角动量 角动量守恒定律

合集下载

角动量和角动量守恒定律

角动量和角动量守恒定律

恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .


L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验

量子力学中的角动量与角动量守恒定律

量子力学中的角动量与角动量守恒定律

量子力学中的角动量与角动量守恒定律量子力学是20世纪物理学的重要进展之一,它以其奇特的原理和理论体系引起了广泛的兴趣和研究。

在量子力学中,角动量是一个重要的物理量,它在物理过程中具有很多奇异的性质。

本文将介绍量子力学中的角动量和角动量守恒定律,并探讨其在不同体系中的应用。

量子力学中的角动量是描述一个物体自旋和转动的性质。

它与经典力学中的角动量概念相似,但存在着一些重要的区别。

首先,量子力学中的角动量是离散的,即只能取某些特定的数值;而经典力学中的角动量可以取任意实数值。

其次,量子力学中的角动量是通过测量得到的,而经典力学中的角动量是确定的。

在量子力学中,角动量运算符是描述角动量的数学工具。

角动量运算符可以分为两个部分,一个部分是轨道角动量运算符,描述物体的转动;另一个部分是自旋角动量运算符,描述物体的自旋。

这两个部分的和构成了总角动量运算符。

通过对角动量运算符的求解,可以得到角动量的具体数值和方向。

角动量守恒定律是指在物理过程中,系统的总角动量守恒不变。

这个定律可以通过量子力学的数学框架来解释和证明。

系统的总角动量守恒不变意味着系统中的角动量不能被创建或者销毁,只能在不同的子系统之间转移。

这个定律在很多物理过程中都有广泛的应用,例如原子的电子能级跃迁、核反应等。

在讨论角动量守恒的过程中,我们需要了解不同体系中的角动量性质。

在轨道角动量中,角动量量子数l描述了轨道的形状和空间分布。

l的取值范围为0到n-1,其中n是主量子数。

通过角动量量子数l的不同取值,可以得到不同的轨道,例如s轨道、p轨道等。

自旋角动量主要描述物体内部的自旋状态,其量子数为s,其取值范围为±1/2。

自旋角动量是一个基本粒子的内禀属性,不同的基本粒子具有不同的自旋。

除了轨道角动量和自旋角动量,角动量还有一个重要的性质是角动量的选择定则。

角动量的选择定则规定了在特定过程中角动量的变化规律。

通过角动量选择定则,我们可以确定许多物理现象的发生概率和过程。

角动量守恒定律

角动量守恒定律

角动量守恒定律角动量守恒定律,也称转动动量守恒定律,是描述旋转系统中物体角动量守恒的物理定律。

它是在伽利略与牛顿的基础上,由欧拉和拉格朗日等人发展起来的。

它表明,在无外力矩作用下,一个封闭系统的总角动量守恒。

在物理学中,角动量是描述物体旋转运动的物理量。

一个物体的角动量等于其自转角速度和惯性矩的乘积。

考虑一个刚性物体,其围绕某个轴心旋转。

此时,物体的角动量L等于其自转惯性矩I和角速度ω的积,即L=Iω。

这个公式可以用来描述物体的旋转状态。

在没有外力矩作用的情况下,物体的角动量守恒。

也就是说,在这种情况下,刚体自身的角速度和惯性矩不会发生改变。

这个定律可以由牛顿第二定律的角动量形式推导出来。

当一个刚体受到外部力矩时,他的角动量就会发生变化。

这个变化量等于力矩与旋转时间的积。

一个封闭系统中的物体,在没有外部力矩作用时,总角动量守恒,即所有物体的角动量的代数和不变。

如果物体中有某一个物体受到外部力矩,那么这个物体的角动量就会发生变化,但是,由于总系y运中的总力矩为零,所以其他物体的角动量将以相反的方式发生变化,以保证总角动量守恒。

