深基坑监测

合集下载

深基坑监测报告

深基坑监测报告

深基坑监测报告1. 概述本文档为深基坑监测报告,旨在对深基坑施工过程中的监测情况进行综合分析和总结。

深基坑是指在地下挖掘的较大规模工程,主要用于承载建筑物或其他重型结构的地下部分。

深基坑监测的目的是为了确保基坑施工过程中的安全和稳定。

2. 监测方法为了全面了解深基坑施工过程中的变形和变化情况,采用了以下监测方法:1.测量法:通过在基坑周围设置测量点,使用测距仪、水准仪等设备对基坑周边地面和结构物进行定期测量,以获取基坑变形参数,如位移、倾斜等数据。

2.应力监测:在深基坑内部设置应力监测点,利用应变计进行连续监测,以获取基坑周边土体的变形状态。

3.水位监测:安装水位监测设备,对基坑中的地下水位和孔隙水压进行实时监测,以确保基坑施工过程中的排水措施的有效性。

3. 监测结果通过对深基坑的监测数据进行分析,得到以下结果:1.位移和倾斜:监测数据显示,基坑周边的地面和结构物在挖掘过程中发生了一定的位移和倾斜,但均未超出安全范围。

这表明基坑施工过程中,地面和结构物的变化较小,具有较好的稳定性。

2.孔隙水压:水位监测数据显示,基坑周边地下水位在施工过程中有所变化,但在排水措施的有效管理下,孔隙水压得到了有效控制,保证了基坑周边土体的稳定性。

3.应力状态:应力监测数据显示,基坑周边土体的应力状态相对稳定,变形较小,符合设计要求。

在基坑施工过程中,土体的变形主要集中在基坑边界附近,较小的变形对周边建筑物和结构无影响。

4. 监测结论基于以上监测结果的分析,总结如下:1.基于测量和监测数据的分析,深基坑的施工过程中表现出较好的稳定性。

2.水位监测数据显示,排水系统的设计和施工是有效的,确保了基坑周边土体的稳定性。

3.出现的位移和倾斜在允许范围内,不会对周边建筑物和结构造成重大影响。

4.基坑施工过程中的应力状态符合设计要求,土体的变形主要集中在基坑边界附近。

基于以上结论,可以确认深基坑的施工过程中,监测结果显示基坑具备较好的安全性和稳定性。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。

本文将就深基坑施工监测方案进行探讨。

一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。

通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。

二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。

监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。

2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。

监测频次为每天、每班、每小时,并及时记录监测数据。

3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。

监测频次为每天、每周,并记录监测数据。

同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。

4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。

经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。

5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。

监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。

三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。

2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。

报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。

四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。

深基坑监测及应急措施

深基坑监测及应急措施

深基坑监测及应急措施一、监测的目的和原则施工监测是深基坑施工信息化的一项重要内容,现场施工中,要求通过适当的监测手段,随时掌握周边环境的变化以及基坑内部情况与设计模型之间的差异,以及支护土体的稳定状态和安全程度、基坑渗透水量的大小等等,及时反馈信息,现场工程师根据信息反馈情况及时修改施工方案,改善施工工艺。

此时现场工程师的施工经验和临场应变能力对预防事故的发生显得尤为重要,同时监测资料还可以作为检验和评价支护结构稳定性的依据。

二、监测内容房屋的沉降、倾斜,道路、地下管线的沉降、位移;支护结构的变形,土体的位移;渗透流量的大小,渗透量的大小,水位的高低等等都是监测的内容。

1、对周边房屋的沉降观测,初步确定为每一天进行一次,待土方开挖全部完成以后每2天观测一次。

待基坑回填完成以后不再观测。

观测范围是周围50米以内的建筑物。

2、对道路、地下管线的观测初步确定为每5天进行一次,待土方开挖全部完成以后每10天观测一次。

待基坑回填完成以后不再观测。

主要是沿河路的观测。

3、对支护结构的观测每天进行两次,并一直坚持到土方回填。

4、对土体渗透的观测每天进行四次,一直坚持到基础混凝土浇筑完成。

三、监测方法本工程基坑监测由建设单位委托专业监测机构进行监测,监测前编制专业监测方案,经监理单位审批后严格按方案内容执行检测。

四、应急措施1、当监测发出监测报警后,如变形(或内力)继续增加,且变形增加速率有加大的趋势,应采取相应应急措施。

(详见应急预案)2、根据监测单位的监测点埋设交底,了解监测点的埋设方法及注意点,以便监测单位有效开展监测工作。

3、对监测点派专人进行保护,对易人为损坏的监测点,可封闭保护。

4、挖土期间组织相应的决策机构及工作程序。

土方开挖施工期间,本工程各相关单位组成土方开挖应急领导小组,该小组为挖土期间的决策机构,成员由建设单位、基坑围护设计单位、主体结构设计单位、监理公司、基坑围护监测单位、施工总承包相关负责人组成。

