弧长和扇形的面积
扇形的弧长和面积公式弧度制
弧度制扇形面积公式:S=L*R/2。
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形(半圆与直径的组合也是扇形)。
显然,它是由圆周的一部分与它所对应的圆心角围成。
用弧长与半径之比度量对应圆心角角度的方式,叫做弧度制,用符号rad表示,读作弧度。
等于半径长的圆弧所对的圆心角叫做1弧度的角。
由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。
角度以弧度给出时,通常不写弧度单位。
另外一种常用的度量角的方法是角度制。
弧长与扇形面积计算公式
弧长与扇形面积计算公式
一、弧长
①半径为R的圆,周长是2兀R
②圆的周长可以看作是360度的角所对的孤
③1度的圆心角所对的弧长是
360/2兀1=180/兀R
l=孤长
一度的圆心角所对的弧长是180/兀R
那么由上所得弧长公式就是
l=180/n兀R
二、扇形的面积
由组成圆心角的两个半径和圆心角所对的弧所围成的图形叫作扇形
①半径为R的圆,面积是兀R方
②圆面可以看作是360度圆心角所对的扇形
③1度圆心角所对的扇形面积是
S扇形=360/n兀R方
=360/兀R方
由上所得扇形面积公式
S扇形=360/n兀R方
已有扇形
那么用这个扇形弧长的2/1
再乘以半径就是这个扇形的面积。
扇形的弧长和面积公式高中
扇形的弧长和面积公式高中
扇形所对应的弧长公式为:L=n2πR/360。
扇形面积计算公式:S=nπR/360或S=LR/2。
扇形面积公式描述了扇形面积和圆心角(顶角)、半径、所对弧长的关系。
推导过程:由定理“等半径的两个扇形的面积之比等于它们的弧长之比”,将圆看作扇形,利用弧长公式和圆的面积公式即可。
简介:组成部分:
1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。
2、以圆心为中心点的角叫做“圆心角”。
3、有一种统计图就是“扇形统计图。
”
曲线的弧长也称曲线的长度,是曲线的特征之一。
不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。
最早研究的曲线弧长是圆弧的长度,所以狭义上,特指圆弧的长度。
半径为R的圆中,n°的圆心角所对圆弧的弧长为n πR/180°。
弧长公式和面积公式
弧长公式和面积公式
圆弧的弧长公式和面积公式:
1、已知弧长L与半径R:S扇形=1/2LR。
2、已知弧所对的圆心角n°与半径。
S扇形=nπR^2/360。
弧形计算公式:S=1/2LR=nπR²/360(L是弧长,R是半径)。
弧长计算公式:L=n(圆心角度数)×π(1)×r(半径)/180(角度制),L=α(弧度)×r(半径)(弧度制)。
其中n是圆心角度数,r 是半径,L是圆心角弧长。
弧形面积的计算方法
弧长、两弧点间的距离、弧高这三个条件知道任意两个就够了。
(1)由已知弧长和已知弦长(两弧点间的距离)求得圆半径和弧所对的圆心角的度数。
(2)由半径和圆心角求得扇形面积和三角形面积。
(3)扇形面积减去三角形的面积的弧形的面积。
圆的弧长与扇形面积
圆的弧长与扇形面积圆是几何学中的基本概念之一,具有广泛的应用和研究价值。
在学习和使用圆的时候,我们常常需要计算圆的弧长和扇形的面积。
本文将介绍如何计算圆的弧长和扇形的面积,并提供一些应用实例。
一、圆的弧长在圆中任选两个点,以这两个点为端点的圆弧所对应的弧长称为圆弧长。
弧长是圆形状的一个重要特征,也是计算圆的其他性质的基础。
圆的弧长与圆的半径和圆心角有关。
圆心角是指以圆心为顶点的两条辐射线所夹的角度。
公式1:弧长 = 圆心角/ 360° × 2πr其中,r为圆的半径,弧长单位与半径单位相同,常用的单位有厘米、米和千米等。
在计算时需要注意角度制的单位需与弧度制相互转换。
例如,当圆的半径为5cm,圆心角为60°时,可通过公式1计算出弧长为(60/360) × 2π × 5 ≈ 5.24cm。
二、扇形的面积扇形是圆的一部分,由圆心和弧组成。
计算扇形的面积需要了解圆的半径和圆心角。
公式2:扇形面积 = 圆心角/ 360° × πr²其中,r为圆的半径,扇形面积单位为平方长度单位。
例如,当圆的半径为10m,圆心角为120°时,可通过公式2计算出扇形面积为(120/360) × π × 10² ≈ 104.72m²。
三、实际应用1. 环形围栏假设有一个圆形花坛,我们需要围栏围绕花坛的边缘。
已知花坛的直径为3m,围栏高出地面30cm。
求围栏的总长度。
首先,计算圆的半径,r = 直径/ 2 = 3 / 2 ≈ 1.5m。
其次,计算围栏的高度,h = 地面高度 + 围栏高出地面的高度 = 0.3m + 0.3m = 0.6m。
然后,计算围栏的总长度,等于圆的周长再加上围栏高度的2倍,即2πr + 2h = 2π × 1.5 + 2 × 0.6 ≈ 9.42m。
答:围栏的总长度为9.42m。
弧长和扇形面积的计算
弧长和扇形面积的计算弧长和扇形面积是数学中与圆相关的重要概念。
在几何学、物理学、工程学等领域中,我们经常需要计算弧长和扇形面积来解决问题。
本文将介绍如何计算弧长和扇形面积,并提供相关的公式和示例。
一、弧长的计算方法弧长是圆弧上的一段弯曲的长度,也是圆周上两个端点之间的弧段长度。
弧长的计算需要用到圆的半径和夹角。
弧长的计算公式如下:弧长 = 半径 ×弧度其中,半径是从圆心到弧上任一点的距离,弧度是圆心角所对的弧长与半径的比值。
示例一:假设一个半径为5米的圆,计算其1/4圆弧的长度。
解:根据弧长的计算公式,弧长 = 半径 ×弧度。
1/4圆弧的弧度为1/4 × 2π ≈ π/2因此,弧长= 5 × π/2 ≈ 7.85米所以,该1/4圆弧的长度为7.85米。
二、扇形面积的计算方法扇形是由圆心、两条半径和圆弧所围成的部分。
扇形面积的计算需要用到圆的半径和夹角。
扇形面积的计算公式如下:扇形面积 = 1/2 ×半径² ×弧度示例二:假设一个半径为8米的圆,计算其对应的圆心角为60度的扇形面积。
解:根据扇形面积的计算公式,扇形面积 = 1/2 ×半径² ×弧度。
60度对应的弧度为60/180 × π ≈ π/3因此,扇形面积= 1/2 × 8² × π/3 ≈ 33.51平方米所以,该圆心角为60度的扇形面积约为33.51平方米。
三、弧长和扇形面积的应用举例1. 建筑设计在建筑设计中,我们经常需要计算圆形的路径长度,例如园林景观的曲线走道长度、圆形大厅的墙壁长度等。
通过计算圆弧的弧长,可以得到精确的路径长度,从而确定施工材料的使用量。
2. 科研实验在科研实验中,圆形的扇形面积经常用来计算样本所占的百分比,例如细胞培养皿中的细胞密度分析、微孔板中试剂的摆放容量等。
通过计算扇形面积,可以得到样本在整个实验区域中的占比,从而帮助科研人员进行数据分析和实验设计。