一个典型的例子是一个旋转跳板启动一个跳跃者,高度和角速度的变化取决于跳板和跳跃者的质量和形状。

在这个过程中,跳板和跳跃者的角动量守恒,因为在计算角速度和角动量时,两个物体的总和是不变的。

总之,角动量守恒定律是一种重要的动力学基本定律。

它说明,封闭系统中的角动量总和保持不变。

在硬物体的运动中往往非常有用,可以帮助计算速度、加速度和其他涉及运动的数值。

在工程学和物理学中,它被广泛地应用于旋转系统、制药生产,以及其他需要涉及转动的领域。

角动量、角动量守恒

角动量、角动量守恒

T
(3) )
m, l
联立(1)、(2)、(3)式求解 式求解 联立
mg
1 T = mg 4
例5:在光滑水平桌面上放置一个静止的质量 : 可绕中心转动的细杆, 为 M、长为 2l 、可绕中心转动的细杆,有一质 、 量为 m 的小球以速度 v0 与杆的一端发生完全弹 性碰撞, 性碰撞,求小球的反弹速度 v 及杆的转动角速 度ω。 解:在水平面上,碰撞 在水平面上, 过程中系统角动量守恒, 过程中系统角动量守恒,
∆A/ ∆t = 恒 量
两个共轴飞轮转动惯量分别为J 例1:两个共轴飞轮转动惯量分别为 1、J2, 角速度分别为 ω1 、ω2,求两飞轮啮合后共同 啮合过程机械能损失。 的角速度 ω 。啮合过程机械能损失。 J1 J2 解:两飞轮通过摩 擦达到共同速度,合 擦达到共同速度 合 外力矩为0, 外力矩为 ,系统角 动量守恒。 动量守恒。
定义:力对某点 的力矩等于力的作用点 定义:力对某点O的力矩等于力的作用点 的矢量积。 的矢径 r 与力F的矢量积。 v v
v Mo
ϕ
注意: 注意: 1)大小: o = rF sin ϕ )大小: M v v 的方向 2)方向: × F )方向: r 3)单位:牛顿米 )单位: v r 4)当 F ≠ 0 时, ) 有两种情况 Mo = 0 v A) r = 0 ) B)力的方向沿矢径的方向( sin ϕ = 0) )力的方向沿矢径的方向(
ω1 L0 = L = C J1ω1 + J2ω2 = (J1 + J2 )ω
ω2
J1ω1 + J2ω2 共同角速度 ω = J1 + J2
啮合过程机械能损失
∆E = E − E0
1 1 1 2 2 2 ∆E = (J1 + J2 )ω − ( J1ω1 + J2ω2 ) 2 2 2 J1ω1 + J2ω2 其中 ω = J1 + J2

角动量 角动量守恒定律

角动量 角动量守恒定律

角动量与线动量关系
角动量与线动量的关系
角动量是线动量在物体绕某点或某轴 转动时的表现形式,二者之间存在密 切关系。
动量守恒定律
在不受外力作用的情况下,物体的总 动量(包括线动量和角动量)保持不 变,即动量守恒定律。
02
角动量守恒定律
守恒条件及适用范围
守恒条件
当系统不受外力矩作用时,系统的角动量守恒。即在没有外力矩的情况下,系统内部各部分之间的相 互作用力不会导致系统总角动量的改变。
06
总结与展望
课程内容回顾与总结
角动量的定义与性

角动量是物体绕某点或某轴转动 的动量,具有矢量性质,其大小 与物体的质量、速度和转动半径 有关。
角动量守恒定律的
表述
在没有外力矩作用的情况下,系 统内的角动量保持不变,即角动 量守恒。
角动量守恒定律的
应用
角动量守恒定律在天体物理、刚 体转动、分子运动等领域有广泛 应用,如行星运动、陀螺仪工作 原理等。
对未来研究方向的展望
角动量守恒定律在复 杂系统较成熟,但在复 杂系统中的应用还有待深入研究, 如多体问题、非线性问题等。
角动量与其他物理量 的关系研究
角动量与能量、动量等物理量之 间存在一定的联系,未来可以进 一步探讨它们之间的关系,以及 如何利用这些关系解决实际问题。
在机械工程中,飞轮储能系统被应用 于能量回收和节能领域。飞轮储能系 统利用刚体定轴转动的角动量守恒定 律,通过加速和减速飞轮来储存和释 放能量。这种储能方式具有高效率、 环保等优点,在电动汽车、风力发电 等领域具有广阔的应用前景。
04
质点和质点系相对于固定 点角动量守恒
质点相对于固定点角动量定义和性质
双星系统由两颗互相绕转的恒星组成。在双星系统中,两颗恒星的角动量守恒,因此它们的轨道周期、距离和质量之 间存在一定关系。

