角动量守恒 教学ppt课件
合集下载
角动量守恒定律ppt课件
数学补充知识:
点积
abba
aaa2
叉积
a b b a
a a 0
c ( a b ) a ( b c ) b ( a c )
点积的微商 叉积的微商
c ( a b ) a ( b c ) b ( c a )
d(a b )a db da b
L
Or v
(对圆心的)角动量:
m
L r p r ( m v ) m r v (r v )
大小:
L mrv
方向:满足右手关系,向上。
2.行星在绕太阳公转时的椭圆轨道运动
对定点(太阳)的角动量:
v
L r p m (r v)
大小: Lmvsrin
v
r
r
Sun
方向: 满足右手关系,向上。
L dm trv m ( a c o ti s b si t jn )
( asit in bco t j) s
m m ( a a k c bb (2 恒矢o t k 量 ) a ss b 2 i t k ) n
M
dL
0
!
dt
或由 M rF 直接计算力矩
r a co ti s b sit j n
(1)对C点的角动量是否守恒?
(2)对O点的角动量是否守恒?
C T
O
mg C'
(3)对竖直轴CC'的角动量是否守恒?
请同学思考!
质点系的角动量定理和角动量守恒定律
1.一对作用力、反作用力对定点(定轴)的合力
矩等于零。
证明:
M 1r1f1
M 2r2f2
r2
f2
r
M 1 M 2 r 1 f 1 r 2 f 2
《角动量守恒定律》课件
未来对于角动量守恒定律的研究和应用,将会推动物理学和科技领域的 不断发展,为人类社会的进步提供更加坚实的理论基础和技术支持。
05
角动量守恒定律的拓展学习
与角动量相关的其他定律
角动量定理
描述角动量随时间变化的 规律,即角动量定理。
拉格朗日定理
与角动量守恒定律相关的 另一个重要定理,它描述 了系统在保守力作用下的 运动规律。
公式
L=r×p,其中L表示角动量,r表 示位置矢量,p表示动量。
Байду номын сангаас
角动量守恒的条件
无外力矩作用
系统内力的力矩相互抵消,或者系统受到的外力矩为零。
孤立系统
系统与外界没有能量交换或相互作用,即系统处于孤立状态 。
角动量守恒定律的应用场景
01
02
03
天体运动
行星绕太阳的旋转运动、 卫星绕地球的运动等都遵 循角动量守恒定律。
哈密顿原理
一个描述系统在保守力作 用下最短路径的原理,与 角动量守恒定律有密切联 系。
角动量守恒定律的深入学习资源
《经典力学》教材
深入探讨角动量守恒定律的理论 基础和应用,包括数学推导和实
例分析。
网络公开课
一些在线教育平台提供关于角动量 守恒定律的深入学习课程,可以作 为辅助学习资料。
学术论文
查阅相关学术论文,了解角动量守 恒定律在前沿科学研究中的应用和 最新研究成果。
们更好地设计和控制卫星轨道。
分子运动实例
总结词
分子转动是微观领域中角动量守恒的实例,对于理解化学反应机理和分子结构具有重要意义。
详细描述
分子转动是指分子中的原子或基团绕分子轴线的旋转运动。在分子转动过程中,分子的角动量是守恒的。这是因 为分子内部没有摩擦力矩,从而保证了角动量的守恒。了解和利用角动量守恒定律,可以帮助我们更好地理解和 预测化学反应机理和分子结构。
05
角动量守恒定律的拓展学习
与角动量相关的其他定律
角动量定理
描述角动量随时间变化的 规律,即角动量定理。
拉格朗日定理
与角动量守恒定律相关的 另一个重要定理,它描述 了系统在保守力作用下的 运动规律。
公式
L=r×p,其中L表示角动量,r表 示位置矢量,p表示动量。
Байду номын сангаас
角动量守恒的条件
无外力矩作用
系统内力的力矩相互抵消,或者系统受到的外力矩为零。
孤立系统
系统与外界没有能量交换或相互作用,即系统处于孤立状态 。
角动量守恒定律的应用场景
01
02
03
天体运动
行星绕太阳的旋转运动、 卫星绕地球的运动等都遵 循角动量守恒定律。
哈密顿原理
一个描述系统在保守力作 用下最短路径的原理,与 角动量守恒定律有密切联 系。
角动量守恒定律的深入学习资源
《经典力学》教材
深入探讨角动量守恒定律的理论 基础和应用,包括数学推导和实
例分析。
网络公开课
一些在线教育平台提供关于角动量 守恒定律的深入学习课程,可以作 为辅助学习资料。
学术论文
查阅相关学术论文,了解角动量守 恒定律在前沿科学研究中的应用和 最新研究成果。
们更好地设计和控制卫星轨道。
分子运动实例
总结词
分子转动是微观领域中角动量守恒的实例,对于理解化学反应机理和分子结构具有重要意义。
详细描述
分子转动是指分子中的原子或基团绕分子轴线的旋转运动。在分子转动过程中,分子的角动量是守恒的。这是因 为分子内部没有摩擦力矩,从而保证了角动量的守恒。了解和利用角动量守恒定律,可以帮助我们更好地理解和 预测化学反应机理和分子结构。
角动量角动量守恒PPT课件
M M1 M2 M3
(2)刚体内作用力和反作用力的力矩互相抵消.