深基坑变形监测

深基坑变形监测

深基坑变形监测深基坑是指建筑工程中所挖的较深的方形或圆形坑,一般用于地下车库、地下商场、地下工程等。

由于基坑承受来自周围土体的向内挤压力和自身重力的作用,会导致基坑变形,因此需要进行变形监测。

深基坑变形监测是指通过监测基坑周围土体和基坑本身在施工过程中的变形情况,及时掌握变形信息,以便采取相应的加固措施,保证基坑的安全施工和使用。

深基坑变形监测一般包括以下几个方面的内容:1. 地表沉降监测:通过在基坑周围设置沉降观测点,测量地表的沉降量,了解基坑附近土体的变形情况。

常用的监测方法包括测量地表高程、GPS定位等。

通过地表沉降监测可以判断基坑的变形是否存在异常情况。

2. 周边建筑物变形监测:在基坑周边设置监测点,通过使用位移传感器等监测设备,对周边建筑物的变形进行监测。

一旦发现附近建筑物有明显的位移现象,说明基坑造成了周边土体的变形,需要采取相应的措施进行加固。

3. 土体应力监测:通过设置土压力计、应变仪等监测设备,测量土体的水平应力和垂直应力。

监测土体的应力变化可以判断基坑周围土体是否存在破坏的趋势,及时采取措施减小土体应力。

4. 混凝土结构变形监测:通过在深基坑的混凝土结构内设置测量点,使用变形测量仪等设备,对混凝土结构的变形进行实时监测。

常见的监测参数包括混凝土的裂缝宽度、混凝土结构的变形速度等。

通过混凝土结构变形监测可以判断深基坑的变形是否达到设计要求,并根据实际情况进行相应的加固措施。

深基坑的变形监测是保证基坑施工和使用安全的重要手段。

通过实时监测基坑的变形情况,可以及时发现问题并采取措施进行处理,避免因基坑变形导致的事故发生。

深基坑变形监测是建筑工程施工的必要环节,也是保障施工质量和安全的重要措施。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。

该方案包括监测目标、监测内容、监测方法和监测频率等方面。

通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。

1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。

具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。

1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。

1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。

1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。

2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。

具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。

2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。

2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。

2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。

3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。

具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。

3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。

本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。

二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。

2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。

3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。

三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。

2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。

3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。

四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。

3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。

五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。

2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。

3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。

六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中一项重要的地下工程施工活动。

由于基坑较深、土壤条件复杂,施工过程中可能会面临一系列的安全隐患。

为了及时发现和解决问题,确保施工的顺利进行,深基坑施工监测方案应运而生。

二、监测目标1. 地面沉降:监测地表沉降情况,及时评估并控制地面沉降的范围和速度。

2. 地下水位:监测基坑周边地下水位的变化,防止地下水涌入基坑,导致工程事故。

3. 地下管线:监测基坑周边地下管线的位移情况,避免工程施工对管线造成破坏。

4. 地面建筑物:监测基坑施工对周边建筑物的影响,保证周边建筑物的安全。

三、监测方法1. 地面沉降监测:a. 使用全站仪实时监测地面水平和垂直位移的变化。

b. 设置沉降点网格,在关键位置进行连续监测。

c. 编制沉降监测曲线,分析沉降速度和变化趋势。

2. 地下水位监测:a. 安装水位计监测基坑周边地下水位的变化。

b. 建立水位监测井,定期采集地下水位数据。

c. 分析地下水位变动趋势,及时采取排水措施。

3. 地下管线监测:a. 使用高精度测距仪监测地下管线的位移情况。

b. 定期巡检地下管线,发现问题及时修复或迁移。

4. 地面建筑物监测:a. 安装倾斜仪、位移传感器等监测周边建筑物的位移情况。

b. 实时监测建筑物的倾斜角度、位移量等数据。

c. 设立安全预警值,一旦超过预警值,及时采取措施保护建筑物。

四、监测报告1. 每周编制监测报告,详细记录各项监测数据和分析结果。

2. 报告中应包括监测数据的变化曲线图、分析结果及建议措施。

3. 监测报告应及时上报给相关负责人,并定期进行讨论和总结。

五、紧急情况处理1. 当监测数据超过安全范围或出现异常情况时,立即采取紧急措施。

2. 紧急措施包括但不限于停工、加固、排水等,以保证工程的安全进行。

六、总结深基坑施工监测方案是保证施工安全和质量的重要保障措施。

通过合理的监测方法和及时的监测报告,可以及早发现问题、预防事故的发生,保证工程的正常进行。

深基坑监测方案

深基坑监测方案

深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。

下面给出了一个深基坑监测方案的示例,以供参考。

一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。

2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。

3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。

二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。

2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。

3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。

4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。

5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。

三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。

2. 测斜监测:每周监测一次,记录并分析数据。

3. 沉降监测:每周监测一次,记录并分析数据。

4. 建筑物监测:每月监测一次,记录并分析数据。

5. 管线监测:每季度监测一次,记录并分析数据。

四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。

2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。

五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。

2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。

六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。

2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。

七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。

2. 监测费用应计入工程造价。

以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案随着城市化进程的推进,越来越多的高层建筑和地下工程涌现出来,深基坑的施工也日益增多。