角动量 角动量守恒定律

角动量 角动量守恒定律

h
vN2 2g

1 2g


3mvM m 6m
2

h
3m m 6m

2
19
4-3 角动量 角动量守恒定律
第四章 刚体转动
P104例3 质量很小长度为l 的均匀细杆, 可绕过其中心
O 并与纸面垂直的轴在竖直平面内转动 . 当细杆静止于
水l/4平处位, 置并时背,离有点一O只向小细虫杆以的速端率点vvA0 0垂爬直行落. 设在小距虫点与O细为杆
14
4-3 角动量 角动量守恒定律
比较 动量

F

dP dt
t2

Fdt ΔP
t1

F 0 P 0
F
P
mv
力 动量
t2
Fdt 力的冲量
t1
第四章 刚体转动
角动量

M

dL dt
t2

Mdt ΔL
t1

LMMrrp0F角L力动矩量0或或角动力量矩
其角速度为ω, 求齿轮啮合后两圆盘的角速度.
解: 系统角动量守恒
J11 J22 (J1 J2)
J11 J22
(J1 J2 )
16
4-3 角动量 角动量守恒定律
第四章 刚体转动
P103例2 一杂技演员 M 由距水平跷板高为 h 处自由下
落到跷板的一端 A, 并把跷板另一端的演员 N 弹了起来.
R

x

26

dP
F dt
t2

Fdt ΔP
t1

F 0 P 0

角动量角动量守恒定律

角动量角动量守恒定律
R1
dr r
l
I r dm
2 m
R2
R1
2 l r dr
3
l
2
4 ( R2 R14 )
m 圆筒的体密度 2 , R2 R, I m R2 2 若R1 R2 R, I m R2
1 2 I m( R2 R12 ) 2
刚体绕OZ轴转动的角动量
a)力矩、角动量都是瞬时量,它们只能针对某 注意: 一时刻而言,它们都不是时间的累积效应。 b)力矩、角动量都是相对量,都必须指明它们 是相对于哪个轴或哪个点。 强调:对于刚体的定轴转动,我们只能用角动量来 描述,而不能用动量来描述。
8
3.转动惯量 1 .定义 刚体对固定轴的转动惯量等于各质元质量与其至 转轴的垂直距离的平方的乘积之和。
I ( Δmiri2 )
I是描述刚体转动惯性大小的物理量。
刚体的转动惯量与哪些物理量有关? ①.与刚体质量有关。 ②.与质量对轴的分布有关。 ③.与轴的位置有关。 在(SI)中,I 的单位:kgm2 量纲:ML2
9
2 .转动惯量的计算
Δmiri2 ) Ii 分立质点系 I (
质量连续分布的刚体
10
例2:半径为 R 质量为 M 的圆环,绕垂直于圆环平面 的质心轴转动,求转动惯量I。 解:分割质量元 dm圆环上各质量元到轴的距离相等,
M
I

0
R dm R
2
2 M 0
2 dm MR M
绕圆环质心轴的转动惯量为
o
R
dm
I MR
2
例2:在无质轻杆的 b 处 3b 处各系质量为 2m 和 m 的质点,可绕 o 轴转动,求:质点系的转动惯量I。 解:由转动惯量的定义

大学物理-角动量定理和角动量守恒定律

大学物理-角动量定理和角动量守恒定律
当系统所受外力矩为零时,系统内各物体角动量 之和保持不变。
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。