圆的弧长与扇形面积计算
圆的弧长与扇形面积计算
圆是几何学中常见的形状,其弧长和扇形面积的计算是基础的几何学知识。
在本文中,我们将讨论如何计算圆的弧长和扇形面积。
一、圆的弧长计算
在计算圆的弧长时,我们需要知道圆的半径(r)以及弧度(θ)。
弧度是度数的一种换算方式,1弧度(rad)等于57.3度(°)。
圆的弧长(s)可以通过以下公式计算:
s = r × θ
其中,s表示圆的弧长,r表示圆的半径,θ表示圆的弧度。
例如,如果我们知道半径为5cm的圆的弧度θ为π/3,那么可以通过代入公式计算出弧长。
s = 5cm × π/3≈ 5.24cm
所以,圆的弧长为约5.24cm。
二、扇形面积的计算
扇形是以圆心角为顶点的圆弧所围成的图形。
在计算扇形面积时,我们需要知道圆的半径(r)以及圆心角的度数(θ)。
扇形的面积(A)可以通过以下公式计算:
A = (θ/360°) × πr²
其中,A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。
例如,如果我们知道半径为8cm的圆的圆心角度数θ为60°,那么可以通过代入公式计算出扇形面积。
A = (60°/360°) × π × 8cm² ≈ 13.09cm²
所以,扇形的面积为约13.09cm²。
综上所述,我们可以使用特定的公式来计算圆的弧长和扇形面积。
这些计算对于解决实际问题和理解几何学概念非常有帮助。
希望通过本文的介绍,您能更好地掌握圆的弧长和扇形面积的计算方法。
弧形面积公式3个
弧形面积公式3个
常见的弧形面积公式有以下三个:
1. 弧长乘以半径的公式:
弧形面积 = 弧长× 半径 / 2
公式中的弧长是弧所对应的圆周的长度,半径是弧所在圆的半径。
2. 扇形面积公式:
弧形面积 = 弧长× 半径
这个公式适用于弧所对应的角度为360度的情况,即完整的圆盘。
3. 正弦公式:
弧形面积 = (弧长× 半径²) / 2
这个公式适用于弧所对应的角度不为360度的情况,通过使用三角函数计算弧形面积。
这三个公式可以根据具体情况选择使用,根据已知条件的不同,选取合适的公式计算弧形面积。
弧度制算弧长和面积
弧度制算弧长和面积
弧度制是一种角度度量方式,它是以半径为单位来度量角度的,而不是以度数。
在弧度制中,一个完整的圆周角度为2π弧度。
现
在让我们来讨论如何使用弧度制来计算弧长和扇形面积。
首先,我们来计算弧长。
弧长可以通过以下公式来计算,弧长
= 半径× 弧度。
这意味着,如果我们知道了圆的半径和弧度,我
们就可以使用这个公式来计算弧长。
其次,让我们来计算扇形的面积。
扇形的面积可以通过以下公
式来计算,面积= (1/2) × 半径× 半径× 弧度。
这个公式中
的(1/2) × 半径× 半径实际上是扇形的面积公式,而乘以弧度
则是为了根据扇形的角度大小来调整面积。
需要注意的是,在使用这些公式计算弧长和面积时,弧度必须
是以弧度制表示的角度,而半径则是圆的半径。
另外,确保在计算
时使用正确的数值单位,比如长度单位是米时,那么弧长和面积的
单位就是平方米。
总之,弧度制是一种非常有用的角度度量方式,通过使用相应
的公式,我们可以很容易地计算弧长和扇形面积,这对于许多数学和物理问题都是非常重要的。
希望这些信息能够对你有所帮助。
弧长扇形面积公式
弧长扇形面积公式
弧长扇形面积公式是指一个扇形中弧的角度和长度是已知的情况下,对应的面积计算公式。
它常用于计算几何图形的面积,比如圆的面积或者椭圆的面积。
具体内容如下:
一、弧长扇形面积公式
1. 公式推导:
(1)扇形面积S=R*R*θ/2
(其中,R为扇形半径,θ为一个扇形中弧的角度)
(2)弧长公式C=R*θ
(其中,C为扇形中弧的长度)
(3)将(1)与(2)结合,可求出弧长扇形面积公式:
S=C*R/2
2.实际应用:
(1)将锁链围成的一个扇形,给定了它的半径R和弧长C,则可以通过此公式计算扇形面积。
(2)将一个圆分为几个小扇形,给定了它们的弧长C,可以利用此公式求得每一个小扇形的面积。
二、弧长扇形面积公式的特点
1. 对角度θ和半径R在一定范围内,此公式都是成立的。
2. 弧长求面积的公式不依赖于图形的形状,无论是圆形、椭圆形等,只要是扇形的面积计算,都可以使用此公式。
3.该公式求得的结果是最精确的,解决了传统方法求和的误差很大的问题。
三、弧长扇形面积公式的优势
1.公式简单易懂,容易理解。
2.对偶结构其他几何图形,也可以利用此公式,得到更加准确结果。
3.可以节约计算时间和空间,减少了计算复杂度。
弧长与扇形面积的计算
弧长与扇形面积的计算在几何学中,弧长和扇形面积是计算圆形和弧形的重要指标。
弧长是弧所对的圆周的长度,而扇形面积则是由弧和此弧所对的两条半径所构成的扇形的面积。
计算弧长和扇形面积的公式相对简单,但是理解其原理与运用也是非常重要的。
一、弧长的计算弧长是圆周的一部分长度,可以用弧度或度数来表示。
以下介绍两种计算弧长的公式及其推导:1. 弧度制计算:弧度是一种角度的度量方式,定义为半径上的弧所对的圆心角所包含的弧长等于半径的长度。
弧度制计算弧长的公式为:L = rθ其中,L为弧长,r为半径,θ为圆心角的弧度数。
2. 度数制计算:度数制是常见的角度度量方式,360度为一圆。
计算弧长的公式为:L = 2πr(n/360)其中,L为弧长,r为半径,n为圆心角的度数。
二、扇形面积的计算扇形面积是由扇形两条半径和弧所构成的区域的面积。
以下介绍两种计算扇形面积的公式及其推导:1. 弧度制计算:扇形面积的公式为:A = (1/2)r²θ其中,A为扇形面积,r为半径,θ为圆心角的弧度数。
2. 度数制计算:扇形面积的公式为:A = (1/2)r²(n/360)其中,A为扇形面积,r为半径,n为圆心角的度数。
三、实例应用下面通过一个实例来进一步理解和应用弧长与扇形面积的计算方法:假设一个圆的半径为6cm,圆心角为60度,则根据弧度制计算弧长和扇形面积的公式,弧长L和扇形面积A分别为:弧长L = 6cm × (60/180) = 2πcm扇形面积A = (1/2) × 6cm² × (60/180) = πcm²根据度数制计算方法,同样可以得到相同的结果。
结论:- 弧长和扇形面积的计算与圆心角的度数或弧度数密切相关;- 使用弧度或度数制计算时,需根据具体问题选择合适的公式;- 运用前述公式,可以方便地计算圆形或弧形的弧长和扇形面积。
总结:本文介绍了弧长与扇形面积的计算方法及应用实例。
弧长公式和扇形面积公式的关系
弧长公式和扇形面积公式的关系弧长公式和扇形面积公式是几何学中常用的公式,用于计算弧长和扇形的面积。
这两个公式之间存在一定的关系,下面将详细介绍它们之间的联系。
我们来看一下弧长公式。
在一个圆中,弧长是指圆上两个点之间的弧所对应的圆周的长度。