M ij
rj
j
O
d ri
i Fji
Fij
Mij M ji
M ji
(3)力矩必须明确是对哪个点(或轴) 8
三、角动量定理 角动量守恒
1.质点的角动量定理
将角动量 L r p 两边对时间求导
14
角动量守恒定律是一条普遍的规律,存在
于很多自然现象中,例如,行星受恒星引力作
用作椭圆轨道运动,引力的作用线始终通过恒
星中心,这样的力称为有心力。由于有心力对
力心的力矩恒为零,因此,受有心力作用的质
点对力心的角动量守恒。 掠面速度
·m
f
r
dS 1 r v dt 2
o r
vdt
12
将角动量定理的微分形式 M dL 两边乘以
dt 并积分得
t
dt
0 M dt L L0
t
0 M
dt :
质点或质点系的合外力矩的冲量矩;
L0 与L 分别是质点或质点系始末状态的角动量。
在一段时间内,质点(系)角动量的增量
等于作用于质点(系)的合外力矩的冲量
矩——质点(系)角动量定理的积分形式
Lrp
(xi yj zk ) (pxi py j pzk )
各坐标轴的分量
Lx ypz zpy Ly zpx xpz Lz xpy ypx
分别称为对 x、y 、z 轴的角动量
2
例 质点L沿某r一 p方向r作 m直v线运动,对O点的角动量 角动量大小为
L rm vsin m v d
角动量守恒定律.pptx
角动量守恒定律
一、角动量定理
由转动定律
4-3 角动量守恒定律
M dL dt
Mdt dL
L L t2 Mdt L2 dL
t1
L1
21
系统所受合外力矩的冲量矩等于系统 角动量的增量。
4-3 角动量守恒定律
二、角动量守恒定律
由角动量定理:
t2 t1
M
d
t
L2
L1
若 M 0,则 L J =恒矢量
4-3 角动量守恒定律
一、角动量定理:
t2 tL1
二、角动量守恒定律:
若 M 0,则 L J =恒量
1、刚体: J不变, 也不变(大小、方向) 2、非刚体: J变, 变 → J ,;J ,
课后思考:
4-3 角动量守恒定律
试分析为什么直升机要安装尾翼螺旋桨呢?