角动量守恒

角动量守恒

角动量守恒角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。

角动量守恒定律是物理和自然界的一条重要定律。

它在日常生活、天体物理、微观物理和工程中都有广泛的应用。

例如,角动量守恒定律可以很好地解释开普勒天体运行第二定律、陀螺效应等。

当一个质点绕原点运动时,它的角动量L=RP。

这里,R是质点相对于原点的位置向量;P是质点的线性动量;而表示矢量积。

具有一定质量的物体绕一固定轴转动,它的角动量L可表示为这个物体的惯性矩I和它的角速度向量w的乘积,即L=Iw。

角动量又称为动量矩,是一个矢量,是位矢叉乘于动量。

定理也称动量矩定理。

表述角动量与力矩之间关系的定理。

对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。

利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。

由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。

定理应用角动量守恒定律是物理和自然界的一个重要定律,它在日常生活、天体物理、微观物理和工程等许多方面都有广泛的应用。

例如:当滑冰者手臂收缩时,自我旋转滑冰者的转动速度就会加快。

用角动量守恒定律也可解析中子星有很高的转动速率等。

另外,角动量守恒定律也是陀螺效应的原因。

角动量守恒定律反映了质点和质点系围绕一点或一轴运动的普遍规律。

如一质量为 m的质点受指向固定中心O的向心力F的作用,因力F对O点的力矩为零,根据牛顿第二定律可推得质点对O点的角动量守恒,Lo=rmv=常矢量,此常矢量决定于运动的起始条件,r为质点对于O点的矢径,v为质点的速度。

如将太阳看成固定中心,行星看成质点,则角动量守恒表明行星轨道必在一平面上。

矢径在相等的时间内扫过的面积相等,这就是开普勒行星运动三定律之一—开普勒第二定律角动量守恒也是微观物理学中的重要基本规律。

角动量守恒定律

角动量守恒定律



0 L v0 ; L v 2 2
得:
v0 v 9
注意:区分两类冲击摆 质点 质点 柔绳无切向力 (1) o • 水平方向: Fx =0 , px 守恒
v0
l
m (2)
Fy
M
L • 对 o 点:M 0 ,
m v 0l = ( m + M ) v l
m v 0= ( m + M ) v
守恒
Fx
质点
定轴刚体(不能简化为质点)
o
v0
m
l
轴作用力不能忽略,动量不守恒, 但对 o 轴合力矩为零,角动量守恒
M
mv 0 l ml 2 1 Ml 2 3
v l
回顾习题
P84 4 -10
F
O
m M
F轴 0 m M系统 p 不守恒; M轴 0 m M系统 对O点角动量守恒 m 2 gh R m M vR
角动量守恒定律: 当质点系所受外力对某参考点(或轴)的力矩的矢 量和为零时,质点系对该参考点(或轴)的角动量 守恒。
注意
1.与动量守恒定律对比
当 F外 0 时,
当 M外 0 时,
2.守恒条件 能否为
p 恒矢量 L 恒矢量

?
彼此独立
M外 0
M轴 0

M 外 dt 0
m 以速度v 0 撞击 m 2 ,发生完全非弹性碰撞
求:撞后m 2的速率 v ?
解1:m 和 m 2 系统动量守恒
m v 0 = (m + m 2 ) v
A
解2: m 和 (m1 + m 2 )系统动量守恒

3-2 角动量 角动量守恒定律

3-2 角动量  角动量守恒定律

对 轴 的 力 矩
力矩为零的情况: (1)力F 等于零; (2)力 F 的作用线与矢径 r 共线(即 sin 0 )
有心力:物体所受的力始终指向(或背离)某一固定点 力心
2、质点的角动量定理
旋转对称性意味着空间的各向同性, 这将导致角动量守恒。
dL t2 M Mdt L2 L1 t1 dt 外力矩对系统的角冲量(冲量矩)等于角动量的增量。 J 常矢量 L2 L1 M 0
3-2
角动量 角动量守恒定律
一、质点的角动量 质点相对O点的矢径 r 与质点 L 的动量 mv 的矢积定义为该时
O
mv

刻质点相对于O点的角动量, 用 L 表示。
d
L rmv sin L r mv L rmv mr 2
Lx ypz zp y Ly zp x xpz
直角坐标系中角 动量的分量表示
Lz xp y yp x
二、质点的角动量定理
1、力矩
M
M Fr sin M r F
单位:牛· 米(N · m)
力矩的分量式:
O
r p

