选B.8、下列图象一定不是中心对称图形的是()A.圆B.一次函数的图象C.反比例函数的图象D.二次函数的图象【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【解答】解:A、是中心对称图形,不合题意;B、一次函数的图象,是中心对称图形,不合题意;C、是中心对称图形,不合题意;D、二次函数的图象,不是中心对称图形,符合题意;故选:D.9、对右图的对称性判定正确的是()A.只是轴对称图形B.只是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形与中心对称图形的概念求解.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:由图形的对称性知右图既是轴对称图形,又是中心对称图形.故选C.10、下列四个图形中,既是轴对称图形又是中心对称图形的是()A.1个B.2个C.3个D.4个【分析】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,结合选项所给的图形即可得出答案.【解答】解:①既是轴对称图形,也是中心对称图形,故正确;②是轴对称图形,不是中心对称图形,故错误;③既是轴对称图形,也是中心对称图形,故正确;④是中心对称图形,不是轴对称图形,故错误.综上可得共有两个符合题意.故选:B.11、下列正方形中由阴影部分组成的图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故A错误;B、是中心对称图形,是轴对称图形,故B正确;C、是中心对称图形,不是轴对称图形,故C错误;D、是中心对称图形不是轴对称图形,故D错误.故选:B.。

中心对称与中心对称图形中档题30道解答题附规范标准答案

中心对称与中心对称图形中档题30道解答题附规范标准答案

9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E 、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F ,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来_________ .25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;(3)利用(2)中规律直接判断得出即可.解答:解:(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)考点:中心对称.分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S矩形ABCD,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S a=S b=S c=S d;(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.。

9.2 中心对称与中心对称图形

9.2  中心对称与中心对称图形

9.2 中心对称与中心对称图形【中档题】(满分100分时间:40分钟)班级姓名得分【知识点回顾】1、中心对称:一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这点对称,也称这两个图形成中心对称。