然而,深基坑的施工过程中可能面临着许多地质工程问题,如地下水位变动、土体沉降、结构安全等。

因此,为了保障施工的安全和有序进行,监测方案也变得尤为重要。

一、背景介绍深基坑施工监测是指在深基坑施工过程中,通过定期收集、分析和评估工地内外的数据来判断基坑的稳定性和安全性,以及及时采取必要的措施来防止对周围环境和结构产生不可逆转的影响。

施工监测确保施工过程中各种问题得到及时解决,从而确保施工的安全和顺利进行。

二、监测目标深基坑施工监测的目标主要包括以下几个方面:1. 深基坑的地表沉降监测:深挖基坑过程中,土体的变形会导致地表沉降,因此需要对基坑周围的土体变形进行监测,及时发现和掌握地表沉降的变化情况。

2. 周围建筑物和管线的位移监测:深基坑施工对周围的建筑物和管线会产生一定的影响,因此需要对周围建筑物和管线的位移进行监测,及时发现和预防潜在的风险。

3. 土体的应力和应变分布监测:深基坑施工过程中,土体的应力和应变分布会发生变化,需要通过监测来了解土体的荷载特性,从而评估土体的稳定性。

4. 地下水位变动监测:深基坑施工过程中,地下水位的变动会导致土体的稳定性发生变化,因此需要对基坑周围的地下水位进行监测,确保施工过程中不会出现渗水和涌水现象。

三、监测方法深基坑施工监测通常采用以下几种监测方法:1. 钢筋笼监测:在深基坑挖掘过程中,可以通过埋设一定数量的钢筋笼来监测土体的沉降情况。

当土体沉降时,钢筋笼就会发生位移,通过对位移的测量可以了解土体的变形情况。

2. 周边建筑物的测量:通过在建筑物上安装位移传感器和应变计等测量设备,可以对建筑物的位移和应力变化进行监测,及时预警。

3. 管线位移监测:通过在管线上安装位移传感器,可以监测管线的位移情况,预防管线断裂和泄漏等风险。

4. 地下水位监测:通过在井口或周围埋设水位计,可以实时监测地下水位的变化,防止渗水和涌水对工程施工的影响。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、工程概述本次深基坑工程位于_____,周边环境较为复杂,临近既有建筑物、道路及地下管线。

基坑开挖深度为_____米,面积约为_____平方米。

基坑支护形式采用_____。

二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。

2、为优化施工方案提供依据,实现信息化施工。

3、对可能发生的危险情况进行预警,以便采取相应的应急措施。

三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。

2、围护结构竖向位移监测通过水准仪测量围护结构顶部的竖向位移。

3、深层水平位移监测在围护结构内埋设测斜管,使用测斜仪测量深层土体的水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。

5、地下水位监测在基坑周边布置水位观测井,使用水位计测量地下水位的变化。

6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别使用水准仪和全站仪进行观测。

7、周边道路及地下管线沉降监测沿周边道路及地下管线布置沉降观测点,采用水准仪进行观测。

四、监测点布置1、围护结构水平位移和竖向位移监测点沿围护结构顶部每隔_____米布置一个监测点,转角处应加密布置。

2、深层水平位移监测点在基坑周边的关键部位埋设测斜管,每边不少于_____根。

3、支撑轴力监测点选择具有代表性的支撑构件,每个构件上布置不少于_____个轴力计。

4、地下水位监测点在基坑周边每隔_____米布置一个水位观测井。

5、周边建筑物沉降及倾斜监测点在建筑物的四角、长边中点及变形缝两侧设置沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

6、周边道路及地下管线沉降监测点沿道路及地下管线每隔_____米布置一个沉降观测点。

五、监测频率1、在基坑开挖期间,每天监测不少于_____次。

2、当变形速率较大或出现异常情况时,应加密监测频率。

3、在主体结构施工期间,监测频率可适当降低,每周不少于_____次。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。