M x yFz zF y M y zFx xFz
M z xFy yFx

解:由于系统对转轴合外力矩为零, M 系统角动量守恒.
R
m
I I 0
I 1 MR2 2

图3.16
I mR 2

2m M 2m
人对地的角速度为

M M 2m
设人沿转台边缘跑一周的时间为 t ,则有
dt 2

角动量定理和角动量守恒定律

角动量定理和角动量守恒定律

角动量定理和角动量守恒定律
角动量定理和角动量守恒定律是描述刚体运动时的两个基本定律。

下面进行简单的介绍:
1. 角动量定理
角动量定理是描述角动量变化的定律。

它表示为:物体所受外力矩等于物体角动量对时间的变化率。


I*ω= ΔL/Δt
其中,I 为物体的转动惯量,ω为物体的角速度,L 为物体的角动量。

这个定理表明了一个物体的角动量发生变化时,必定受到了外部的力矩作用,即力矩等于角动量的变化率。

2. 角动量守恒定律
角动量守恒定律是描述角动量不变的定律,即如果没有外部力矩作用,系统的总角动量保持不变。

即:
L = L0
其中,L 为系统的总角动量,L0 为系统在某一时刻的总角动量。

这个定律表明,如果没有外部力矩作用,那么系统的总角动量保持不变。

如果一个物体在自由运动时,角动量发生变化,那么它将会改变自身的旋转状态(比如转速、方向等)。

总之,角动量定理和角动量守恒定律是描述刚体运动和角动量变化的基本定理,可以帮助我们更好地理解物体的运动和变化规律。

角动量与角动量守恒定理

角动量与角动量守恒定理

∆s
b
行星在有心力作用下运动,故角动量守恒。又因质 量不变,所以 ∆ A / ∆ t = 恒 量 (证毕)
9
例:质量为m的小球,以速率v0沿质量为M,半径为 R的地球表面水平切向飞出,地轴OO′与v0平行,小 球的轨道与轴OO′ 相交于 3R的 C点,忽略地球自转 和空气阻力,求小球在C点的v与v0之间的夹角θ。 解:M,m 组成的系统机械能和角动量守恒。 (万有引力:保守力,且为有心力) 以无穷远为势能零点,则:r0 = R r1 = 3R 1 mM v0 2 Z mv 0 − G 2 R m r r1 0 C 1 mM 2 Y (1) = mv − G θ O O ′ 2 3R M v
v0
2 9v0 − 12GM / R
O M地 O′
v
Y θ
11
r0 × m v0 = r1 × m v
( 2)
X

10
由(1)式: 由(2)式:
v=
v0
2
4 GM − 3R
( 3)
ˆ = −3Rmv sin θiˆ − Rmv0i
Z
( 4)
v0
由(3)和(4)式得:
v0 v0 sin θ = = 2 3v 9v0 − 12GM / R
r0
X
m
r1
C
∴θ = arcsin
6
d Li = ∑ ri × Fi + ∑ ri × f i ∑ dt i i i
d Li = ∑ ri × Fi ∑ dt i i
合外力 矩M外
内力矩矢 量合为零
dL = M外 dt
质点系的角动量守恒定律: 当
质点系角动量定个系统 的角动量。
在直角坐标系中

4-3角动量 角动量守恒定律

4-3角动量  角动量守恒定律
in
M L 常量
ex
角动量守恒定律是自然界的一个基本定律.
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律 电荷守恒定律 质量守恒定律 宇称守恒定律等
许多现象都可 以用角动量守恒来 说明. 花样滑冰 跳水运动员跳水
跳水运动员
茹可夫斯基凳
例3 质量很小长度为l 的均匀细杆,可 绕过其中心 O并与纸面垂直的轴在竖直平面 内转动.当细杆静止于水平位置时,有一只 小虫以速率 v 0 垂直落在距点O为 l/4 处,并背 离点O 向细杆的端点A 爬行.设小虫与细杆 的质量均为m.问:欲使细杆以恒定的角速 度转动,小虫应以多大速率向细杆端点爬行?
解 设飞船在点 A 的速度 v 0 , 月球质 量 mM ,由万有引力和 牛顿定律
vB
R
B
vA
v0
v
O h A
u
v mM m G m 2 ( R h) Rh mM g G 2 2 R R g
2 0
v0 (
Rh
)
12
1 612 m s
1
质量 m' 在 A 点和 B 点只受有心力作用 , 角动量守恒
d r mv r F dt
所以
dL M= dt
dL M dt

t2
t1
M dt L2 L1
冲量矩
t1
t2
M dt
对同一参考点O,质点所受的冲量矩 等于质点角动量的增量.——质点的角动 量定理
3、质点的角动量守恒定律
若质点所受的合外力矩为零,即 M=0,
4-3 角动量 角动量守恒定律
力对时间累积效应: 冲量、动量、动量定理. 力矩对时间累积效应: 冲量矩、角动量、角动量定理.