假设圆的半径为r,弧所对应的圆心角为θ(弧度制),那么弧长L可以通过弧长公式来计算:L = rθ。
这个公式告诉我们,弧长与圆的半径和圆心角成正比,也就是说,当半径增加或圆心角增大时,弧长也会相应增加。
接下来,我们看一下扇形面积公式。
扇形是由一个圆心角所对应的圆弧和两条半径组成的图形。
扇形的面积可以用扇形面积公式来计算:A = 0.5r²θ,其中r是圆的半径,θ是扇形所对应的圆心角。
这个公式告诉我们,扇形的面积与圆的半径和圆心角成正比,也就是说,当半径增加或圆心角增大时,扇形的面积也会相应增加。
接下来,我们来探讨一下弧长公式和扇形面积公式之间的关系。
首先,我们可以发现,扇形是由弧和两条半径组成的,可以将扇形看作是一个弧和一个三角形的面积之和。
假设扇形的面积为A,弧长为L,那么可以得到以下关系:A = 0.5rL,其中r是圆的半径。
这个关系告诉我们,扇形的面积与弧长成正比,也就是说,当弧长增加时,扇形的面积也会相应增加。
对于给定的圆,如果我们知道了弧长L,我们可以通过扇形面积公式计算出扇形的面积A。
反过来,如果我们知道了扇形的面积A,我们可以通过扇形面积公式解出弧长L。
因此,弧长公式和扇形面积公式可以互相转换和应用。
除了上述的关系,弧长公式和扇形面积公式还与圆的周长和面积公式有一定的联系。
圆的周长C可以表示为C = 2πr,其中r是圆的半径。
而圆的面积S可以表示为S = πr²。
如果我们将弧长公式中的圆心角θ设置为360度或2π弧度,那么可以得到弧长公式和圆的周长公式之间的关系:L = Cr/360。
同样地,如果我们将扇形面积公式中的圆心角θ设置为360度或2π弧度,那么可以得到扇形面积公式和圆的面积公式之间的关系:A = Sr/360。
初中数学 圆的弧长及扇形面积公式 (含答案)
弧长及扇形面积第一部分 知识梳理(一)、圆的弧长及扇形面积公式在半径为R 的圆中,n °的圆心角所对的弧长为C 1,以n °为圆心角的扇形面积为S 1弧长公式 : 弧长C 1=180n R π 扇形面积公式: S 1=2360n R π=12C 1R注意:计算不规则图形的面积时,要转化成规则图形的面积进行计算。
(二)、圆锥的侧面积:注意:圆锥的侧面展开图是一个扇形 其中:(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的半径R ;(3)圆锥的侧面展开图是半径等于 l ,弧长等于圆锥底面 周长C 的扇形.即: ①l =R ②180n Rπ=2πr ③h 2+r 2=l 2圆锥的侧面积 S 侧面积= πrl圆锥的全面积 S 全面积= πrl +πr 2第二部分 中考链接一、有关弧长计算 (一)、选择题1、(2018•淄博)如图,⊙O 的直径AB=6,若∠BAC=50°,则劣弧AC 的长为( )A 、2π B. 83π C 34π D. 43π1题图2题图 3题图 4题图 5题图2、(2018•黄石)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .23πB .43πC .2πD .83π3、(2018•沈阳)如图,正方形ABCD 内接于O ,AB=2,则的长是( )A .πB .πC .2πD .π4、(2018•陵城区二模)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .B .C .4D .2+5、(2018•明光市二模)如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧的长是( )A .B .C .D .6、(2019青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.π B.2π C.2π D.4π6题图 7题图 8题图7、(2019烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π8、(2019泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π(二)、填空题1、(2018•潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是..1题图 3题图 4题图5题图8题图2、(2018•连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.3、(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.4、(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).5、(2018常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.6、(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为..7、(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.8.(2019泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.(三)、解答题1.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.二、、有关扇形面积计算(一)、选择题1、(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm21题图2题图 3题图4题图2、(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3、(2018•成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π4、(2018•绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm25.(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.66、(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣85题图6题图7题图8题图7、(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.28、(2018•威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π9题图10题图11题图12题图13题图9、(2019枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣12π10、(2019临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π11、(2019宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63﹣πB.63﹣2πC.63+πD.63+2π12. (2019四川南充)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A. 6π B. 33π C. 23π D. 2π13.