本文将介绍深基坑施工监测方案。

二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。

三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。

监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。

2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。

水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。

3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。

常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。

这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。

四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。

监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。

五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。

应急措施可能包括停工、加固支护结构、调整施工方案等。

六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。

通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。

在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。

以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。

通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。

深基坑监测专项施工方案

深基坑监测专项施工方案

一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。

基坑周边环境复杂,包括地下管线、周边建筑物等。

为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。

二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。

三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。

四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。

五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。

六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。

七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。

八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。

九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。

深基坑工程安全监测方案设计

深基坑工程安全监测方案设计

深基坑工程安全监测方案设计深基坑工程是城市建设中常见的一种基础工程,在建设过程中需要进行安全监测以确保工程施工的安全性和稳定性。

本文将就深基坑工程安全监测方案设计进行详细阐述,包括监测内容、监测方法和监测措施等方面。

一、监测内容深基坑工程的安全监测主要包括以下几个方面的内容:1. 地下水位监测:深基坑工程一般会进入地下水层,因此需要监测地下水位的变化情况,以及地下水位对工程稳定性的影响。

2. 地表沉降监测:深基坑施工可能会引起地表的沉降,因此需要对地表的沉降情况进行实时监测,以确保施工过程中地表的稳定性。

3. 地下水压力监测:深基坑施工会改变周围地下水的流动情况,导致地下水压力的变化,因此需要监测地下水压力的变化情况,以确保施工过程中地下水的稳定性。

4. 土体位移监测:深基坑施工会对周围土体产生较大的变形和位移,因此需要监测土体位移的情况,以及位移对周围建筑的影响。

5. 基坑支护结构监测:深基坑施工需要进行支护结构的设置,因此需要对支护结构的变形和位移进行监测,以确保支护结构的稳定性和安全性。

二、监测方法深基坑工程安全监测需要借助一系列的监测方法来实现,主要包括:1. 监测孔:通过在基坑周围设置监测孔,可以对地下水位、地下水压力、土体位移等进行监测。

监测孔需要合理设置,数量和位置要能够充分反映监测目的。

2. 自动观测站:在深基坑工程周围设置自动观测站,可以实现对多个监测点的实时监测。

自动观测站可以通过传感器等设备实现对各种监测参数的采集和记录。

3. 激光测距仪:可以用于测量地表沉降和土体位移等参数。

激光测距仪具有高精度和高速度的特点,适用于实时监测需求较为紧迫的监测项目。

4. 数字测网:通过在基坑周围布设一定数量的监测点,可以实现对地下水位、地下水压力和土体位移等参数的实时监测。

数字测网可以通过传感器和数据采集仪实现对各个监测点的数据采集和传输。

三、监测措施深基坑工程安全监测需要采取一系列的监测措施来确保监测的有效性和科学性,主要包括:1. 监测计划制定:在施工前制定详细的监测计划,包括监测目的、监测内容、监测方法和监测频率等,以确保监测工作的有序进行。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。

深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。

因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。

本文将就深基坑施工监测方案进行探讨。

一、监测对象深基坑施工中,需要进行多项监测。

其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。

周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。

例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。

挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。

因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。

支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。

支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。

地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。

因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。

地下水位的监测通常采用液位计、电测和潜孔测压等技术。

土体变形:土体变形是深基坑施工过程中无法避免的问题。

其合理监测和处理,能够及时报警,有效避免施工风险的发生。

土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。

二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。

静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。

静态监测主要包括水平变形监测、变形监测和应力应变监测等。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案深基坑施工是指在建筑工地中挖掘较深的坑道,以便进行地下工程的施工。