4-3 角动量守恒定律
内容:当系统所受合外力矩为零时,则 系统的总角动量保持不变。
应用:
4-3 角动量守恒定律
1、刚体: J不变, 也不变 (大小、方向)
应用:
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
J ,
J ,
小结:
刚体转动及角动量守恒ppt
匀直细杆对端垂轴旳
平行移轴定理
对质心轴旳转动惯量 对新轴旳转动惯量
质心
例如:
时
新轴对心轴旳平移量
新轴 质心轴
代入可得 端
匀质薄圆盘对圆心垂盘轴算旳 例
取半径为 微宽为 旳窄环带旳质量为质元
球体算例 匀质实心球对心轴旳 可看成是许多半径不同旳共轴 薄圆盘旳转动惯量 旳迭加 距 为 、半径为 、微厚为 旳薄圆盘旳转动惯量为
a = Rb
T2 – m2 g = m2a ( T1 – T2 ) R = Ib
及
I
=
1 2
mR2
得
b=
(m1-m2)g
R(m1+ m2+ m
2)
常量
故
由
m2
a
G2
m1
a
G1
(m1-m2)g
R(m1+ m2+ m 2)
t (m1-m2)g
g 2 (rad)
R(m1+ m2+ m 2)
两匀直细杆
q
转动定两律者瞬例时题角加五速度之比
与 时刻相应,何时
则何时
,
何时 恒定 则何时 恒定。
匀直 细杆一 端为轴 水平静 止释放
转动定律例转题动 二( T2 – T1 ) R = Ib
I=mR2 2
R
m
T2
T1
a
m2
m1
b
平动 m2 g – T2 = m2a
T2
T1
T1 – m1 g = m1a
线-角 a = Rb
T2
T1
联立解得
a
G2
力矩旳功算例 拨动圆盘转一周,摩擦阻力矩旳功旳大小
第角动量角动量守恒定律PPT课件
(练习二,17)
解 设猴子、重物对地面的速度分别为
。
由猴、重物组成的系统角动量守恒,得
v1、v 2
v1 v2
R
∵ v1 v猴绳 v绳-地 v v绳-地
v1
v2
而 v绳地 v物地 v2 , 则 v1 v v2
∴
v2
v 2
第23页/共29页
机械能不守恒
力物的猴拉加,力由速于上和轻爬相绳过等各程m,处中1又g张,因力绳为相对猴等猴和,的物所拉相以力同在大质另于量一猴,端的绳重对重T1
[ C]
第9页/共29页
第五章 角动量、角动量守恒定律
本章主要阐述三个问题:
1)角动量。 2)角动量守恒定律。 3)有心力与角动量守恒定律。 3)有心力与角动量守恒定律。
第10页/共29页
5-3 有心力与角动量守恒定律
自然界中有些力具有这样的性质:力的方向始终通过某一固定点,力的 大小仅依赖于质点与这个点之间的距离。我们称这样的力为有心力,相应的 固定点称为力心。例如,万有引力是有心力;静电作用力也是有心力。
作半径为 的m圆轨道运动。取圆周上 点R为参考点,如图所示,试求:①质P点
在图中点1处所受的力矩 和质点的角动量
的力矩 和质点的角动量 。
;②质m点
在图中点2处所受
M1
L1
m
M2
L2
解 ① 力矩 M 1
2
在点1处, 所m受引力指向 点,故 P M 1 0
角动量 L1
由 m作圆周运动的动力学方程,可得速度
A 另离一端系向一右质,运量绳O动子,处到于达松位的弛置物状体态时。。物开O现体始A在速时使度,物的物体方m体以向位与与于0绳.位5d垂k置垂g直直0。处.的2试,5初求m速物度间体的在距 处
《角动量守恒》课件
瓶子里的小球
当一个小球在一个旋转的瓶 子中运动时,由于角动量守 恒,小球的运动轨迹将发生 奇妙的变化。
总结
1 角动量守恒定理在现实生活中的应用
角动量守恒定理在旋转机械、天体运动等方面有广泛的应用。
2 与其他物理量的关系
角动量与动量、力矩等物理量之间存在一定的关系。
3 角动量守恒定理的限制
角动量守恒定理只在没有外力作用时成立。
《角动量守恒》PPT课件
角动量守恒是力学中一个重要的概念。本课件将介绍角动量的基本概念、角 动量守恒定理以及其在物理世界中的应用。
基本概念
1 角动量的定义
2 角动量的单位
பைடு நூலகம்
角动量是物体在旋转时具有的物理量, 它由转动惯量和角速度的乘积组成。
角动量的单位是千克·米²/秒,记作 kg·m²/s。
角动量守恒定理
保持不变。
质点做圆周运动时的角动量 守恒
当质点绕着固定轴作圆周运动时, 它的角动量将保持不变。
实例分析
静止的物体受外力时的 角动量守恒
自转的刚体的角动量守 恒
当一个静止的物体受到外力 作用时,由于其角动量守恒, 它将发生旋转而不是直线运 动。
当一个刚体在自转时,由于 其角动量守恒,刚体的自转 速度将保持不变。
1 定义
角动量守恒定理指的是在没有外力作用下,物体的角动量保持不变。
2 守恒定理的意义
角动量守恒定理说明了物体在旋转过程中的稳定性和不变性。
3 质点系之间的角动量守恒
当质点系内部没有相互作用力时,质点系的总角动量将保持不变。