这个点叫做对称中心。

2、成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

3、中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点就是它的对称中心。

【课时练习】一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.(2021·重庆北碚区·西南大学附中九年级期末)下列图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形与轴对称图形的定义求解.【详解】解:A、是轴对称图形不是中心对称图形,不符合题意;B、既是轴对称图形也是中心对称图形,不符合题意;C、是中心对称图形不是轴对称图形,符合题意;D、是轴对称图形不是中心对称图形,不符合题意;故选C .【点睛】本题考查轴对称与中心对称的应用,熟练掌握轴对称与中心对称的意义是解题关键.2.(2020·浙江杭州市·八年级其他模拟)若4y kx =-的函数值y 随x 的增大而增大,则(,3)k 关于原点的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据函数的性质确定k >0,判断点(,3)k 在第一象限,根据中心对称的性质即可求解.【详解】解:∵4y kx =-的函数值y 随x 的增大而增大,∴k >0,∴点(,3)k 在第一象限,∴(,3)k 关于原点的对称点在第三象限.故选:C【点睛】本题考查了一次函数的增减性,中心对称的性质,根据一次函数的增减性判断k 的符号是解题关键.3.(2020·广州白云广雅实验学校九年级月考)如图,0MON 9°Ð=,ABC V 关于OM 的对称图形是111A B C V ,111A B C V 关于ON 的对称图形是222A B C V ,则ABC V 与222A B C V 的关系是( )A.平移关系B.关于O点成中心对称Ð的平分线成轴对称D.关于直线ON成轴对称C.关于MON【答案】B【分析】可设OM所在直线为y轴,ON所在直线为x轴,再根据平面直角坐标系中轴对称与中心对称的对称点的坐标关系便可求解.【详解】不妨设OM所在直线为y轴,ON所在直线为x轴,∵△ABC关于OM的对称图形是△A1B1C1,∴A与A1、B与B1、C与C1的纵坐标相同,横坐标互为相反数,∵△A1B1C1关于ON的对称图形是△A2B2C2,∴A1与A2、B1与B2、C1与C2的横坐标相同,纵坐标互为相反数,∴A与A2、B与B2、C与C2的横坐标、纵坐标都互为相反数,则由中心对称图形在平面直角坐标系中对称点的坐标关系可知:△ABC与△A2B2C2关于O点成中心对称.故答案为:B.【点睛】本题考查了轴对称图形的特征和中心对称图形的识别,正确区分两种对称变换的特征是解题的关键.4.(2020·山东淄博市·鲁村中学八年级月考)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.④B.③C.②D.①【答案】C【分析】将一个图形旋转180度后能与原图形重合的图形是中心对称图形,根据定义解答.【详解】A、涂④后构成轴对称图形,不符合题意;B、涂③后构成轴对称图形,不符合题意;C、涂②后构成中心对称图形,符合题意;D、涂①后既不是轴对称图形也不是中心对称图形,不符合题意;故选:C..【点睛】此题考查中心对称图形的定义,掌握中心对称图形与轴对称图形的特点及区别是解题的关键.5.(2020·全国九年级课时练习)如图,线段AC与BD相交于点O,且△ABO和△CDO关于点O成中心对称,则下列结论,其中正确的个数是()△≌△;④AC=BD.①OB=OD;②AB=CD;③ABO CDOA.4B.3C.2D.1【答案】B【分析】根据成中心对称的两个图形的性质解答.【详解】解:∵△ABO和△CDO关于点O成中心对称,∴△ABO≌△CDO,∴OB=OD,AB=CD,而AC=BD不一定成立,故选:B.【点睛】此题考查成中心对称的两个图形的性质:成中心对称的两个图形全等,熟记性质是解题的关键.6.(2020·上海嘉定区·七年级期末)下列说法中正确的是()A.如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B.如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C.如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D.如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;【答案】C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180°则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.二、填空题:(本题共4小题,每小题5分,共20分)-关于原点对称的点的坐标为______.7.(2021·福建莆田市·九年级期末)在平面直角坐标系中,点(2,4)-【答案】(2,4)【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】点(2,4)-关于原点对称的点的坐标为(2,4)-,故答案为:(2,4)-.【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数.8.(2021·重庆市璧山中学校九年级月考)已知点(,3)-A m 与(6,1)B n -关于原点对称,则m n +=____________.【答案】-8【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】∵点(,3)-A m 与(6,1)B n -关于原点对称,∴m=-6,1-n=3,∴n=-2,∴m+n=-6-2=-8,故答案为:-8.【点睛】此题考查关于原点对称的点的坐标特征:横纵坐标互为相反数,求代数式的值,熟记坐标特征是解题的关键.A a b+关于原点O对称的点的坐标是9.(2020·富顺县北湖实验学校九年级月考)直角坐标系里,点(,1)(4,3),则点A的坐标为____.【答案】(-4,-3)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A a b+关于原点O对称的点的坐标是(4,3),解:∵点(,1)∴a=-4,b+1=-3∴点A的坐标为(-4,-3) .故答案为:(-4,-3).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.10.(2020·孝感市孝南区教学研究室九年级期中)如图,O是正方形ABCD的中心,M是ABCD内一点,V绕O点旋转180°后得到BNACM=,则MN的长为V.若390DMCÐ=°,将DMCMD=,4______.【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD中延长BN交CM于E,由题意据中心对称的性质,得∠ABE=∠CDM,∠MDC与∠MCD互余,∠ABE与∠EBC互余∴∠EBC=∠DCM;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE为等腰直角三角形,且∠NEM是直角,ME=NE=1,由勾股定理得=.【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .三、解答题:(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.(2021·山东淄博市·八年级期末)如图,平面直角坐标系的原点在边长为1个单位长度的小正方形组成的网格的格点上,ABC V 为格点三角形(三角形的顶点在网格的格点上)(1)直接写出下列点的坐标:A (______,______),B (______,______),C (______,______).(2)直接画出经过下列变换后的图形:将ABC V 向右平移1个单位,再向下平移6个单位后,得到111A B C △(其中:点A 移动后为点1A ,点B 移动后为点1B ,点C 移动后为点1C )再将其绕点1A 顺时针旋转180°得到222A B C △.(3)通过观察分析判断ABC V 与222A B C △是否关于某点成中心对称?如果是,直接写出对称中心的坐标;如果不是,说明理由.【答案】(1)(3,2)A ,(1,1)B ,(4,0);(2)见解析;(3)ABC V 与222A B C △关于点P 成中心对称,点P 的坐标为 7,12öæ-ç÷èø.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构分别找出点A 、B 、C 平移后的对称点A 1、B 1、C 1的位置,然后顺次连接即可;分别找出点A 1、B 1、C 1绕点A 1顺时针旋转180°的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(3)根据网格结构和中心对称的性质确定出对称中心,并根据对称中心的位置写出坐标即可.【详解】解:(1)(3,2)A ,(1,1)B ,(4,0)C .(2)111A B C △如图所示,222A B C △如图所示.(3)如图所示,ABC V 与222A B C △关于点P 成中心对称,∵C(4,0),C2(3,-2),CP=C2P,点P的横坐标为:12×(4+3)=72,纵坐标为:12×(0-2)=-1,∴P7,12öæ-ç÷èø.【点睛】本题考查了利用平移、旋转变换作图及中心对称等知识,解题的关键是理解题意,熟练掌握平移、旋转及中心对称的性质并准确找出对应点的位置.12.(2020·浙江杭州市·八年级其他模拟)在66´的方格纸中,每个小正方形的边长均为1,请在图1、图2、图3中各画一个以A,B为顶点的四边形,满足以下要求:(1)在图1中画出一个面积为6,且是中心对称的四边形;(2)在图2中画出一个面积为9,且是轴对称的四边形;(3)在图3中画出一个既是轴对称又是中心对称的四边形.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)画一个底为2,高为3的平行四边形即可;(2)画一个上底为2,下底为4,高为3的梯形即可;(3)以AB为边画一个正方形即可.【详解】解:(1)如图,四边形ABCD即为所作;(2)如图,四边形ABCD即为所作;(3)如图,四边形ABCD即为所作.【点睛】本题考查了轴对称图形和中心对称图形,解题的关键是掌握相应图形的性质,以及网格的性质.V各顶点坐标为:13.(2021·朝阳县羊山实验中学九年级期末)如图,在平面直角坐标系中,ABCA-,(4,0)(2,3)B-,(1,1)C-.(1)作ABC V 关于原点O 成中心对称的111A B C △;(2)将111A B C △向上平移5个单位,作出平移后的222A B C ;(3)在x 轴上求作一点P ,使2PA PA +的值最小,并求出点P 的坐标【答案】(1)见详解;(2)见详解;(3)见详解,2,05æöç÷èø【分析】(1)根据关于原点对称的点的坐标特征分别作出点A 、B 、C 关于原点的对称点A 1、B 1、C 1,即可得到△A 1B 1C 1;(2)根据平移的性质分别作出点A 1、B 1、C 1向上平移5个单位的对称点A 2、B 2、C 2,即可得到△A 2B 2C 2;(3)由于点A′和A 关于x 轴对称,连结A′A 2交x 轴于P ,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,接着利用待定系数法求出直线A′A 2的解析式为5142y x =-,然后计算函数值为0时的自变量的值即可得到点P 的坐标.【详解】(1)如图,△A 1B 1C 1为所求;(2)如图,△A 2B 2C 2为所求;(3) 作点A 关于x 轴对称的对称点A′,连结A′A 2交x 轴于P ,则P 点为所求,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,设直线2A A ¢的解析式为y kx b =+,把(2,3)A ¢--,2(2,2)A 代入得:2322k b k b -+=-ìí+=î,解得5412k b ì=ïïíï=-ïî,∴直线2A A ¢的解析式为5142y x =-,当0y =时,51042x -=,解得25x =,P 点坐标为2,05æöç÷èø.【点睛】本题考查了作图-中心对称变换和平移变换.根据中心对称的性质可知,作对应点与中心O连线并延长,利用对应线段相等,由此可以射线上的边上截取相等的线段的方法,找到对应点,顺次连接得出成中心对称的图形.14.(2020·长沙市中雅培粹学校)阅读下列材料并完成题目:类似于平移变换是在原有横、纵坐标上加减一个数,在平面直角坐标系xOy中,点P(x,y)经过变换φ得到P′(x′,y′),把这种变换记作φ(x,y)=(x′,y′),其中''x ax byy ax by=+ìí=-î(a,b为常数),例如:当a=1,且b=1时,则φ(﹣2,3)=(1,﹣5).(1)①当a=2,且b=1时,φ(﹣2,1)= .②若φ(3,1)=(﹣3,﹣3),则a= ,b= .(2)点P(2,1)经过变换φ得到点P′(x′,y′),若点P′与点P关于原点对称,求a和b的值.(3)对任意横、纵坐标满足二元一次方程2x﹣y=0的点P(x,y),点P经过变换φ得到点P′(x′,y′),若点P与点P′重合,求a和b的值.【答案】(1)①(﹣3,﹣5);②﹣1,0;(2)31,42a b=-=-;(3)32a=,14b=-.【分析】(1)①根据变换φ的定义解答即可;②根据变换φ的定义构建方程组即可解决问题;(2)先根据关于原点对称的点的坐标特点求出点P′的坐标,再根据变换φ的定义构建方程组即可解决问题;(3)由题意可设P(x,2x),然后根据变换φ的定义构建方程组即可解决问题.【详解】解:(1)①x′=2×(﹣2)+1×1=﹣3,y′=2×(﹣2)﹣1×1=﹣5,∴φ(﹣2,1)=(﹣3,﹣5),故答案为:(﹣3,﹣5);②由题意,得3333a ba b+=-ìí-=-î,解得1ab=-ìí=î,故答案为:﹣1,0;(2)∵点P′与点P关于原点对称,P(2,1),∴P′(﹣2,﹣1),由题意,得2221a ba b+=-ìí-=-î,解得3412abì=-ïïíï=-ïî;所以31,42 a b=-=-;(3)由题意可设P(x,2x),则有222ax bx xax bx x+=ìí-=î,解得3214abì=ïïíï=-ïî.所以32a=,14b=-.【点睛】本题是新定义题目,以φ变换为载体,主要考查了二元一次方程组的解法和关于原点对称的点的坐标特点,正确理解变换法则、熟练掌握解二元一次方程组的方法是解题的关键.。