3-(5)、角动量角动量守恒

3-(5)、角动量角动量守恒

+



m
X

t
0
人 dt

M
2m
M
t
0
台dt
M

2m
台 (3)
人 台 2 (4)
A

m

A

4m Mm 2M

Mm
例3:一木杆长 l 可绕光滑端轴O旋转。设这时 有一质量为m的子弹以水平速度 v 射入杆端并 箝入杆内,求杆偏转的角度。 已知: M , l , m, v 求: ? 解: N N O O


C:开始不旋转的物体,当其一 部分旋转时,必引起另一部分 朝另一反方向旋转。
'

讨 论 子细 弹绳 击质 入量 沙不 袋计
o
v
子 弹 击 入 杆
o
圆 锥 摆
o
T
'
m
v
p
o
v
R
以子弹和沙袋为系统 以子弹和杆为系统 圆锥摆系统 动量守恒; 动量不守恒; 动量不守恒; 角动量守恒; 角动量守恒; 角动量守恒; 机械能不守恒 . 机械能不守恒 . 机械能守恒 .
M
t1
x
dt
dL
Lx 1
x
Lx 2 Lx1
t2
Ly 2 y
M
t1
t2
dt
dL
L y1
Lz 2
y
Ly 2 Ly1
Lz 2 Lz1
M
t1
z
dt
dL
Lz 1
z
角动量定理(积分形式) 作用在质点系的角冲量等于系统角动量的增量。

第二章 角动量守恒定律

第二章 角动量守恒定律
v dS = 恒矢量 dt
v r
证毕
如图,两个质量相等的人分别抓住轻绳的两端。 例2. 如图,两个质量相等的人分别抓住轻绳的两端。 设开始时两人在同一高度上,此时左边的人从静止 设开始时两人在同一高度上 此时左边的人从静止 同一高度 开始往上爬,右边的人抓住绳子不动, 开始往上爬,右边的人抓住绳子不动,如不计滑轮 的摩擦,问哪个人先到达滑轮? 的摩擦,问哪个人先到达滑轮?如果两人的质量不 等,情况又如何? 情况又如何? 解: 以O点为参考点 点为参考点 系统:人、绳子、滑轮 系统: 绳子、
角动量守恒定律是自然界的一条普遍 定律,它有着广泛的应用。
例1、证明开普勒第二定律:行星和太阳之间的连线 、证明开普勒第二定律: 在相等时间内扫过的椭圆面积相等 。 证明
v 1v v dS = r ×dr 2
v dr
v v dS 1 v dr 1 v v = r × = r ×v dt 2 dt 2 v dS 1 v v 1 v = r ×mv = L 有心力作用下角动量守恒 dt 2m 2m
质点系的角动量 设各质点对O点的位矢分别为 设各质点对 点的位矢分别为
v L
v v v r1 , r2 , L, rn
γ
v LA
A
v v v 动量分别为 p1 , p2 , L, pn
n v n v v v L = ∑Li = ∑(ri × pi ) i =1 i =1
O
2-3-2 力矩
v v v v v dL d(r × p) dr v v dp = = × p+ r × dt dt dt dt v v v dr v v v dp 式中 × p = v× p = 0 =F dt dt dt
z
M = rF sin α