由于深基坑施工涉及到地质条件、土壤力学和安全等多个方面的问题,因此需要制定一套完善的施工监测方案来确保施工的安全和顺利进行。

一、施工前准备在进行深基坑施工前,应先进行详细的工程勘察和地质勘探,以了解地下情况、土层状况和地下水位等信息。

同时,还需要制定相应的施工方案,明确施工过程和所需的监测参数。

二、监测设备和方法1. 地下水位监测为了及时了解地下水位的变化情况,需要在基坑周边设置水位监测点,使用水位计等设备定期进行监测,并记录监测数据。

在施工过程中,需要根据监测结果采取相应的排水措施,以保证基坑内部的稳定。

2. 基坑变形监测为了监测深基坑周边土体的变形情况,可以采用测量仪器和遥感技术。

常用的监测方法包括全站仪测量、激光扫描仪和遥感监测等。

这些监测设备可以实时记录基坑周边土体的位移和形态变化,并生成监测报告。

根据监测结果,可以及时调整施工方案,以减少变形对深基坑安全的影响。

3. 基坑周边建筑物的监测在深基坑施工过程中,需要密切关注周边建筑物的安全情况。

可以采用测量仪器和振动监测系统来监测周边建筑物的振动情况。

通过实时监测周边建筑物的振动变化,可以及时采取相应的措施来防止建筑物的受损。

三、监测结果处理和应对措施1. 数据分析和报告监测期间所采集到的数据需要进行统计和分析,以得出相应的结论。

监测报告应当清晰明了地陈述监测数据、变化趋势及其对施工安全的影响,并提出相应的建议和措施。

2. 应对措施根据监测结果和报告的分析,需要及时采取相应的措施来应对可能出现的问题。

比如,在地下水位上升时,可以增加排水量来维持基坑的稳定;在土体变形较大时,可以增加加固措施或调整施工工艺。

四、监测方案的调整和完善在施工过程中,如果监测结果发现有异常情况或超出了设计预期的范围,应及时调整监测方案,并完善施工措施。

监测方案的调整需要经过工程负责人和专业技术人员的评估,并及时通知相关人员进行相应的操作。

深基坑开挖监测工法

深基坑开挖监测工法

深基坑开挖监测工法深基坑开挖是土木工程中常见的一项施工工艺,它主要用于建筑物地下室、地下车库等工程的开挖与施工。

由于深基坑开挖涉及到大量的土方工程,涉及的风险较高,因此在施工过程中,对深基坑的开挖监测显得尤为重要。

本文将介绍深基坑开挖监测工法的相关内容。

一、深基坑开挖监测的目的深基坑开挖监测的目的是为了实时监测开挖工程中可能出现的地面下沉、变形等问题,以及地下水位变化等情况。

监测的目的是为了及时发现问题,采取相应的措施,避免可能的施工事故和安全隐患。

二、深基坑开挖监测的方法1.地面监测:地面监测是深基坑开挖监测工法中的一种常见方法。

通过设置地面监测点,使用相关的监测设备,如测距仪、水准仪、全站仪等,实时监测地面的沉降、倾斜等变形情况,并将监测数据传输到监测中心进行分析和处理。

2.支撑结构监测:深基坑开挖过程中,常常使用支撑结构来加固开挖周边的土体。

对这些支撑结构进行监测,可以及时发现支撑结构的变形和承载力等问题。

常见的支撑结构监测方法包括使用倾斜计、应变计等设备进行监测。

3.地下水位监测:深基坑开挖过程中,地下水位的变化对施工有很大影响。

定期监测地下水位的变化,可以及时发现地下水位的上升或下降情况,采取相应的排水措施,保证施工的顺利进行。

地下水位监测可以借助水位计、埋藏式压力传感器等设备进行。

4.变形监测:深基坑开挖过程中,土体会发生不可避免的变形。

变形监测的主要目的是及时发现土体的变形,以及确定变形的范围和变形的变化趋势。

常用的变形监测方法包括使用水准仪、全站仪、测距仪等设备进行实时监测。

三、深基坑开挖监测的意义深基坑开挖监测不仅可以保证施工的安全和顺利进行,还可以提供实时的监测数据,为设计人员提供可靠的数据支持,优化设计方案。

监测数据对于土木工程的研究和发展也有着重要的意义,可以积累施工和监测经验,为今后的类似工程提供参考。

四、深基坑开挖监测的注意事项在深基坑开挖监测中,需要注意以下几个问题:1.选择合适的监测设备,确保其准确性和可靠性。

深基坑变形监测内容

深基坑变形监测内容

深基坑变形监测内容深基坑变形监测是指对建筑工程中的深基坑进行实时监测和分析,以确保基坑的稳定性和安全性。

深基坑是指在地下开挖的较深的基坑,常见于高层建筑、地下车库和地铁工程等。

由于深基坑的特殊性和复杂性,其变形监测显得尤为重要。

深基坑变形监测主要包括以下内容:1. 基坑周边地表沉降监测:基坑开挖过程中,地表可能会发生沉降现象,特别是在软土地区。

通过设置沉降监测点,可以实时监测地表沉降情况,及时发现和处理沉降异常,确保地表稳定。

2. 基坑支护结构变形监测:在深基坑开挖过程中,为了保证基坑的稳定,常需要设置支护结构,如土钉墙、悬挂墙、钢支撑等。

通过设置变形监测点,可以监测支护结构的变形情况,及时发现和处理变形异常,确保支护结构的稳定性。