八年级数学下册 第9章 9.2 中心对称与中心对称图形同步练习(含解析)(新版)苏科版

八年级数学下册 第9章 9.2 中心对称与中心对称图形同步练习(含解析)(新版)苏科版

第9章 9.2中心对称与中心对称图形一、单选题(共10题;共20分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A、平行四边形B、等腰三角形C、等边三角形D、菱形2、下列图形中,既是中心对称图形又是轴对称图形的是()A、角B、等边三角形C、平行四边形D、圆3、下列图形:正三角形、平行四边形、矩形、菱形、正方形、等腰梯形、直角梯形、圆,其中既是中心对称图形,又是轴对称图形的共有()A、3个B、4个C、5个D、6个4、既是中心对称图形,又是轴对称图形的是()A、平行四边形B、正五边形C、菱形D、等腰梯形5、下列欧洲足球俱乐部标志中,是中心对称图形的是()A、B、C、D、6、下列四张扑克牌中,属于中心对称的图形是()A、红桃7B、方块4C、梅花6D、黑桃57、如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A、①②B、②③C、①③D、①②③8、在下列图形中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、9、如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是()A、把△ABC绕点C逆时针方向旋转90°,再向下平移2格B、把△ABC绕点C顺时针方向旋转90°,再向下平移5格C、把△ABC向下平移4格,再绕点C逆时针方向旋转180°D、把△ABC向下平移5格,再绕点C顺时针方向旋转180°10、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A、B、C、D、二、填空题(共9题;共9分)11、已知点A(a﹣2b,﹣2)与点A′(﹣6,2a+b)关于坐标原点对称,则3a﹣b=________ .12、若点(a,1)与(﹣2,b)关于原点对称,则a b=________ .13、若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .14、在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为________ .15、写出一个既是轴对称图形又是中心对称图形的几何图形,这个图形可以是________ .16、在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有________ 个.17、平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是________ .18、已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=________ .19、矩形是中心对称图形,对矩形ABCD而言,点A的对称点是点________.三、解答题(共5题;共30分)20、找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21、已知|2﹣m|+(n+3)2=0,点P1、P2分别是点P(m,n)关于y轴和原点的对称点,求点P1、P2的坐标.22、直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.23、如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.24、作图题:如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△AOB 的三个顶点A,O,B都在格点上.(1)画出△AOB关于点O成中心对称的三角形;(2)画出△AOB绕点O逆时针旋转90º后得到的三角形.答案解析部分一、单选题1、【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、只是中心对称图形;B、C都只是轴对称图形;D、既是轴对称图形,也是中心对称图形.故选D.【分析】根据轴对称图形的概念与中心对称图形的概念可作答.2、【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、角是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不轴对称图形,是中心对称图形,故本选项错误;D、圆既是轴对称图形也是中心对称图形,故本选项正确;故选D.【分析】根据轴对称及中心对称的定义,结合选项所给图形的特点即可作出判断.3、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:①是轴对称图形,不是中心对称图形;②是中心对称图形,不是轴对称图形;③矩形既是中心对称图形,又是轴对称图形;④菱形既是中心对称图形,又是轴对称图形;⑤正方形既是中心对称图形,又是轴对称图形.⑥是轴对称图形,不是中心对称图形;⑦既不是轴对称也不是中心对称;⑧既是轴对称也是中心对称;故③④⑤⑧符合题意.故选B.【分析】关于某条直线对称的图形叫轴对称图形,绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.4、【答案】C【考点】中心对称及中心对称图形【解析】【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【分析】根据轴对称图形与中心对称图形的概念求解.5、【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形.故错误;B、不是中心对称图形.故错误;C、不是中心对称图形.故错误;D、是中心对称图形.故正确.故选D.【分析】根据中心对称图形的概念求解.6、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:红桃7不是中心对称的图形;方块4是中心对称的图形;梅花6不是中心对称的图形;黑桃5不是中心对称的图形,故选:B.【分析】根据中心对称图形的概念进行判断即可.7、【答案】A【考点】中心对称及中心对称图形【解析】【解答】解:如图1,,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则l=2(a+2b+c),根据图示,可得·(1)﹣(2),可得:a﹣b=b﹣c,∴2b=a+c,∴l=2(a+2b+c)=2×2(a+c)=4(a+c),或l=2(a+2b+c)=2×4b=8b,∴2(a+c)= ,4b= ,∵图形①的周长是2(a+c),图形②的周长是4b,的值一定,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.【分析】首先设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,判断出l=2(a+2b+c),a=b+d,b=c+d;然后分别判断出图形①、图形②的周长都等于原来大长方形的周长的,所以它们的周长不用测量就能知道,而图形③的周长不用测量无法知道,据此解答即可.8、【答案】C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.【分析】根据轴对称图形与中心对称图形的概念分别分析求解.9、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选:B.【分析】观察图象可知,先把△ABC绕点C顺时针方向旋转90°,再向下平移5格即可得到.10、【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A.是轴对称图形,不是中心对称图形,故A项错误;B.是轴对称图形,也是中心对称图形,故B项正确;C.是轴对称图形,不是中心对称图形,故C项错误;D.是轴对称图形,不是中心对称图形,故D项错误;故选B.【分析】要所轴对称图形和中心对称图形的定义去判断.二、填空题11、【答案】8【考点】中心对称及中心对称图形【解析】【解答】解:∵点A(a﹣2b,﹣2)与点A′(﹣6,2a+b)关于坐标原点对称,∴a﹣2b=6,2a+b=2,∴a=2,b=﹣2,∴3a﹣b=8,故答案为:8.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得a﹣2b=6,2a+b=2,再解方程即可.12、【答案】【考点】中心对称及中心对称图形【解析】【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.13、【答案】(﹣1,﹣1)【考点】中心对称及中心对称图形【解析】【解答】解:过点A作AD⊥OB于点D,∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(﹣1,﹣1).故答案为(﹣1,﹣1).【分析】过点A作AD⊥OB于点D,根据等腰直角三角形的性质求出OD及AD的长,故可得出A点坐标,再由关于原点对称的点的坐标特点即可得出结论.14、【答案】(2,1)【考点】中心对称及中心对称图形【解析】【解答】解:∵点P(1,1),N(2,0),∴由图形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,∴对称中心的坐标为(2,1),故答案为:(2,1).【分析】根据中心对称的性质,知道点P(1,1),N(2,0),并细心观察坐标轴就可以得到答案.15、【答案】圆【考点】中心对称及中心对称图形【解析】【解答】解:既是轴对称图形又是中心对称图形的几何图形为圆.故答案为:圆.【分析】根据轴对称图形与中心对称图形的概念求解.16、【答案】2【考点】中心对称及中心对称图形【解析】【解答】解:既是轴对称图形又是中心对称图形的图形为:矩形、正方形,共2个.故答案为:2.【分析】根据轴对称图形与中心对称图形的概念求解.17、【答案】(2,﹣3)【考点】中心对称及中心对称图形【解析】【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),从而可得出答案.18、【答案】﹣1【考点】中心对称及中心对称图形【解析】【解答】解:点P(﹣2,3)关于原点的对称点为M(2,﹣3),则a=2,b=﹣3,a+b=﹣1,故答案为:﹣1.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值.19、【答案】C【考点】中心对称及中心对称图形【解析】【解答】解:矩形是中心对称图形,对称中心是对角线的交点,点A的对称点是点C,故答案为:C.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.三、解答题20、【答案】解:图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90°,180°,270°,360°,都能与原来的图形重合,因此,它是一个中心对称图形.【考点】中心对称及中心对称图形【解析】【分析】根据旋转中心、旋转角及旋转对称图形的定义结合图形特点,可知图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90°,180°,270°,360°,都能与原来的图形重合,再利用中心对称图形的定义即可求解.21、【答案】解:由|2﹣m|+(n+3)2=0,得m=2,n=﹣3.P(2,﹣3),点P1(﹣2,3)点P(m,n)关于y轴的对称点,点P2(﹣2,3)是点P(m,n)关于原点的对称点.【考点】中心对称及中心对称图形【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得P1点坐标,根据关于原点的横坐标互为相反数,纵坐标互为相反数,可得答案.22、【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=﹣3.∴x1=﹣1,x2=﹣2(不符合题意,舍).∴x=﹣1,y=﹣3∴x+2y=﹣7.【考点】中心对称及中心对称图形【解析】【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得x、y的值,根据有理数的运算,可得答案.23、【答案】解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.【考点】中心对称及中心对称图形【解析】【分析】(1)根据中心对称的性质可得AC=CD,BC=CE,然后根据对角线互相平分的四边形是平行四边形得到四边形ABDE是平行四边形,再根据平行四边形的对边互相平行且相等解答;(2)根据平行四边形的性质,对角线把四边形分成面积相等的四个部分解答;(3)∠ACB=60°.先判断出△ABC是等边三角形,根据等边三角形的三条边都相等可得AC=BC,然后求出AD=BE,再根据对角线相等的平行四边形是矩形证明.24、【答案】(1)解:如图(2)解:如图【考点】图形的旋转,中心对称及中心对称图形【解析】【分析】(1)将点A,B分别绕O点旋转180度,然后连线即可;(2)将点A,B分别绕O点旋转90度,然后连线即可.。