角动量定理的应用
1
刚体的转动
2
刚体的转动可以通过角动量定理来 解释,刚体在转动过程中其角动量
刚体定轴转动的角动量定理和角动量守恒定律课件
转动惯量的特性
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例
只与刚体的质量和各质点到转动轴 的距离有关,与转动角速度的大小 无关。
02
角动量定理
角动量的定义与性质
角动量的定义
角动量是描述刚体转动状态的物理量 ,等于刚体的转动惯量乘以角速度。
角动量的性质
角动量是矢量,具有方向和大小;对 于定轴转动,角动量位于转轴上;角 动量是相对量,与参考系的选择有关 。
理解角动量守恒定律的证明方法是深入理解该定律的重要途径。
详细描述
证明角动量守恒定律的方法主要有两种,一种是基于牛顿第二定律和转动定理推导,另一种是通过分析系统的能 量变化来证明。通过这些证明方法,可以更深入地理解角动量守恒定律的物理意义和适用条件。
04
刚体定轴转动的实例 分析
刚体定轴转动的实例介绍
角动量守恒定律的内容及应用
总结词
掌握角动量守恒定律的内容及应用是解决实际问题的关键。
详细描述
角动量守恒定律表明,对于不受外力矩或所受外力矩的矢量和为零的系统,其总角动量保持不变。这 一原理在日常生活、工程技术和科学研究中有广泛的应用,如行星运动、陀螺仪、火箭飞行等。
角动量守恒定律的证明方法
总结词
陀螺仪
风扇
陀螺仪是一个典型的刚体定轴转动实 例,其工作原理就是角动量守恒定律 。
当风扇的扇叶旋转时,可以将其视为 刚体定轴转动,这个过程涉及到角动 量定理的应用。
自行车轮
自行车轮在转动时,也是一个刚体定 轴转动的例子,其转动惯量对于理解 角动量定理和角动量守恒定律非常有 帮助。
刚体定轴转动的角动量定理应用实例
舞蹈演员在进行旋转动作时,可以通过改变身体的姿势来改变转动惯量,从而控制旋转的 速度。
刚体定轴转动的角动量守恒定律应用实例
大学物理角动量守恒定律ppt课件
v M 外 dt
d J
dt
v L1 v L2
v L1
dL v
dL
J d
dt
L2 v L2
L1 v L1
积分
M轴 dt Jd J2 J1
当 M 轴合外 0 时
t1
1
J2 J1 恒量
定轴转动刚体 角动量守恒
若转动惯量有变化,则有:J22 J11 恒量 19
5.5 定轴转动刚体的转动定律 转动中的功和能
Jz Jc mh2
式中:
J
关于通过质心轴的转动惯量
c
m 是刚体质量, h 是 c 到 z 的距离
h Cz
J z 是对平行于质心轴的一个轴的转动惯量
23
2) 转动惯量叠加,如图
z B
Jz JA JB JC
A
C
式中:J A 是A球对z轴的转动惯量
JB 是B棒对z轴的转动惯量
J c 是C球对z轴的转动惯量
点的角动量
有 r
1 2
g
t
2
LA
r
p
1 2
mpt3gmvg
mgt 0
o
r
RA r
(2) 对 O 点的角动量
m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
4
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
v
r
O
B S
A r
[证明] (1) 行星对太阳O的角动量的大小为
L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
d J
dt
v L1 v L2
v L1
dL v
dL
J d
dt
L2 v L2
L1 v L1
积分
M轴 dt Jd J2 J1
当 M 轴合外 0 时
t1
1
J2 J1 恒量
定轴转动刚体 角动量守恒
若转动惯量有变化,则有:J22 J11 恒量 19
5.5 定轴转动刚体的转动定律 转动中的功和能
Jz Jc mh2
式中:
J
关于通过质心轴的转动惯量
c
m 是刚体质量, h 是 c 到 z 的距离
h Cz
J z 是对平行于质心轴的一个轴的转动惯量
23
2) 转动惯量叠加,如图
z B
Jz JA JB JC
A
C
式中:J A 是A球对z轴的转动惯量
JB 是B棒对z轴的转动惯量
J c 是C球对z轴的转动惯量
点的角动量
有 r
1 2
g
t
2
LA
r
p
1 2
mpt3gmvg
mgt 0
o
r
RA r
(2) 对 O 点的角动量
m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
4
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
v
r
O
B S
A r
[证明] (1) 行星对太阳O的角动量的大小为
L r p rmvsin
其中 是径矢 r 与行星的动量 p 或速度 v 之间的夹角.