3. 地下水位监测:基坑开挖过程中,地下水位的变化对基坑的稳定性有重要影响。

通过设置地下水位监测井,可以实时监测地下水位的变化情况,及时采取相应措施,确保基坑的排水和稳定。

4. 地下管线位移监测:在深基坑开挖过程中,地下管线的位移可能会对基坑的稳定性和管线的安全性产生影响。

通过设置管线位移监测点,可以实时监测管线的位移情况,及时发现和处理位移异常,确保基坑的稳定和管线的安全。

5. 监测数据采集与分析:深基坑变形监测需要对各种监测数据进行采集和分析。

通过选择合适的监测仪器和传感器,可以实时采集各项监测数据,并进行数据分析,判断基坑的稳定性和安全性。

6. 报警与预警:基于深基坑变形监测数据的分析,可以建立相应的报警与预警机制。

一旦监测数据超过预设阈值,系统将发出报警信号,提醒相关人员及时采取措施,防止事故发生。

深基坑变形监测是保障基坑施工安全的重要环节。

通过对基坑周边地表沉降、支护结构变形、地下水位和地下管线位移等进行实时监测和分析,可以及时发现和处理变形异常,确保基坑的稳定性和安全性。

同时,监测数据的采集和分析也为基坑施工过程提供了可靠的参考,为工程进展和决策提供依据。

深基坑工程监测方案

深基坑工程监测方案

深基坑工程监测方案1.监测对象深基坑工程监测的对象主要包括基坑边坡、土体位移、地下水位和地下管道等。

其中,基坑边坡是工程安全的重要因素,需要通过监测来及时掌握其变形情况。

土体位移是判断工程变形和稳定性的重要指标,需要通过监测来评估土体的变形和沉降情况。

地下水位的变化对基坑工程施工和周围建筑物稳定性有直接的影响,需要通过监测来掌握地下水位的变化情况。

地下管道是工程施工过程中需保护的重要设施,需要通过监测来确保其安全。

2.监测方法深基坑工程监测可采用传统的测量方法以及现代化的无线监测系统相结合的方式。

传统测量方法包括全站仪测量、水准测量和位移传感器测量等。

全站仪测量可以实时获取基坑边坡的变形情况;水准测量可以用于监测基坑周围土体的沉降情况;位移传感器测量可以用于监测地下管道的位移情况。

无线监测系统可以实时监测深基坑工程的各种参数,包括土壤应力、地下水位和渗流等。

3.监测措施为确保监测工作能够顺利进行,需要采取一系列措施保障监测设备的正常运行。

首先,选用高质量和可靠性的监测设备,包括高精度的全站仪、精密的水准仪和稳定的位移传感器。

其次,合理布置监测点位,根据深基坑的具体情况和设计要求,确定监测点位的布置位置和数量。

同时,保障监测设备的日常维护和保养工作,定期校准设备并检查设备的工作状态。

最后,及时收集并分析监测数据,建立完整的监测数据库,通过数据分析和模型验证,及时评估工程的安全性和稳定性,并采取相应的措施进行调整和改进。

综上所述,深基坑工程监测方案包括监测对象、监测方法和监测措施三个方面。

通过合理选择监测对象、采用适当的监测方法和实施有效的监测措施,可以确保深基坑工程的安全和稳定,并为深基坑工程的设计和施工提供可靠的数据支持。

深基坑施工监测方案

深基坑施工监测方案

深基坑施工监测方案
为了确保深基坑施工的安全和质量,必须采用可行的监测方案。


基坑施工监测方案是一种科学、有效的施工管理方法,包括监测目标、监测位置、监测范围、监测方法等方面的具体安排。

本文将介绍深基
坑施工监测方案的具体内容。

1. 监测目标
深基坑施工监测目标是对基坑周围的地下环境进行监测,旨在确保
施工期间和施工完成后相关建筑物和地下管线的稳定性。

具体监测目
标包括地下水位、基坑变形、建筑物沉降、周围结构的损伤等。

2. 监测位置
监测位置应该在基坑的四周及周边建筑物和地下管线,以监测监测
目标涉及的范围为主。

监测位置的选取应该具有代表性,并且应该能
够反映出所监测对象的变化趋势和变化量,比如监测孔的安装位置等。

3. 监测范围
监测范围应该包括设计基坑周围的地下环境,具体包括基坑内外的
地下水位、地表沉降和周边建筑物的变形。

监测范围可以通过现场勘
察和文献资料分析等方式来确定。

4. 监测方法
监测方法应该根据实际情况来确定,包括实测法、观测法、统计法、数学模型法等等。

其中最常用的是实测法和观测法。

实测法是在监测
点上安装相应的仪器,测量实际的物理量。

观测法是将监测目标的变化通过观测取得,比如地面沉降的观测通过地面标志物和水准仪器等来进行。

综上所述,深基坑施工监测方案需要根据实际情况来制定,并且需进行全面的监测范围的规划和精细化的监测点选定。

同时,监测方案的实施应该符合施工进度和经济效益的要求,以保证施工的顺利进行和项目的成功交付。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深基坑监测
基坑工程监测点的布置应能反映监测对象的实际状态及其变化趋势,监测点应布置在内力及变形关键特征点上,并满足监控要求。