苏科版数学八年级下第9章中心对称图形—平行四边形9.1~9.2同步练习含答案初二数学

苏科版数学八年级下第9章中心对称图形—平行四边形9.1~9.2同步练习含答案初二数学

第9章《中心对称图形—平行四边形》9.1~9.21. 如图,在Rt ABC ∆中,,AB AC D =、E 是斜边BC 上两点,且45DAE ∠=︒,将ADC ∆ 绕点A 顺时针旋转90°后,得到AFB ∆,连接EF ,下列结论:①AED ∆≌AEF ∆ ②ABE ∆∽ACD ∆ ③BE DC DE += ④222BE DC DE += .其中正确的是( ).(第1题)A.②④B.①④C.②③D.①③2. 如图,将五个边长都为2 cm 的正方形按如图所示摆放,点A B C D 、、、分别是四个正方形的中心.则图中四块阴影面积的和为( ).(第2题)A. 2 cm 2B. 4 cm 2C. 6 cm 2D. 8 cm 23. 如图,在Rt ABC ∆中,90BAC ∠=︒,将ABC ∆绕点A 顺时针旋转90°后得到AB C ''∆ (点B 的叶应点是点B ',点C 的对应.点是点C '),连接CC '.若32CC B ''∠=︒,则B ∠的大小是( ).(第3题)A. 32°B. 69 °C. 77°D. 87° 4. 按要求分别画出旋转后的图形:(1)画出ABC ∆绕点O 顺时针方向旋转90°后得A B C '''∆(2)画出四边形ABCD 绕点D 逆时针方向旋转90°后得四边形A B C D '''.(第4题(1)) (第4题(2))5. 将一张透明的平行四边形胶片沿对角线剪开,得到图(1)中的两张三角形胶片ABC ∆和DEF ∆.将这两张三角形胶片的顶点B 与顶点E 重合,把DEF ∆绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .(第5题)(1)当DEF ∆旋转至如图(2)位置,点()B E C D 、、在同一直线上时,AFD ∠与DCA ∠的数量关系是(2)当DEF ∆继续旋转至如图(3)位置时,(1)中的结论还成立吗?请说明理由 (3)在图(3)中,连接BO AD 、探索BO 与AD 之间有怎样的位置关系,并证明.6. 如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证DE DF =的理由.(第6题)7. 下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完个重合的是( ).8. 如图,在四边形ABCD 中,//,AB CD BC CD ⊥,垂足为点,C E 是AD 的中点,连接BE 并延长交CD 的延长线于点F .(1)图中EFD ∆可以由△ 绕着点 旋转 度后得到 (2)写出图中的一对全等三角形 (3)若456AB BC CD ===,,.求BCF ∆的面积.(第8题)9. 如图,在四边形ABCD 中,//,AB CD M 是BC 的中点.连接DM 并延长,交AB 的延长线于点E ,连接AM .如果AD AB CD =+,那么ADE ∆是什么三角形? AM 是ADE ∆的什么线段?请说明理由.(第9题)10. 如图,MN PQ ⊥,交点为O ,点A A '、, 是以MN 为对称轴的对称点,点A A ''、是 以PQ 为对称轴的对称点,试说明点A A '''、 是以点O 为对称中心的对称点.(第10题)11. 如图,图中出现的角都是直角.(1)画一条直线将这个图形分成面积相等的两个部分(给出三种画法)(2)符合(1)中要求的直线有多少条?如果只有三条,请说明理由 如果超过三条,请画出一种图出来.(第11题)12. 如图,菱形ABCD (图(1))与菱形EFGH (图(2))的形状、大小完全相同. (1)请从下列序号中选择正确选项的序号填写①点E F G H 、、、 ②点G F E H 、、、 ③点E H G F 、、、 ④点G H E F 、、、.(第12题)如果图(1)经过一次平移后得到图(2),那么点A B C D 、、、对应点分别是 如果图(1)经过一次轴对称后得到图(2),那么点A B C D 、、、对应点分别是 如果图(1)经过一次旋转后得到图(2), 那么点A B C D 、、、对应点分别是 (2)①图(1)、图(2)关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法) ②写出两个图形成中心对称的一条性质: . (可以结合所画图形叙述)参考答案1. B2. B3. C4. 略5. (1)AFD DCA ∠=∠(或相等).(2)AFD DCA ∠=∠(或成立).理由如下:由ABC ∆≌DEF ∆,得,(),,AB DE BC EF BF EC ABC DEF BAC EDF ===∠=∠∠=∠或.ABC FBC DEF CBF ∴∠-∠=∠-∠. ABF DEC ∴∠=∠.在ABF ∆和DEC ∆中,,,,AB DE ABF DEC BF EC =∠=∠= ∴ABF ∆≌DEC ∆.BAF EDC ∴∠=∠.BAC BAF EDF EDC ∴∠-∠=∠-∠.即FAC CDF ∠=∠.AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠,AFD DCA ∴∠=∠.(3)如图,BO AD ⊥.由ABC ∆≌DEF ∆,点B 与点E 重合,得,BAC BDF BA BD ∠=∠=.∴点B 在AD 的垂直平分线上,且BAD BDA ∠=∠.,OAD BAD BAC ODA BDA BDF ∠=∠-∠∠=∠-∠, OAD ODA ∴∠=∠.OA OD =,点O 在AD 的垂直平分线上, ∴直线BO 是AD 的垂直平分线,BO AD ⊥.6.DF DE ⊥, 2390∴∠+∠=︒,又1390∠+∠=︒,12∴∠=∠.在正方形ABCD 中,,,12,AD DC DAE DCF =∠=∠∠=∠DAE ∴∆≌DCF ∆. DE DF ∴=.7. A8. (1)EBA E 180 (2)FDE ∆≌BAE ∆ (3)25BCF ABCD S S ∆==梯形9. 等腰三角形,AM 是ADE ∆边DE 上的垂直平分线,又是DAE ∠的角平分线.理由如下: DCM ∆≌EBM ∆,DC EB ∴=.AD AB CD =+,AE AB BE =+,AD AE ∴=.ADE ∴∆是等腰三角形.DCM ∆≌EBM ∆,DM ME ∴=.AM ∴是边DE 上的垂直平分线,又是DAE ∠的角平分线. 10. 如图,连接AA '、AA ''、OA 、OA '、OA ''. A ∴、A '是以MN 为对称轴的对称点, MN ∴是AA '的垂直平分线.,12OA OA '∴=∠=∠.同理,OA OA ''=,34∠=∠.OA OA '''∴=.142390MOQ ∴∠+∠=∠+∠=∠=︒. 1234180∴∠+∠+∠+∠=︒.A '∴、O 、A ''在同一直线上,且OA OA '''=. ∴点A '、A ''是以点O 为对称中心的对称点.11.(2)这样的直线有无数条,比如我们可以利用图(1)来画出第四种图形.如图(4),取线段AB的中点O,过点O作直线4l,则直线4l也能将整个图形分成为面积相等的两个部分,因此这样的直线实际上有无数条.12. (1)①②④等(2)①图略②DC EF。