角动量守恒PPT
i 1
可见即使对定轴转动,角动量L也不一定与方向相同
(本例中方向还一直在改变)。
第 49 页
z
本章中我们感兴趣的是定
L
ri
D Li
轴转动,即要研究角动量
v i 在z轴的分量Lz
q
Dmi
Ri
DLiz DLi cosq
O
Dmi Rivi cosq
Dmiri2
Lz DLiz (Dmiri2)
JZ
r 2dm
m
r2 r r (r h) (r h)
r2 h2 2h r
rdm 0 质心的定义 m
Jz
r2dm
m
h2dm 2h
m
m r2dm JC mh2
第 21 页
例3 一质量为 m ,半径为 R 的均匀薄圆盘,求通 过盘中心并与盘面垂直的轴的转动惯量。
解 dm 2 rdr
特别要注意: 转动惯量与转轴的位置有关。
转动惯量具有可相加性。
第 17 页
第 18 页
例2 计算质量为 m ,长为 l 的细棒绕通过其端点的 垂直轴的转动惯量。
解 J r2dm
dm dx m dx
l
J l x2 m dx 1 m x3 l
0l
3l 0
J 1 ml2 3
第 19 页
J r2dm
J 2 R r3dr 0 R4 1 mR2 22
r dr Ro
第 22 页
例4 质量m1、半径为 R的实心滑轮,可绕通过其质心 的轴无摩擦的转动。一根轻绳绕在其上,绳端挂一质
量为 m2的物体,绳子与滑轮间无相对滑动。求物体下 落的加速度和绳子的张力。
解
T
R
角动量守恒定律1教案.ppt
r)
mr
2
L
与
同方向
例:一质量为m的质 点沿一条二维曲线运动
r a cos ti b sintj 其中a,b, 为常数
试解求::该v质点dr对原点a的s角in动量ti矢 量b和c力os矩.tj
dt L mr v
m(a cos ti
b sintj )
(a sinti b cos tj )
a
db
da
b
dt
dt dt
质点的角动量定理:
仿照平动:F
dp
M
r
dt F
r
dp
d(r
p)
dr
p
d(r p)
dt
v mv
dt dt d(r p) dL
M
dt dL
dt ——质点的v角 v动量0定理
dt
dt
定义角动量 L r p mr v
L ri Pi
Fi
i
dL dt
d[ dt i
ri Pi ]
i
d ri dt Pi
·i · ·
f r·i
ij
·
r·j f
ji
· j
ri
i dL
F外i ji
fij (内)
dt
i
ri F外i M
一对作用力、反作 用力对定点(定轴) 的合力矩等于零。
一个质点系所受的合外力矩等于该质点系总角动量
t2
Mdt
t1
L2 L1
dL
L2
L1
t2
Mdt为质点在t内对O点的冲量矩
t1
质点的角动量
力是物体平动运动状态(用动量来描述)发生改
大学物理-角动量守恒定律 PPT
dt 12
dt
考虑到 t
dr g cost 7lg cos(12v0 t)
dt 2
24 v0
7l
37
例6 一杂技演员M由距水平跷板高为h 处 自由下落到跷板的一端A,并把跷板另一端 的演员N弹了起来.问演员N可弹起多高?