(2019四川资阳)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5πB. 6πC. 20πD. 24π(二)、填空题1、(2018青岛)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.1题图2题图3题图4题图2、(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.3、(2018•荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.4、(2018•重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)5、(2018•重庆)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).5题图6题图8题图9题图10题图6.(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.7、(2018•哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.8、(2019日照)如图,已知动点A 在函数4(0y x x=>)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于 .9、(2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB于点D ,若OA =3,则阴影都分的面积为 .10、(2019德州)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC =,AC =3.则图中阴影部分的面积是 .11、(2019无锡市)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . A BABCOOCOOI HF GED11题图 12题图 12、(2019四川内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 . (三)、解答题1、(2019东营)如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线,(2)若⊙O 的半径为3,求图中阴影部分的面积.2、(2019无锡市)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO 3OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.xy M BAO3.(2019·武汉)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EMO图1 图2 4.(2019·衡阳)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连接BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线;(2)求图中阴影部分的面积.DAOCB三、圆锥(一)、选择题2、(2018•自贡)已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .3、(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )A.60πB.65πC.78πD.120π4、(2018•遂宁)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π5、(2018•东阳市模拟)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.3πcm26、(2019东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3 D.3(二)、填空题1、(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.1题图2题图3题图7题图8题图2、(2018徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.3、(2018•郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)4、(2018•聊城)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.5、(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.6、(2018•扬州)用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.7、(2018•苏州)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为8、(2019聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.9.(2019无锡市)已知圆锥的母线成为5cm,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .答案与提示:一、弧长计算(一)、选择题1、D2、D3、A4、B5、B6、B7、D8、C1、解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.1题图2题图3题图6题图8题图2、解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.3、解:连接OA、OB,∵正方形ABCD内接于O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.4、BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯故选B.5、连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为6011= 1803ππ⨯.6、解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.7、解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.8、解:连接OA.OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.