围护墙或基坑边坡顶部的水平和竖向位移监测点应沿基坑周边布置,周边中部、阳角处应布置监测点。

监测点水平间距不宜大于20m,每边监测点数目不宜少于3 个。

水平和竖向位移监测点为共用点,监测点宜设置在围护墙顶或基坑坡顶上。

围护墙或土体深层水平位移监测点宜布置在基坑周边的中部、阳角处及有代表性的部位。

监测点水平间距宜为20m~50m,每边监测点数目不应少于1 个。

围护墙内力监测点应布置在受力、变形较大且有代表性的部位。

监测点数量和水平间距视具体情况而定。

竖直方向监测点应布置在弯矩极值处,竖向间距宜为2m~4m。

支撑内力监测点的布置应符合下列要求
1、监测点宜设置在支撑内力较大或在整个支撑系统中起控制作用的杆件上。

2、每层支撑的内力监测点不应少于3 个,各层支撑的监测点位置在竖向上宜保
持一致。

3、钢支撑的监测截面宜选择在两支点间1/3 部位或支撑的端头;混凝土支撑的
监测截面宜选择在两支点间1/3 部位,并避开节点位置。

4、每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。

立柱的竖向位移监测点宜布置在基坑中部、多跟支撑交汇处、地质条件复杂处的立柱上。

监测点不应少于立柱总根数的5%,逆作法施工的基坑不应少于10%,且均不应少于3 跟。

立柱的内力监测点宜布置在受力较大的立柱上,位置宜设在坑底以上各层立柱下部的1/3 部位。

锚杆的内力监测点应选择在受力较大且有代表性的位置,基坑每边中部、阳角处和地质条件复杂的区段宜布置监测点。

每层锚杆的内力监测点数量应为该层锚杆总数的1%~3%,并不应少于3 跟。

各层监测点位置在竖向上宜保持一致。

每根杆体上的测试点宜设置在锚头附近和受力有代表性的位置。

土钉的内力监测点应选择在受力较大且有代表性的位置,基坑每边中部、阳角处和地质条件复杂的区段宜布置监测点。

监测点数量和间距应视具体情况而定,各层监测点位置在竖向上宜保持一致。

每根土钉杆体上的测试点应设置在有代表性的受力位置。

坑底隆起(回弹)监测点的布置应符合下列要求:
1、监测点宜按纵向或横向剖面布置,剖面宜选择在基坑的中央以及其他能反应变形特征的位置,剖面数量不应少于2 个。

2、同一剖面上监测点横向间距宜为10m~30m,数量不应少于3 个
围护墙侧向土压力监测点的布置应符合下列要求:
1、监测点应布置在受力、土质条件变化较大或其他有代表性的部位。

2、平面布置上基坑每边不宜少于2 个监测点。

竖向布置上监测点间距宜为
2m~5m,下部宜加密。

3、当按土层分布情况布设时,每层应至少布设1 个监测点,且宜布置在各层土的中部。

孔隙水压力监测点宜布置在基坑受力、变形较大或有代表性的部位。

竖向布置上监测点宜在水压力变化影响深度范围内按土层分布情况布设,竖向间距宜为2m~
5m,数量不宜少于3 个。

地下水位监测点的布置应符合下列要求:
1、基坑内地下水位当采用深井降水时,水位监测点宜布置在基坑中央和两相邻降水井的中间部位;当采用轻型井点、喷射井点降水时,水位监测点宜布置在基坑中央和周边拐角处,监测点数量应视具体情况确定。

2、基坑外地下水位监测点应沿基坑、被保护对象的周边或在基坑与被保护对象之间布置,监测点间距宜为20m~50m。

相邻建筑、重要的管线或管线密集处应布置水位监测点;当有止水帷幕时,宜布置在止水帷幕的外侧约2m处。

3、水位观测管的管底埋置深度应在最低设计水位或最低允许地下水位之下3m~5m。

承压水水位监测管的滤管应埋置在所测的承压含水层中。

4、回灌井点观测井应设置在回灌井点与被保护对象之间。

基坑周边环境
从基坑边缘以外1~3 倍基坑开挖深度范围内需要保护的周边环境应作为监测对象。

必要时尚应扩大监测范围。

位于重要保护对象安全保护区范围内的监测点的布置,尚应满足相关部门的技术要求。

建筑竖向位移监测点的布置应符合下列要求:
1、建筑四角、沿外墙每10m~15m处或每隔2~3 根柱基上,且每侧不少于3 个
监测点。

2、不同地基或基础的分界处。

3、不同结构的分界处。

4、变形缝、抗震缝或严重开裂处的两侧。

5、新、旧建筑或高、低建筑交接处的两侧。

6、高耸构筑物基础轴线的对称部位,每一构筑物不应少于4 点。

建筑水平位移监测点应布置在建筑的外墙墙角、外墙中间部位的墙上或柱上、裂缝两侧以及其他有代表性的部位,监测点间距视具体情况而定,一侧墙体饿监测点不宜少于3 点。

建筑倾斜监测点的布置应符合下列要求:
1、监测点宜布置在建筑角点、变形缝两侧的承重柱或墙上。

2、监测点应沿主体顶部、底部上下对应布设,上、下监测点应布置在同一竖直线上。

建筑裂缝、地表裂缝监测点应选择有代表性的裂缝进行布置,当原有裂缝增大或出现新裂缝时,应及时增设监测点。

对需要观测的裂缝,每条裂缝的监测点
至少应设2 个,且宜设置在裂缝的最宽处及裂缝末端
管线监测点的布置应符合下列要求:
1、应根据管线修建年代、类型、材料、尺寸及现状等情况,确定监测点设置。