角动量定理角动量守恒定律

角动量定理角动量守恒定律
应用牛顿第二定律
在系统整体上应用牛顿第二定律,得到系统受到的合外力矩为零时 的角动量守恒条件。
推导角动量守恒定律
根据系统总角动量和角动量守恒的条件,推导出角动量守恒定律, 即在合外力矩为零时,系统总角动量保持不变。
推导过程中的注意事项与难点解析
注意事项
在推导过程中,需要注意定义和计算过程中的符号约定,以及正确应用牛顿第二 定律。
角动量定理与守恒定律的适用范围
角动量定理适用于描述物体在受到外 力矩作用下的旋转运动,特别是需要 分析力矩对旋转运动的影响时。
角动量守恒定律适用于描述某些特定 条件下物体的旋转运动,如系统不受 外力矩作用或系统内力的力矩相互抵 消等。
04
角动量定理与守恒定律的 推导过程
角动量定理的推导过程
定义角动量
03
角动量守恒定律则是在一定条件下,物体的角动量保持不变 。
角动量定理与守恒定律的区别
角动量定理是一个运动方程,用于描 述旋转运动的物体在外力矩作用下的 运动规律,而角动量守恒定律则是一 个守恒条件,用于描述某些特定情况 下旋转运动的物体角动量的保持。
VS
角动量定理是一个瞬时规律,关注的 是物体在某一时刻的运动状态,而角 动量守恒定律则是一个时间平均规律, 关注的是物体在一段时间内的平均运 动状态。
矩作用会导致旋转物体角动量的增加或减少。
02
揭示旋转运动的本质
角动量定理阐明了旋转运动的本质特征,即旋转物体的角动量是守恒的,
但可以通过力矩作用进行改变。
03
指导设计旋转机械
角动量定理在旋转机械设计和运行中具有指导意义,例如在电动机、发
电机、陀螺仪等设备的设计中,需要考虑力矩作用和角动量的变化。
角动量守恒定律的物理意义

大学物理-角动量守恒定律

大学物理-角动量守恒定律

1 dA ( r sin )ds 2
4-3 角动量
角动量守恒定律
dA 1 ds 1 ( r sin ) r sin v dt 2 dt 2 1 1 r sin mv rp 2m 2m 而行星的角动量 r p 大小恒定,所以 dA 常量 dt
一般情形下, r 和 p 都是变化的,所以 L 没 有确定的方向,但任一时刻, L 总垂直于 r 和 p 所确定的平面。在直角坐标系下,L 的三个分量
为:
3
Lx ypz zp y Ly zpx xpz Lz xp y ypx
4-3 角动量
这就是开普勒第二定律。 如果一个力的方向始终指向某一点,这力称 为有心力,这点,称为力心。有心力对力心的力 矩恒为0,因此,在有心力作用下的质点对力心 的角动量守恒。 10
4-3 角动量
角动量守恒定律
质点系角动量变化定理和角动量守恒定律 1. 质点系角动量
L l i ri 量
角动量守恒定律
3. 角动量守恒定律 如果质点系所受合外力矩 M 外 0,则
dL 0 ,L 常矢量 dt
实验表明,对于不受外界影响的粒子系统所 经历的任意过程,包括不能用牛顿力学描述的 过程,都遵守角动量守恒定律。
13
4-3 角动量
角动量守恒定律
【例1.21】光滑水平面上轻弹簧两端各系一小球, 开始弹簧处于自然长度,两小球静止。今同时 打击两个小球,让它们沿垂直于弹簧轴线方向 获得等值反向的初速度v0。如果在以后的运动过 程中弹簧的最大长度为2l0,求初速度v0。 解 系统:弹簧和小球 质心C点固定不动,相对 C点系统的角动量守恒。
必须指明是对哪个点而言的

大学物理第5章角动量守恒定律

大学物理第5章角动量守恒定律

1 ml2 3
l
m
m 1.73
z2
o
l 2
G
JZ2
1 ml2 3
RGC G 不是质心
转动惯量的计算
例: 求半径为 R,总质量为 m的均匀圆盘绕垂直于盘面
通过中心轴的转动惯量 如下图:
解:
质量面密度
m R 2
J z r 2dm R r 2ds 0
Z ds
R r 2 2rdr 0
R r 2 m 2rdr
a 法向分量
an
v2 r
r 2
O
匀变速直线运动
匀变速定轴转动
v dS dt
a dv dt
v v0 at
S
v0t
1 2
at 2
v2 v02 2aS
d
dt
d
dt
0 t
0t
1t2
2
2 02 2
5.4 定轴转动刚体的角动量定理
1.刚体对转轴的力矩和角动量
z
角动量守恒
质点系的角动量定理
M J
4g
t
3 4
R
1 2
gt
2
LA
r
p
1 2
mpt3gmvg
mgt 0
orRA r源自(2) 对 O 点的角动量m
mv
r r R
LO r p (R r) p R p R mgt
Rg
LO Rmgt
2. 质点的角动量定理
角动量的时间变化率
dL
d
(r
p)
dr
p
r
dp
r 表示从O到速度矢量 v 的垂直距离, 则有
r sin s rs 2