(二)、填空题1、201923π2、2π3、24π4、83π5、26、67、πa8、6π1、解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.2、1203=2 180ππ⨯3、解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.4、解:由图1得:的长+的长=的长 ∵半径OA=2cm ,∠AOB=120°则图2的周长为:=故答案为:.5、连接OB.OC ,由∠BAC=60°得∠BOC=120°,1204=1803r ππ⨯ 得:r=26、解:设半径为r ,60=2180rππ⨯,解得:r=6,故答案为:6 7、解:如图.∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a , ∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa .故答案为πa .(三)、解答题1、证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, ∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ; (2)∵OC ⊥AD ,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.二、有关扇形面积计算1、A2、C3、C4、A5、C6、A7、D8、C9、C 10、A 11、A 12、A 13、A 1、解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC 为直径,即AC=2m ,AB=BC ,∵AB 2+BC 2=22,∴AB=BC=m ,∴阴影部分的面积是=(m 2),故选:A .2、解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=OB=1, 在Rt △COD 中利用勾股定理可知:CD==,AC=2CD=2,∵sin ∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =OB ×AC=×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =π﹣2,故选:C .1题图 2题图 5题图 7题图 8题图3、解:∵在□ABCD 中,∠B=60°,⊙C 的半径为3,∴∠C=120°, ∴图中阴影部分的面积是:=3π,故选:C .4、解:设底面圆的半径为R ,则πR 2=25π,解得R=5, 圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m 2.故选:A .5、解:如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC=OA=OD , ∵CD ⊥OA ,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,OD=OA=12,OC=CA=6,∴CD=,6,∴S 扇形AOD ==24π,∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD )=﹣﹣(24π﹣×6×6)=18+6π.故选:C .6、解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,故选:A . 7、解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,AD=BD=, ∴△ABC 的面积为=,S 扇形BAC ==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D .8、解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6, 226+125Rt △ABE ≌△EHF ,∴∠AEB=∠EFH , 而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD +S半圆﹣S△ABE﹣S△AEF=12×12+12•π•62﹣12×12×6﹣12•65×65 =18+18π.故选:C.9、解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.10、解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.连接OA、OB,则S阴=S扇形OAB=2606360π⨯=6π故选A13、圆所扫过的图形面积=长方形的面积+圆的面积=2π×2+π=5π二、填空题1、734-23π2、4π3、40π4、14π5、43π﹣36、8﹣2π7、6﹣π8、3 9、6π10、2.5π 11、34π 12、 13、25 14、233π+解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π1题图 3题图 8题图2、解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;3、解:连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE ,=﹣×,=﹣,=﹣,4、解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.5、解:∵矩形ABCD ,∴AD=2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π,6、解:∵在⊙O 上,∠ACB=40°,∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3.故答案为:3.7、解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴=3π,解得:R=4,所以此扇形的面积为=6π(cm 2),故答案为:6π.8.