M
h
N
C
A
B
l/2
l
38
设跷板是匀质的,长度为l,质量为m',
6mv0
(M 3m)l
v0 m
31
例3 摩擦离合器 飞轮1:J1、 w1 摩擦轮2: J2 静止,两轮沿轴向结合,结合后两轮达到 的共同角速度。 解:两轮对共同转轴的角动量守恒
21
试与下例的齿轮啮合过程比较。
32
例4 两圆盘形齿轮半径r1 、 r2 ,对通过盘心
垂轮直以于0 盘转面动转,轴然的后转两动轮惯正量交为啮J1合、,J2求,啮开合始后1
点o的矢径为 r ,动量为 p ,如下图。在计算其
角动量时,注意有两个特点:
(1) o点到 p 方向的垂直距离 r sin 不变;
(2) L 方向不变;
p2
假如 p 的大小也不变, 显然L 的大小不变。这表
明,自由质点对任意参考 点的角动量保持不变。
p1
1 r1
2
r2
r sin o
5
1.5.2 质点角动量定理
必须指明是对哪个点而言的
注意两点:
(1) 质点的角动量是相对某一参考点而言的,因此
对不同的参考点,角动量 L 不同;
(2) L 的大小在0~ rp 之间变化,如果把动量分解
为径向分量 pcos 和横向分量 psin ,则仅横
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
12
M外 Mi外 ri Fi
i
i
----各质点所受外力矩的矢量 和称为质点系所受合外力矩
M内 Mi内 (ri fij ) 0
i
i
ji
----各质点所受内力矩 的矢量和
(证明如下:)
Fi
m2
m1
mi
fij ri
f ji m j
0
rj
13
内力总是成对出现的,所以内力矩也是成对出
碰撞时重力和轴力都通过O,
•O
v0 l m2
对O 力矩为零,故角动量守恒。
有
l 2
m2v 0
lm1l
l 2
m2
l 2
解得: 2m2 v 0
4m1 m2 l
m1
思考 (m1+m2 )的水平动量是否守恒? 18
说明
1. 质点系的角动量定理也是适用于惯性系;
2. 外力矩和角动量都是相对于惯性系中的 同一固定点说的。质点系受的外力的矢量 和为零,但总外力矩不一定为零(eg:力偶) 角动量不守恒;
1
§3.1 质点的角动量守恒定律
一、质点的角动量
物理学非常注意守恒量的研究。 在天体运动中,常遇到行星绕某一恒星(固定点) 转动时, 行星始终在同一个平面内运动的现象。 例如:太阳系中的每个行星都有自己的转动平面 例如:银河系中的 每个恒星都有自己 的转动平面。
在这些问题中,存在 着质点的角动量守恒 的规律。
可绕其中点o处的细轴在光滑水平面上转动。初始时
杆静止,后有一小球C以速度v0垂直于杆碰A, 碰后与 A 合二为一。设三个小球的质量都是 m, 求:碰后杆转动 的角速度 ?
C
B
v0
o
A
【解】 选系统 : A+B+C
16
碰撞过程中,系统的动量守恒不守恒?
答:轴处有水平外力,动量不守恒。
碰撞过程中,系统的角动量守恒不守恒?
3. 当质点系受的外力的矢量和不为零,但总 外力矩可为零时(eg:有心力),质点系总角 动量守恒; 4. 内力矩不影响质点系总角动量,但可影响 质点系内某些质点的角动量。
dL
d
(r p)
d
r
p
r
d
p
dt dt
dt
dt
vv
mvv
rr
r F
r
F
定义力对定点 O 的力矩 (moment of force) 为:
M
r M
rr
r F
· O r0 r •mF
M rF sin r0F
r0 r sin 称力臂 5
于是有
r
r M
d
L
dt
或
dL Mdt
— 质点角动量定理 (微分形式)
L = mvR,方向垂直圆面不变。
L
·v
O
R •m
同一质点的同一运动,其角动量却可以随固
定点的不同而改变。例如:
锥摆 O
LO rom mv
LO lmv
方向变化
l
m
O
LO
rom
mv
LO lmv sin 方向竖直向上不变
v
质点直线运动的角动量??