专题9.2中心对称与中心对称图形-2020-2021学年八年级数学下册同步试题(原卷版)【苏科版】

专题9.2中心对称与中心对称图形-2020-2021学年八年级数学下册同步试题(原卷版)【苏科版】

2020-2021学年八年级数学下册同步考试题专题9.2中心对称与中心对称图形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•邗江区期中)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2020春•工业园区校级期中)下列图标中,是中心对称图形的是()A.B.C.D.3.(2020春•仪征市期中)在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是()A.2个B.3个C.4个D.5个4.(2020春•相城区期末)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△B′O′C,则点A与点B′之间的距离为()A.6B.8C.10D.125.(2020春•无锡期中)在平面直角坐标系xOy 中,点A (4,3),点B 为x 轴正半轴上一点,将△AOB 绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有( )A .5个B .4个C .3个D .2个6.(2019秋•颍州区期末)如图,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A ′是对称点B .BO =B ′OC .AB ∥A ′B ′D .∠ACB =∠C ′A ′B ′7.(2018秋•富顺县期中)如图,△ABC 与△A ′B ′C ′关于O 成中心对称,下列结论中不成立的是( )A .OC =OC ′B .OA =OA ′C .BC =B ′C ′D .∠ABC =∠A ′C ′B ′8.(2020春•东海县期末)如图,△ABC 为等边三角形,AB =4,AD ⊥BC ,点E 为线段AD 上的动点,连接CE ,以CE 为边在下方作等边△CEF ,连接DF ,则线段DF 的最小值为( )A .2B .√3C .32D .19.(2020春•曹县期末)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE,下列结论正确的是()A.AC=AD B.BC=DE C.AB⊥EB D.∠A=∠EBC10.(2020春•江阴市校级期中)如图,在Rt△ABC中,∠C=90°,把△ABC绕AC边的中点M旋转后得△DEF,若直角顶点F恰好落在AB边上,且DE边交AB边于点G,若AC=4,BC=3,则AG的长为()A.710B.34C.45D.1二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•江都区期中)在等腰直角三角形、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有个.12.(2020•滨湖区一模)给出如下5种图形:①矩形,②等边三角形,③正五边形,④圆,⑤线段.其中,是轴对称图形但不是中心对称图形的有.(请将所有符合题意的序号填在横线上)13.(2019春•丹阳市期末)下列4种图案中,既是轴对称图形,又是中心对称图形的有个.14.(2018秋•汶上县期末)六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为.15.(2018春•泰兴市校级期中)如图,点A,B,C的坐标分别为(0,﹣1),(0,2),(3,0).从下面四个点M(3,3),N(3,﹣3),P(﹣3,0),Q(﹣3,1)中选择一个点,以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是.16.(2020秋•港口区期中)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD的大小为度.17.(2020春•秦淮区期末)如图,在△ABC中,∠BAC=90°,AB=AC,P是△ABC内一点,若P A=1,PC=2,∠APC=135°,则PB的长为.18.(2020春•丹阳市期末)一副三角板按如图所示叠放在一起,∠C=60°,∠OAB=45°,其中点B、D 重合,若固定△AOB,将三角板ACD绕着公共顶点A顺时针旋转一周后停止,当旋转角为度时,CD∥AO.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•灌云县期中)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.20.(2019春•秦淮区期末)如图,是5个全等的小正方形组成的图案,请用不同的两种方法分别在两幅图中各添加1个正方形,使整个图案称为中心对称图形.21.(2020秋•安定区期末)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.22.(2020春•太仓市期末)如图,在12×12正方形网格中建立直角坐标系,每个小正方形的边长为1个单位长度,△ABC的三个顶点A(0,2),B(3,5),C(2,2).(1)将△ABC以点A为旋转中心旋转180°,得到△AB1C1,点B、C的对应点分别是点B1,C1,请在网格图中画出△AB1C1.(2)将△ABC平移至△A2B2C2,其中点A,B,C的对应点分别为点A2,B2,C2,且点C2的坐标为(2,﹣4),请在图中画出平移后的△A2B2C2.(3)在第(1)、(2)小题基础上,若将△AB1C1绕某一点旋转可得到△A2B2C2,则旋转中心点P的坐标为.(直接写出答案)23.(2020春•常州期中)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,点C、D 分别在OA、OB上的点,连接AD、BC,点H为BC中点,连接OH.(1)如图1,求证OH=12AD,OH⊥AD;(2)将△COD绕点O旋转到图2所示位置时,(1)中结论是否仍成立?若成立,证明你的结论;若不成立,请说明理由.24.(2019秋•黄山期末)将两块斜边长相等的等腰直角三角形按如图A摆放,斜边AB分别交CD、CE于M、N点,(1)如果把图A中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图B,求证:△CMF≌△CMN:(2)将△CED绕点C旋转:①当点M、N在AB上(不与A、B重合)时,线段AM、MN、NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;②当点M在AB上,点N在AB的延长线上(如图C)时,①中的关系式是否仍然成立?请说明理由.。