解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF =4EM ,∴==4,设GM =t ,则DF =4t ,∴A (4t ,),由AC =AF ,AE =AB ,∴AF =4t ,AE =,EG =, ∵△AEF ∽△GME ,∴AF :EG =AE :GM ,即4t :=:t ,即4t 2=,∴t 2=,图中阴影部分的面积=+=2π+π=2.5π,11、解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6, 由勾股定理得,OB ==3,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°, ∴CO =CB ,CH =OC =, ∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.11题图12题图 13题图解:在Rt △ABC 中,∵BC =,AC =3.∴AB ==2,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =2﹣=,在Rt △ABC 中,∵sinA ===,∴∠A =30°,∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°, ∵=tanA =tan30°,∴=,∴OD =1,∴S 阴影==.故答案是:.13、如图,圆心O 在△ABC 内所能到达的区域是△O 1O 2O 3,∵△O 1O 2O 3三边向外扩大1得到△ACB ,∴它的三边之比也是5∶12∶13, ∵△O 1O 2O 3的面积=103,∴O 1O 2=53,O 2O 3=4,O 1O 3=133,连接AO 1 与CO 2,并延长相交于I ,过I 作ID ⊥AC 于D ,交O 1O 2于E ,过I 作IG ⊥BC 于G 交O 3O 2于F ,则I 是Rt △ABC 与Rt△O 1O 2O 3的公共内心,四边形IEO 2F 四边形IDCG 都是正方形,∴IE =IF = 1223122313O O O O O O O O O O ⨯++ =23,ED =1,∴ID =IE +ED =53,设△ACB 的三边分别为5m 、12m 、13m ,则有ID =AC BC AC BC AB ⨯++=2m =53,解得m =56,△ABC 的周长=30m =25.14、连接OE,则S 阴=S 扇形OEC +S △OED =260212123336023ππ⨯+⨯⨯=(三)、解答题 1、(1)证明:连接OC .∵AC =CD ,∠ACD =120°∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线. (2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =,在Rt △OCD 中,CD =OC ,∴,∴,∴图中阴影部分的面积为.2、作MN ⊥OB,垂足为N,连接OM,则MN=12OA=3,OA=6 ,A(-6,0)由sin ∠ABO 3则∠A=60°tan ∠BAO=OBOA∴3 ∴B (0,3)设直线AB:y=kx+b,将A,B 点的坐标代入得:3,b=3∴3x+3 S 阴=S 扇形MAO -S △MAO 2120(23)1634332ππ⨯-⨯-3、证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线, ∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°,∴△ODE ∽△COE .∴OE ECED OE=,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF ,∴∠COF =∠OFC ,∴△COF 等腰三角形。
弧长与扇形面积圆周角弧长和扇形面积的计算
弧长与扇形面积圆周角弧长和扇形面积的计算弧长与扇形面积的计算在几何学中,圆是一个非常重要的概念,而弧长和扇形面积是与圆相关的两个重要量。
本文将重点探讨弧长和扇形面积的计算方法,以及它们在实际生活中的应用。
一、弧长的计算方法弧长是指圆上两点之间的弧所对应的圆周的长度。
根据圆的性质,弧长与圆心角之间有一定的关系。
当圆心角的度数为θ时,弧长L的计算公式为:L = 2πr(θ/360)其中,r表示圆的半径,π是一个常数,约等于3.14。
根据这个计算公式,我们可以很方便地计算出给定圆心角下的弧长。
举个例子,假设一个圆的半径为5cm,圆心角为60度,那么根据弧长的计算公式,可以得到:L = 2πr(θ/360)= 2 × 3.14 × 5 × (60/360)≈ 5.24 cm所以,在给定圆心角和半径的情况下,我们可以通过简单的计算得到该圆弧的长度。
二、扇形面积的计算方法扇形是由圆心、圆上两点和与这两点相连的弧段所形成的图形。
扇形面积即为该图形的面积。
为了计算扇形的面积,我们首先需要计算出扇形的弧长,然后再乘以半径得到面积。
假设扇形的半径为r,中心角为θ,根据前面提到的弧长计算公式,我们可以得到扇形的弧长为:L = 2πr(θ/360)然后,我们可以根据扇形的弧长和半径计算出扇形的面积S。
扇形的面积计算公式为:S = 1/2 × r × L代入弧长的计算公式,可以得到:S = 1/2 × r × 2πr(θ/360)= πr²(θ/360)举个例子,假设一个扇形的半径为8cm,中心角为120度,那么根据扇形面积的计算公式,可以得到:S = πr²(θ/360)= 3.14 × 8² × (120/360)≈ 67.03 cm²所以,在给定半径和中心角的情况下,我们可以通过计算得到该扇形的面积。
弧长与扇形面积
3
扇形面积与弧长的关 系
扇形面积与弧长的关系
1
扇形面积和弧长是两个密切相关的概念。在扇形中,弧长 和面积之间存在以下关系
2 扇形面积 = (弧长 × 半径) ÷ 2
3 这个公式表明,知道弧长和半径就可以计算出扇形的面积
弧长和扇形面积之间的这种关系可以用于各种实际应用。
4
例如,在几何学中,这种关系用于研究曲线的性质和形状; 在物理学中,它可以用于计算物体在曲线运动中的能量变
心角(弧度)
A = 0.5 × r² × 2π 一条弧和两条半径组成。 扇形的面积可以通过其
半径和圆心角来计算
A = 0.5 × r² × θ
这个公式可以用来计算任意半 径和圆心角的扇形面积。对于 整个圆,圆心角θ等于2π弧度,
此时扇形面积公式简化为
这个公式可以用来 计算整个圆的面积
角(弧度)
02
弧 长 的 计 算a公a式a 为
03
L = r × θaaa
05
对 于 扇 形 ,a其a弧a 长 可 以 通 过 扇 形 的 圆 心
角和半径来计算。扇形的弧长等于扇形 的圆心角(弧度)乘以扇形的半径
2
扇形面积
扇形面积