4
二、质点的角动量定理
由
L
r
p
有:
常矢量
7
若 M 0 ,则 L 常矢量
M 0
的条件是
— 质点角动量守恒定律
F 0
或 F 过固定点:有心力
(如行星受的万有引力)
角动量守恒定律是物理学的基本定
律之一,它不仅适用于宏观体系,也 适用于微观体系,而且在高速低速范 围均适用。
8
角动量守恒定律可导出行星运动的开
普勒第二定律:
L
(书P79页例3.1)
0
“一个质点系所受的合外力矩等于该质点系的
角动量对时间的变化率” — 质点系角动量定理 14
若 M外 0 ,则 L 常矢量
——质点系角动量守恒定律
即:“只要系统所受的总外力矩为
零,其总的角动量就保持不变。”
Lr p
M
d
L
dt
思考
质点系角动量守恒和动量守恒 是否相互独立?
15
例. 一长为 l 的轻质细杆两端分别固接小球 A 和 B, 杆
积分
t2
M
t1
d
t
L2
L1
—质点角动量定理 (积分形式)
t2
t1
M
d
t
称冲量矩 ——力矩对时间的积累作用
即“质点对固定点角动量的增量等于该质点
所受的合力的冲量矩”。 6
三、质点角动量守恒定律
由质点角动量定理:
M
d
L
dt
知:当Mv 0时,有:ddLvt 0
则质点的角动量:
v L
v L0
现的,对i , j 两个质点来说,它们相互作用的内
力矩之和为:
ri
fij
rj
f
ji
ri rj
fij
ri rj 与 fij 共线,
所以这一对内力矩之和为零。
同理可得所有内力矩之和为零。
于是有:
dL M外 dt
m2
mi ri rj
m1
fij ri
f ji m j
rj
答:轴处有水平外力,但没有外力矩,
角动量守恒。
设碰后 B 球的速度为v,
mv 0
l 2
(2m)v
l 2
mv
l 2
即
m v0
l 2
2m
l 2
2
m
l 2
2
可得 2v0
3l
17
例:一长为l 的轻质杆端部固结一小球m1 ,另 一小球m2以水平速度v0碰杆中部并与杆粘合。
求:碰撞后杆的角速度ω 解: 选m1(含杆)+ m2为系统
【证明】
r1
因为是有心力场,所 以力矩 M=0,则角动 量守恒。
r2
F
r
Δr
vv
m
S
由角动量守恒定律:
r L
rr
mvr
常矢量
9
所以 mvr 与 rr 始终在同一平面内。
若经 t
时间
S 1 r 2
rr sin
1 2
rr rr
掠面速度:
L
dS
S
lim
d t t0 t
rr
1 r r
lim
2 t0 t
v1
11
§3.2 质点系的角动量守恒定律
一个质点系对一固定点的角动量 定义
为其中各个质点对该固定点的角动量的
矢量和,即:
L Li ri pi
i
i
dL dt
d(
dt i
Li)
i
d Li dt
Fi
m2
m1
mi
fij ri
f ji m j
0
rj
(M i外 M i内) M外 M内
r1
r2
F
r Δ r
vv
m S
1 rr d rr 1 rr vr
v L
常量
2 dt 2
2m
10
所以地球人造卫星 在近地点速度大, 在远地点速度小。
1970年 ,我国发射 了第一颗地球人造 卫星。
L
r1
r2
F
r
v2
m
近地点高度为 266 km, 速度为 8.13 km/s;
远地点高度为 1826 km, 速度为 6.56 km/s; 计算出椭圆的面积,根据“掠面速度”, 就可以得到绕行周期为 106分钟。
2
银河系
角动量是质点运动中的一个重要的物理量,在 物理学的许多领域都有着十分重要的应用。
质点m对惯性系中的固定
点O的角动量(动量矩)
定义为:
L
r
p
r
(mv )
L
p
·O
r
m•
大小:L rpsin rmv sin , 单位:kg m2/s
方向:于r,p(v)决定的平面(右螺旋)
3
质点作匀速率圆周运动时, 对圆心的角动量的大小为