八年级数学苏科版下册课时练第9单元 《9.2中心对称与中心对称图形》(含答案解析)(2)

八年级数学苏科版下册课时练第9单元 《9.2中心对称与中心对称图形》(含答案解析)(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练9.2中心对称与中心对称图形一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.一棋谱中四部分的截图由黑白棋子摆成的图案是中心对称的是()A.B.C.D.4.下列4个数字中,是中心对称图形的是()A.B.C.D.5.由圆和正五边形所组成的图形如图所示,那么这个图形()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形也不是轴对称图形6.观察如图所示的正五角星,下列说法正确的是()A.既是轴对称图形,也是中心对称图形B.不是轴对称图形,是中心对称图形C.不是中心对称图形,是轴对称图形D.既不是轴对称图形,也不是中心对称图形7.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形D.正五边形8.如图,线段AB与线段CD关于点P对称,若点A(a,b)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣a,﹣b)B.(﹣a+2,﹣b)C.(﹣a﹣1,﹣b+1)D.(﹣a+1,﹣b﹣1)9.如图,在平面直角坐标系中,将等边△OAB绕点A旋转180°,得到△O1AB1,再将△O1AB1绕点O1旋转180°,得到△O1A1B2,再将△O1A1B2绕点A1旋转180°,得到△O2A1B3,…,按此规律进行下去,若点B(2,0),则点B6的坐标为()A.(6,6)B.(6,8)C.(8,6)D.(8,8)10.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则∠ADF的度数为()A.15°B.20°C.25°D.30°二.填空题11.在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是(填序号).12.如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.13.已知,点A(a,1)和点B(3,b)关于点(5,0)成中心对称,则a+b的值为.14.如图,直线MN过▱ABCD的中心点O,交AD于点M,交BC于点N,已知S▱ABCD=4,则S=.阴影15.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.16.如图,在Rt△ABC中,∠ABC=90°,AB=1,BC=2,以AB、AC为邻边作平行四边形ABDC.若点E、F分别在边AC、BD上运动,且EF平分▱ABDC的面积,当线段EF 取最小时,AE的值为.三.解答题17.如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?18.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.19.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE,求证:FD=BE.20.在学习函数的过程中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程,根据你所经历的学习过程,现在来解决下面的问题:在函数y=ax3﹣bx+2中,当x=﹣1时,y=4;当x=﹣2时y=0.(1)根据已知条件可知这个函数的表达式.(2)根据已描出的部分点,画出该函数图象.(3)观察所画图象,回答下列问题:①该图象关于点成中心对称;②当x取何值时,y随着x的增大而减小;③若直线y=c与该图象有3个交点,直接写出c的取值范围.参考答案一.选择题1.C.2.B.3.A.4.A.5.A.6.C.7.C.8.B.9.C.10.D.二.填空题11.②⑤⑥.12..13.6.14.1.15.12.16..三.解答题17.解:∠B与∠F相等,理由如下:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴∠B=∠DEC,∵AF∥BE,∴∠F=∠DEC,∴∠B=∠F.18.解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=EC,∵△ACE中,AB﹣AC<AE<AC+AB,∴2<AE<8,∴1<AD<4.19.证明:∵△ABO与△CDO关于O点中心对称,∴BO=DO,AO=CO,∵AF=CE,∴AO﹣AF=CO﹣CE,∴FO=EO,在△FOD和△EOB中,∴△FOD≌△EOB(SAS),∴DF=BE.20.解:(1)由题意:,解得,∴函数解析式为y=x3﹣3x+2.故答案为y=x3﹣3x+2.(2)函数图象如图所示:(3)①观察图象可知:函数图象关于(0,2)成中心对称.故答案为(0,2).②观察图象可知:当﹣1<x<1时,y随着x的增大而减小.③观察图象可知:若直线y=c与该图象有3个交点,c的取值范围为0<c<4.。

9.2 中心对称与中心对称图形(1)

9.2 中心对称与中心对称图形(1)

( )
A
B
C
D
( )
6、在下图中,是中心对称图形的是
A
B
C
D
学以致用
如图,在矩形ABCD中,已知AB=2,AD=4,对 角线AC.BD交于点O,EF经过点O交AD 于点E,交BC于点F,求图中阴影部分的面 积。
A E D O
B
F
C
3、在一次游戏当中, 小明将图1的四张扑 图1 克牌中的一张旋转 180O后,得到图2, 小亮看完,很快知 道小明旋转了哪一 张扑克,你知道为 什么吗?
2.中心对称图形都可以过对称中心作 一条直线把它分成面积相等的两部分.
轴对称图形的对称轴将图形面积二等分, 中心对称图形过对称中心的直线将图形面 积二等分.请用学过的知识将下图所示的 图形面积分成相等的两部分.
对称 形式
轴对称 只有一条对称轴 有两条对称轴 中心对称 英文 字母
A D E U W
H X
H N S X
2、下列这些数字中有 ——个是中心 对称的图形?
有 ——个是轴对称的图形?
观 察
(1)把其中一个图案绕点O旋转180°,你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?
B’ C’ O D’ D A’
C
A
四边形A1B1C1D1即为所求的图形。
B
1、
如图,已知△ABC与△A’B’C’中
C A’ B A B’
心对称,求出它们的对称中心O。
C’
解法一:根据观察,B、B’应是对应点, 连结BB’,用刻度尺找出BB’的中点O,则
点O即为所求(如图)
C O B A C’ B’

八年级数学下册第9章中心对称图形—平行四边形9.2中心对称与中心对称图形同步练习(新版)苏科版

八年级数学下册第9章中心对称图形—平行四边形9.2中心对称与中心对称图形同步练习(新版)苏科版

9.2中心对称与中心对称图形一、选择题1.把下列每个字母都看成一个图形,那么中心对称图形有A. 1个B. 2个C. 3个D. 4个2.下列图形中,中心对称图形的个数是A. 1个B. 2个C. 3个D. 4个3.中国2010年上海世博会正在引起世界的关注和期待,在下面的四个往届世博会会徽的设计图案中,可以看作是中心对称图形的是A. B. C. D.4.下列图形中,中心对称图形有A. 1个B. 2个C. 3个D. 4个5.下面有四个“风车”图案,其中是中心对称图形的有A. 1个B. 2个C. 3个D. 4个6.下列图形中,不是中心对称图形的是A. 平行四边形B. 圆C. 正八边形D. 等边三角形7.在一次游戏当中,小明将下面四张扑克牌中的三张旋转了,得到的图案和原来的一模一样,小芳看了后,很快知道没有旋转那张扑克牌是A. 黑桃QB. 梅花2C. 梅花6D. 方块98.里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影请问下面四幅球类的平面图案中,是中心对称图形的是A. B. C. D.9.下列图形是中心对称图形的是A. B. C. D.10.如图,原有一大长方形,被分割成3个正方形和2个长方形后仍是中心对称图形若原来该大长方形的周长是120,则分割后不用测量就能知道周长的图形标号为A. B. C. D.11.下列各图形都由若干个小正方形构成,其中是中心对称图形的是A. B. C. D.二、解答题12.如图,在中,D为BC上任一点,交AB于点交AC于点F,求证:点关于AD的中点对称.13.由16个边长相等的小正方形组成的图形如图所示,请你用一条割线可以是折线将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.14.在艺术字中,有些汉字或字母是中心对称图形下面的汉字或字母,是中心对称图形吗?如果是,请标出它们的对称中心.15.如图,一个圆和一个平行四边形请你画出一条直线l,同时把这两个图形分成面积相等的两部分.【答案】1. B2. A3. C4. B5. B6. D7. C8. C9. D10. A11. C12. 证明:如图,连接EF交于点O.交AB与交AC于F,四边形AEDF是平行四边形,点关于AD的中点对称.13. 解:如图所示:.14. 解:这些艺术字均为中心对称图形,其对称中心为图形中的点O.15. 解:如图所示:。