起源
扇形面积的计算公 式为
其中,A 是扇形面积, r 是半径,θ 是圆
弧长与扇形 面积
-
1 弧长 3 扇形面积与弧长的关系 5 总结
2 扇形面积 4 弧长和扇形面积的几何意义
1
弧长
弧长
01
弧 长 是 曲 线a段a上a 任 意 两 点 之 间 的 连 线 段 。
在圆的任意一点上,弧长等于圆的半径 乘以圆心角(弧度)
04
其 中 , L 是a弧a长a , r 是 半 径 , θ 是 圆 心
圆的弧长和扇形面积公式及变形
圆的弧长和扇形面积公式及变形
圆的弧长公式:圆的弧长等于半径与弧所对的圆心角的夹角度数的乘积,公式为L=θr(其中L表示弧长,r表示半径,θ表示圆心角的夹角度数)。
圆的扇形面积公式:圆的扇形面积等于半径的平方乘以圆心角的夹角度数除以360度,公式为S=1/2r²θ(其中S表示扇形面积,r 表示半径,θ表示圆心角的夹角度数)。
圆的弧长和扇形面积的变形公式:当圆的弧长和扇形面积不同于标准形式时,可以通过变形公式求解。
如圆的弧长为L,圆心角的夹角度数为θ,则弧长对应的圆的半径为r=L/θ;若扇形的面积为S,圆心角的夹角度数为θ,则扇形对应圆的半径为r=√(2S/θ)。
弧长和扇形面积及圆锥的计算
弧长和扇形面积及圆锥的计算一、弧长和扇形面积的计算1.弧长的计算弧长是圆弧上的一段弧线的长度,计算弧长的公式是:L=2πr*(θ/360°),其中L表示弧长,r表示圆的半径,θ表示圆心角的度数。
假设圆的半径为2cm,圆心角为60°,则计算弧长的公式为:L = 2π*2 * (60/360) = 2π cm。
可以看出,在半径一定的情况下,圆心角越大,弧长也会越大,反之亦然。
2.扇形面积的计算扇形是由圆弧和两条半径构成的图形。
计算扇形面积的公式是:A=(πr²*θ)/360°,其中A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。
假设圆的半径为3cm,圆心角为90°,则计算扇形面积的公式为:A = (π*3² * 90) / 360 = π cm²。
可以看出,在半径一定的情况下,圆心角越大,扇形的面积也会越大,反之亦然。
二、圆锥的体积和表面积的计算1.圆锥的体积的计算圆锥是由一个圆形底面和一个顶点连接圆周形成的图形。
计算圆锥的体积的公式是:V=(1/3)*πr²h,其中V表示圆锥的体积,r表示圆锥底面的半径,h表示圆锥的高。
假设圆锥的底面半径为4cm,高为6cm,则计算圆锥的体积的公式为:V = (1/3) * π*4² * 6 = 32π cm³。
2.圆锥的表面积的计算圆锥的表面积包括底面积和侧面积两部分。
底面积的计算公式和圆的面积计算方法相同,即:A底=πr²,其中A底表示底面积。
圆锥的侧面积的计算公式是:A侧= πrl,其中l表示圆锥的母线,l的计算公式为:l = √(r² + h²),其中r表示圆锥底面的半径,h表示圆锥的高。
假设圆锥的底面半径为4cm,高为6cm,则计算圆锥的侧面积的公式为:l = √(4² + 6²) = √52 cm,A侧= π*4*√52 = 20π cm²。
弧长与扇形面积的有关计算
弧长与扇形面积的有关计算
在平面几何中,弧长和扇形面积是经常涉及到的概念。
下面将介绍弧长和扇形面积的相关计算方法。
1. 弧长的计算方法
弧长是指圆周上一段弧的长度。
圆的周长即为它的弧长,通常用字母L表示。
假设圆的半径为r,弧的度数为θ,则弧长L的计算公式为:
L = rθ
其中,θ的单位为弧度。
一般情况下,我们使用角度制来度量角度,因此需要将角度转换为弧度。
具体转换方式如下:
θ(弧度)= θ(角度)×π /180
其中,π(pi)是圆周率,约等于3.14159。
2. 扇形面积的计算方法
扇形是指圆内以一条弧和两条半径为边组成的图形,通常用字母
S表示。
假设圆的半径为r,弧的度数为θ,则扇形面积S的计算公
式为:
S = 1/2 × r ×θ
其中,θ的单位为弧度。
同样需要将角度转换为弧度,具体方式如上述。
通过上述公式,我们可以轻松地计算出弧长和扇形面积。
这些计算方法在实际问题中非常有用,例如求解圆周运动的速度和加速度等。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B C′
l
A,,
2013/5/20
29
思考题
生活中的数学
如图, 矩形ABCD是一厚土墙截面,墙长15米,
宽1米。在距D点5米处有一木桩E,木桩上拴
一根绳子,绳子长7米,另一端拴着一只小狗,
请问小狗的活动范围最大是多少?
王村中学 王亮
2013/5/20
30
如图, 矩形ABCD是一厚土墙截面,墙长15米, 宽1米。在距D点5米处有一木桩E,木桩上拴 一根绳子,绳子长7米,另一端拴着一只小狗, 请问小狗的活动范围最大是多少?
B
王村中学 王亮
C
2013/5/20
42
如图,⊙A、 ⊙B、 ⊙C、 ⊙D两两不相交, 且半径都是2cm,求图中阴影部分的面积。
(07年山东)
王村中学 王亮
B A
D
C
2013/5/20
43
如图:AB是半圆的直径,AB=2r, C、D是半圆的三等分点,则阴影
部分的面积等于
王村中学 王亮
2013/5/20
S 2 ah
想一想:扇形的面积公式与什么公式类似? 王村中学 王亮
2013/5/20
14
感悟点滴
已知扇形的半径为3cm,扇形的弧长为
πcm,则该扇形的面积是__23____cm2,
解:S扇形
1 lR 2
1 3
王村中学 王亮
23
2013/5/20
15
2
练习
①已知圆弧的半径为24,所对的圆心角为
60°,它的弧长为____ .
②已知一弧长为12πcm,此弧所对的圆心
角为240°,则此弧所在圆的半径为__.
③已知扇形的圆心角为120°,弧长为20π
,扇形的面积为__ . ④一个弧长与面积都是
4 π的扇形,它的
半径为_____ . 3
王村中学 王亮
2013/5/20
16
当堂测验
1.如图,已知扇形AOB的半径 为10,∠AOB=60°, 求弧AB的长和扇形AOB的面积 (写详细过程) 2.如果一个扇形面积是它所在圆的面积的
●
● ●
●
王村中学 王亮
2013/5/20
26
如图,⊙A、 ⊙B、 ⊙C、 ⊙D两两不相交, 且半径都是2cm,求图中阴影部分的面积。
(07年山东)
王村中学 王亮
B A
D
C
2013/5/20
27
4.一块等边三角形的木板,边长为1,现将木 板沿水平线翻滚(如图),那么B点从开始至B2 结束所走过的路径长度________. (07年湖北)
的展直长度L(单位:mm,精确到1mm)
解:由弧长公式,可得弧AB的长
l
n R 100900
180
180
500
L 2 700 500 2970 王村因中学王此亮 所要求的展直长度
2013/5/20
8
答:管道的展直长度为2970mm.
扇形定义
什么是扇形?