2、监测点宜布置在管线的节点、转角点和变形曲率较大的部位,监测点平面间距宜为15m~25m,并宜延伸至基坑边缘以外1~3 倍基坑开挖深度范围内的管线。

3、供水、煤气、暖气等压力管线宜设置直接监测点,在无法埋设直接监测点的部位,可设置间接监测点。

基坑周边地表竖向位移监测点宜按照监测剖面设在坑边中部或其他代表性的部位。

监测剖面应与坑边垂直,数量视具体情况确定。

每个监测剖面上的监测点数量不宜少于5 个。

土体分层竖向位移监测孔应布置在靠近被保护对象且有代表性的部位,数量应视具体情况确定。

在竖向布置上测点宜设置在各层土的界面上,也可等间距设置。

测点深度、测点数量应视具体情况确定。

水平位移监测
测定特定方向上个的水平位移时,可采取视准线法、小角度法、投点法等;测定监测点任意方向的水平位移时,可视监测点的分布情况,采用前方交会法、后方交会法、极坐标法等。

竖向位移监测竖向位移监测可采用几何水准或液体静力水准等方法。

坑底隆起(回弹)宜通过设置同弹监测标,采用几何水准并配合传递高程的辅助设备进行监测。

深层水平位移监测围护墙或土体深层水平位移的监测宜采用在墙体或土体中预埋斜管、通过测斜仪观测各深度处水平位移的方法。

倾斜监测建筑倾斜观测应根据现场观测条件和要求,选用投点法、前方交会法、激光铅直仪法、垂吊法、倾斜仪法和差异沉降法等方法。

裂缝监测
裂缝监测应监测裂缝的位置、走向、长度、宽度,必要时尚应监测裂缝深度。

基坑开挖前应记录监测对象已有裂缝的分布位置和数量,测定其走向、长度、宽度和深度等情况,监测标示应具有可供量测的明晰断面或中心。

裂缝宽度监测宜在裂缝两侧贴埋标示,用千分尺或游标卡尺等直接量测。

裂缝长度监测宜采用直接量测法。

裂缝深度监测宜采用超声波法、凿出法等。

支护结构内力监测
支护结构内力可采用安装在结构内部或表面的应变计或应力计进行量测。

混凝土构件可采用钢筋应力计或混凝土应变计鞥量测,钢构件可采用轴力计或应变计等量测。

土压力监测:土压力宜采用土压力计量测。

土压力计埋设可采用埋入式或边界式。

孔隙水压力监测:孔隙水压力宜通过埋设钢弦式或应变式等孔隙水压力计测试。

地下水位监测:地下水位监测宜通过孔内设置水位管,采用水位计进行量测。

锚杆及土钉内力监测:锚杆和土钉的内力监测宜采用专用测力计、钢筋应力计或应变计,当使用钢筋束时宜监测每根钢筋的受力。

土体分层竖向位移监测:土体分层竖向位移可通过埋设磁环式分层沉降标,采用分层沉降仪进行量测;或者通过埋设深层沉降标,采用水准测量方法进行量测。

监测频率
基坑工程监测工作应贯穿于基坑工程和地下工程施工全过程。

监测期应从基
监测报警
基坑工程监测必须确定监测报警值,监测报警值应满足基坑工程设计、地下结构设计以及周边环境中被保护对象的控制要求。

监测报警值应由基坑工程设计方案确定。

基坑工程监测报警值应由监测项目的累计变化量和变化速率值共同控制
基坑及支护结构监测报警值
1 2
2、累计值取绝对值和相对基坑深度( h )控制值两者的小值;
3、当监测项目的变化速率达到表中规定值或连续 3d 超过该值的 70%,应报警;
4、嵌岩的灌注桩或地下连续墙位移报警值按表中数值的50%取用。

基坑周边环境监测报警值应根据主管部门的要求确定,如主管部门无具体规定,可按表采用建筑基坑工程周边环境监测报警值
时应报警
观测数据出现异常时,应分析原因,必要时应进行重测。

监测项目数据分析应结合其他相关项目的监测数据和自然环境条件、施工工况等情况及以往数据进行,并对其发展趋势作出预测。

相关文档
最新文档