《中心对称图形》同步练习及答案

《中心对称图形》同步练习及答案

《中心对称图形》同步练习及答案同步练习基础题1.下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是()A.(1)(2)B.(1)(2)(3)C.(2)(3)(4)D.(1)(3)(4)2.下列说法:(1)平行四边形是中心对称图形,其对角线的交点为对称中心;(2)只有正方形才既是中心对称图形,又是轴对称图形;(3)关于中心对称的两个图形是全等形,两个全等图形也一定成中心对称;(4)若将一个图形绕某定点旋转和另一个图形不重合,那么这两个图形不可能关于这个定点成中心对称,其中正确说法的个数是()A.1个B.2个C.3个D.4个3.国旗上的每个五角星()A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.下列图形中不是轴对称图形而是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形5.等腰三角形、等边三角形、矩形、正方形和圆这五种图形中,既是轴对称图形又是中心对称图形的图形种数是()A.2B.3C.4D.56.如图将三角形绕直线l?旋转一周,可以得到图(E)所示的立体图形的是()A.图(A)B.图(B)C.图(C)D.图(D)综合题像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.(3)回答下列问题:①在图1中,可以通过平行移动、翻折、旋转中的哪一种方法使△?ABE变到△ADF的位置,答:________________________________________________.②指出图1中,线段BE与DF之间的关系答:________________________________________________.创新题两个人轮流在一张桌面(长方形或正方形或圆形)上摆放硬币.规则是每人每次摆一个,硬币不能互相重叠,也不能有一部分在桌面边缘之外,摆好之后不许移动.这样经过多次摆放,直到谁最先摆下硬币谁就认输.按照这个规则你用什么方法才能取胜呢?1创新题1.你要争取先放,并把第1枚硬币放在桌面的对称中心上,以后你应该根据对方所放硬币的位置,在它关于中心对称的位置上放下一枚同样大小硬币.这样,由于对称性,只要对方能放得下一枚硬币,你就保证能在其对称位置上放下一枚同样大小的硬币,因此,失败绝对轮不到你.。

八下9.2中心对称与中心对称图形基础题训练(有答案)

八下9.2中心对称与中心对称图形基础题训练(有答案)

八下9.2中心对称与中心对称图形基础题训练一、选择题1.随着我国经济快速发展,轿车进入百姓家庭,观察下列四种汽车标志,其中是中心对称图案的是()A. B.C. D.2.若点A(3,2)与点A′关于坐标原点对称,则点A′的坐标是A. (3,2)B. (−3,2)C. (3,−2)D. (−3,−2)3.如图将①②③④中的一块涂成阴影能与图中原有阴影部分组成中心对称图形的是()A. ④B. ③C. ②D.①4.已知点A(,)与点B(,)关于原点对称,则等于()A. —2B. 2C. 6D. —65.在平面直角坐标系中,点A(−2,1)绕原点旋转180°后所得点的坐标为A. (2,1)B. (2,−1)C. (−2,−1)D. (1,−2)6.下列说法正确的是()A. 正五角星绕着它的中心旋转72°后与原图形重合,那么正五角星是中心对称图形B. 等边三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么等边三角形是中心对称图形C. 正方形绕着它的对角线交点旋转90°后与原图形重合,那么正方形是中心对称图形D. 线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形二、填空题7.在平面直角坐标系中,点A(−3,1)与点B关于原点对称,则点B的坐标为.8.已知点A(−1,−2)与点B(m,2)关于原点对称,则m的值是________.9.如图,AB⊥BC,AB=BC=2cm,弧OA与弧OC关于点O成中心对称,则AB、BC与弧OC、弧OA所围成的面积是_______cm2.10.我们所学过的图形中,既是轴对称图形,又是中心对称图形的是_____.(填一个即可)11.已知点P(2m−1,−m+3)关于原点的对称点在第三象限,则m的取值范围是_______.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为______.13.如图,数轴上表示1、√2的对应点分别为A、B,点B关于点A的对称点为C,则点C表示的数是____________________.三、解答题14.如图,△ABO与△CDO关于点O中心对称,点E、F在线段AC上,且AF=CE。

人教版九年级上册数学中心对称与中心对称图形(含答案)

人教版九年级上册数学中心对称与中心对称图形(含答案)

中心对称与中心对称图形一、基础练习1.下列命题正确的个数是()①关于中心对称的两个三角形是全等三角形;②两个全等三角形必定关于某一点成中心对称;③两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;④关于中心对称的两个三角形,对称点的连线都经过对称中心.A.1个B.2个C.3个D.4个2.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是()A.点E B.点F C.点G D.点H3.下面的图形中,是轴对称图形但不是中心对称图形的是()4.如图的四组图形中,左边图形与右边图形成中心对称的有________组.5.在图中,作出△ABC关于点E成中心对称的图形.6.一块如图所示的钢板,如何用一条直线将其分成面积相等的两部分?7.已知:如图,已知△ABC,点O为BC的中点.(1)画出△ABC绕边BC的中点O旋转180°得到的△DCB;(2)求证:四边形ABDC是平行四边形.二、、提高训练8.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°,将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形________个.9.如图,在每个边长均为1的小正方形的方格纸中,△ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.10.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成的一幅图案,请依照此图案分别设计出符合要求的图案(注:①不得与原图案相同;②黑白方块的个数相同).(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形.中心对称与中心对称图形(答案)1.B 2.D 3.D4.35.解:如图6.解:如图,将图形分成两个矩形,画一条同时经过两个矩形中心的直线即可.有三种思路:7.(1)解:如图(2)证明:因为△DCB是由△ABC绕点O旋转180°所得,所以点A和D,B和C关于点O中心对称.所以OB=OC,OA=OD.所以四边形ABDC是平行四边形.8.39.解:(1)、(210.解:(1)如图(2)如图.(3)如图。