如下图,由组成圆心角的两条半径和
圆心角所对的弧围成的图形是扇形。
3R 2
2013/5/20
38
8、如图,在Rt△ABC中,∠C=900,AC=2, AB=4,分别以AC,BC为直径作圆,则图中阴
影部分面积为 2 2 3 (05武汉)
C
A
王村中学 王亮
B
2013/5/20
39
内卷为400m,内两半圆长为200米,直 线段共长200米,跑道宽1米,
S2 R2
N2
所对的扇形面积的计算公式为
王村中学 王亮
nR 2
S扇 形 360
2013/5/20
11
生活中的数学
3、(2007,四川内江)如图,这是中央电视台“曲苑杂谈”
中的一副图案,它是一扇形图形,其中∠AOB为 1200,OC 长为8cm,CA长为12cm,则贴纸部分的面积为_1_1__2_π__c_m_ 2
D
解题 根据平行线之间距离相等,转 A
O
B
思路: 化求S扇形
计算结果: 25
6
例2、如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于
点C,且AB∥OP.若阴影部分的面积为 9 ,则 弦AB的长为__6___
王村中学 王亮
OP
A
CB
OP
A
C
2013/5/20
23
B
决胜中考
A是半径为1的圆O外一点,且OA=2,AB是 ⊙O的切线,BC//OA,连结AC,则阴影部 分面积等于 。
有水部分的面积 = S扇+ S△
D
AOD 60 AOB 120 A
S扇
nR2
360
240 62
360
24cm2
6
3E
3
0
B
AB=2AE 2 62 32 2 27 6 3cm
S△AOB= 1 AB OE 1 6 3 3 9 3cm2
C
2
2
有水部分的面积 = S扇+ S△ (24 9 3)cm2
王村中学 王亮
2013/5/20
33
已知正三角形ABC的边长为a,分别以A、 B、C为圆心,以0.5a为半径的圆相切于 点D、E、F,求图中阴影部分的面积S.
王村中学 王亮
2013/5/20
34
中考连接
2
1.扇形的面积是它所在圆的面积的 ,求这
个扇形的圆心角的度数;(05陕西) 3
2.扇形的面积是S,它的半径是r,求这个扇形
2013/5/20
36
如图,从P点引⊙O的两切线PA、PA、PB,A、
B为切点,已知⊙O的半径为2,∠P=60°,
则图中阴影部分的面积为
。
王村中学 王亮
2013/5/20
37
如图水平放置的圆形油桶的截面半径为R,
油面高为 3 R
2
则阴影部分的面积为
(2
3)R2 。
(05重庆)
34
王村中学 王亮
C
B
O
A
王村中学 王亮
2013/5/20
24
⊙A, ⊙B, ⊙C两两不相交,且半径都是 1cm,则图中的三个扇形的面积之和为多
少?弧长的和为多少? (07年北京)
A
B
王村中学 王亮
C
2013/5/20
25
如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的 半径都是1,顺次连接四个圆心得到四边形 ABCD,则图形中四个扇形(阴影部分)的面积之 和是___________.
P2
1.内卷弯道的半径是多少米?
2.内卷弯道与外卷弯道的差是多少?
王村中学 王亮
2013/5/20
40
体会分享
通过本节课的学习, 我知道了…… 学到了……感受到了……
王村中学 王亮
2013/5/20
41
决胜中考
⊙A, ⊙B, ⊙C两两不相交,且半径都是 1cm,则图中的三个扇形的面积之和为多
少?弧长的和为多少? (07年北京) A
…… 4.n°的圆心角所对的弧长是_______.
O
n°
A
B
l
2013/5/20
5
探究一:弧长公式
在半径为R 的圆中,n°的圆心角所
对的弧长的计算公式为 l nR
温馨提示:
180
在应用弧长公式 进行计算时,
O
要注意公式中n的意义.n表示
1°圆心角的倍数,它是不带单
n°
A
B
位的。 王村中学 王亮
l
2.如果一3 个扇形面3积是它所在圆的面积的
1 ,则此扇形的圆心角是____4_5_°___ 8
3、已知扇形的半径为6cm,扇形的弧长为πcm,
则该扇形的面积是_3_____cm2,扇形的圆心角
30 王村为中学 王亮______°.
2013/5/20
18
决胜中考
如图,两个同心圆中,大圆的半径OA=4cm, ∠AOB=∠BOC=60°,则图中阴影部分的面积 是______cm2。
1 ,则此扇形的圆心角是_________
8
3、已知扇形的半径为3cm,扇形的弧长为πcm, 则该扇形的积是__cm2,扇形的圆心角为___°.
王村中学 王亮
2013/5/20
17
当堂测验
1.如图,已知扇形AOB的半径为 10cm,∠AOB=60°,求弧AB的长 和扇形AOB的面积(写过程)
10 cm 50 cm2
王村中学 王亮
A
.
D
E
B C
2013/5/20
31
推荐作业
1.教材124--125页,习题24.4第3、7题
2.变式练习:如图、水平放置的圆柱形排
水管道的截面半径是0.6cm,其中水面高 0.9cm,求截面上有水部分的面积。
王村中学 王亮
0
2013/5/20
32
如图,两个同心圆中,大圆的半径OA=4cm, ∠AOB=∠BOC=60°, 则图中阴影部分的面积是______cm2。
王村中学 王亮
2013/5/20
21
规律提升
0
0
•
S弓形=S扇形-S三角形
•
S弓形=S扇形+S三角形
弓形的面积是扇形的面积与三角形
王村中学 王亮
2013/5/20
22
面积的和或差
组合图形 方法2、利用平移来计算重叠部分的面积
例1:己知直经AB=10,点C、D是圆 的三等分点,求阴影部分的面积。
C
2013/5/20
1
2013/5/20