9.2中心对称与中心对称图形同步练习含详细答案

9.2中心对称与中心对称图形同步练习含详细答案

中心对称和中心对称图形一.选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.7.下列所述图形中,是中心对称图形的是()A.直角三角形 B.平行四边形 C.正五边形D.正三角形8.下列既是轴对称图形又是中心对称图形的是()A.B.C.D.9.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.10.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个12.下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边行C.正五边形D.圆13.下列图案,既是轴对称又是中心对称的是()A.B.C.D.14.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.15.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个16.下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.17.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个18.如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.19.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.20.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.21.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.22.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.23.下列图形是中心对称图形的是()A.B.C.D.二.填空题(共3小题)24.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.25.下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有个.26.在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图形中,是中心对称图形但不是轴对称图形的是.答案与解析一.选择题1.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.2.(2016•内江)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(2016•天水)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.【解答】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选C.【点评】本题考查了中心对称图形以及轴对称图形,解题的关键是牢记中心对称图形及轴对称图形的特点.本题属于基础题,难度不大,解决该题型题目时,对折(或旋转)图形验证其是否为轴对称(或中心对称)图形是关键.4.(2016•大庆)下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.(2016•葫芦岛)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.【解答】解:A、既是轴对称图形,不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、只是轴对称图形,不是中心对称图形.故选B.【点评】此题主要是分析圆内的图案的对称性,只要有偶数条对称轴的轴对称图形一定也是中心对称图形.6.(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形 B.平行四边形 C.正五边形D.正三角形【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(2016•眉山)下列既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.9.(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.(2016•龙东地区)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2016•凉山州)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(2016•广安)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形;平行四边形不是轴对称图形是中心对称图形;正五边形是轴对称图形不是中心对称图形;圆是轴对称图形又是中心对称图形,故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(2016•绵阳)下列图案,既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.(2016•徐州)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.(2016•南通)下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形,掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.16.(2016•本溪)下列图形既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故选项正确;B、是轴对称图形,不是中心对称图形,故选项错误;C、是轴对称图形,不是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选A.【点评】本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.17.(2016•铜仁市)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A【点评】此题主要考查了中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.18.(2016•宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.19.(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.【点评】本题考查的是中心对称图形,熟知轴对称图形与中心对称图形的性质是解答此题的关键.20.(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.21.(2015•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.22.(2015•山西)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.23.(2015•抚顺)下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,B是中心对称图形.故选B.【点评】本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.二.填空题(共3小题)24.(2016•营口)下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有 2 个.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①既是轴对称图形又是中心对称图形,符合题意;②是轴对称图形,不是中心对称图形,不符合题意;③既是轴对称图形又是中心对称图形,符合题意;④是轴对称图形,不是中心对称图形,不符合题意;故既是轴对称图形又是中心对称图形的是①③共2个.故答案为:2.【点评】此题主要考查了中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.25.(2014•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有 1 个.【分析】根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.【解答】解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第四个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.26.(2014•铜仁地区)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图形中,是中心对称图形但不是轴对称图形的是平行四边形.【分析】根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.【解答】解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.2 中心对称和中心对称图形一.选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C. D.4.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.45.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C.D.7.下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形8.下列既是轴对称图形又是中心对称图形的是()A.B.C.D.9.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.10.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.11.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个12.下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边行C.正五边形D.圆13.下列图案,既是轴对称又是中心对称的是()A. B.C.D.14.下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.15.下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个 B.3个 C.2个 D.1个16.下列图形既是中心对称图形又是轴对称图形的是()A.B. C.D.17.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个18.如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.19.下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C. D.20.下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.21.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.22.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.23.下列图形是中心对称图形的是()A.B. C.D.二.填空题(共3小题)24.下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有个.25.下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有个.26.在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图形中,是中心对称图形但不是轴对称图形的是.答案与解析一.选择题1.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.2.(2016•内江)下列标志既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(2016•天水)下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.【解答】解:A、是轴对称图形不是中心对称图形;B、既不是轴对称图形又不是中心对称图形;C、既是轴对称图形又是中心对称图形;D、是轴对称图形不是中心对称图形.故选C.【点评】本题考查了中心对称图形以及轴对称图形,解题的关键是牢记中心对称图形及轴对称图形的特点.本题属于基础题,难度不大,解决该题型题目时,对折(或旋转)图形验证其是否为轴对称(或中心对称)图形是关键.4.(2016•大庆)下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.(2016•葫芦岛)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.【解答】解:A、既是轴对称图形,不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、只是轴对称图形,不是中心对称图形.故选B.【点评】此题主要是分析圆内的图案的对称性,只要有偶数条对称轴的轴对称图形一定也是中心对称图形.6.(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(2016•广东)下列所述图形中,是中心对称图形的是()A.直角三角形B.平行四边形C.正五边形D.正三角形【分析】根据中心对称图形的定义对各选项分析判断即可得解.【解答】解:A、直角三角形不是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项正确;C、正五边形不是中心对称图形,故本选项错误;D、正三角形不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.(2016•眉山)下列既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.9.(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.(2016•龙东地区)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.(2016•凉山州)在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.(2016•广安)下列图形中既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边行 C.正五边形D.圆【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形是轴对称图形不是中心对称图形;平行四边形不是轴对称图形是中心对称图形;正五边形是轴对称图形不是中心对称图形;圆是轴对称图形又是中心对称图形,故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(2016•绵阳)下列图案,既是轴对称又是中心对称的是()A. B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.(2016•徐州)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形也不是中心对称图形,故此选项错误;D、不是轴对称图形是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.15.(2016•南通)下列几何图形:其中是轴对称图形但不是中心对称图形的共有()A.4个 B.3个 C.2个 D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形.故选C.【点评】本题考查了中心对称图形,掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.16.(2016•本溪)下列图形既是中心对称图形又是轴对称图形的是()A.B. C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故选项正确;B、是轴对称图形,不是中心对称图形,故选项错误;C、是轴对称图形,不是中心对称图形,故选项错误;D、是轴对称图形,不是中心对称图形,故选项错误.故选A.【点评】本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.17.(2016•铜仁市)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A【点评】此题主要考查了中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.18.(2016•宜昌)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.19.(2016•无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C. D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.【点评】本题考查的是中心对称图形,熟知轴对称图形与中心对称图形的性质是解答此题的关键.20.(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.21.(2015•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.22.(2015•山西)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.23.(2015•抚顺)下列图形是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的概念求解.【解答】解:根据中心对称图形的概念,绕旋转中心旋转180°与原图形重合,可知A、C、D都不是中心对称图形,B是中心对称图形.故选B.【点评】本题主要考查中心对称图形的概念,掌握掌握中心对称图形的概念是解题的关键,注意中心对称图形是要寻找对称中心,旋转180度后两部分重合.中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.二.填空题(共3小题)24.(2016•营口)下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有2个.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①既是轴对称图形又是中心对称图形,符合题意;②是轴对称图形,不是中心对称图形,不符合题意;③既是轴对称图形又是中心对称图形,符合题意;④是轴对称图形,不是中心对称图形,不符合题意;故既是轴对称图形又是中心对称图形的是①③共2个.故答案为:2.【点评】此题主要考查了中心对称图形与轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.25.(2014•赤峰)下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有1个.【分析】根据中心对称图形定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,可分析出答案.【解答】解:第一个图不是轴对称图形,不是中心对称图形,故不合题意;第二个图形是中心对称图形,也是轴对称图形,故符合题意;第三个图形不是中心对称图形,是轴对称图形,故不合题意;第四个图形不是中心对称图形,是轴对称图形,故不合题意.故答案为:1.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.26.(2014•铜仁地区)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图形中,是中心对称图形但不是轴对称图形的是平行四边形.【分析】根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.【解答】解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档