角动量 角动量守恒

角动量 角动量守恒

4.8
0–lgsind =vvdv
–v2/2=lg(cosθ–1)
θ
0
R 例6. 半径R, 质量M的均匀水 解: 小车与 M r m 平转台可绕中心轴自由转动, 转盘受重力 开始时静止.今有质量m的玩 与轴的支撑 具汽车静止开始在转台上作 力都平行转 半径r(r<R)的圆运动, 求汽车 轴,力矩在轴方向上无分量, 相对转台走一周时,转台转过 故小车与转盘系统对转轴角 的角度. 动量守恒.用角标0,1,2分别表 示地,转盘和小车,设u=v21,有 ω20=ω21+ω10 mvr+Iω10=0
方向:沿轴向 所有内力矩矢量和为零 所有质元的角动量方向相同 L=∑miri2 刚体所受力矩等于外力矩 L=(∑miri2) =J 的矢量和 M=∑ri×Fi L的方向:沿轴向
3.刚体的角动量定理 第i个质元 Mi=dLi/dt
4.角动量守恒定律
对于刚体定轴转动. 求和 ∑Mi=∑(dLi/dt) 条件: M外=0 结论: L=恒量 讨论: =d(∑Li)/dt (1)内力矩不改变系统的角 得 M =dL/dt 动量,角动量守恒是自然 界的一条基本定律 刚体合外力矩M 等于 (2)当M外<<M内时, L恒量; 刚体角动量L 对时间 的变化率 (3)当J=恒量时, ω=恒量 t L ω大小方向不变(如回转仪); Mdt = dL=L2–L1 t L (4)当J改变时(内力作功使质 =J2ω2–J1ω1 量重新分布),ω大小改变,但 合外力矩的冲量矩等于刚 方向不变;
7.8
L
p
o
m r
质点的角动量定理: (dr / dt ) p r (dp / dt ) 对同一参考点 ,质点 v pr F 所受的冲量矩等于质点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7l
角动量定理
M dL d(J) dJ
dt dt
dt
mgr cos d ( 1 ml2 mr2 ) 2mr dr
dt 12
dt
考虑到 t
dr g cost 7lg cos(12 v0 t)
dt 2
24 v0
7l
的圆运动.
o r mv
➢ 质点角动量(相 对圆心) 90
A
L r p r mv
大小 L rmvsin
z L mv
L rmv mr 2 (圆运动)
L 的方向符合右手法则.
r
2 刚体定轴转动的角动量
L mirivi ( miri2 )
z
i
i
L J
二 刚体定轴转动的角动量定理
演员 M 落在跷板上, 与跷板的碰撞是完全非弹性碰撞 .
问演员 N 可弹起多高 ?
解: 碰撞前 M 落在
A点的速度
vM (2gh)1 2
N
C
M
h A
碰撞后的瞬间, M、 B N具有相同的线速度
l/2 l
vM (2gh)1 2
uN
uM
u
l
2
M、N和跷板系统
N
C
M
h A
角动量守恒
B
l/2
l
mvM
l 2
M dL
t2 Mdt
t1
L2 L1
dL
J2
J1
非刚体定轴转动的角动量定理
t2 t1
Mdt
J 22
J11

刚体定轴转动的角动量定理
t2 t1
Mdt
J2
J1
三 刚体定轴转动的角动量守恒定律
➢ 若 M 0 ,则 L J 常量 .
讨论 ➢ 守恒条件 M 0
J11 J22 (J1 J2 )
J11 J 22
(J1 J2 )
例2 一杂技演员 M 由距水平跷板高为 h 处自由下
落到跷板的一端 A, 并把跷板另一端的演员 N 弹了起来.
设跷板是匀质的, 长度为 l , 质量为 m', 跷板可绕中部
支撑点 C 在竖直平面内转动, 演员的质量均为 m. 假定
水平位置时, 有一只小虫以速率 v0 垂直落在距点 O 为
l/4 处, 并背离点O 向细杆的端点 A 爬行. 设小虫与细杆
的质量均为m. 问: 欲使细杆以恒定的角速度转动, 小虫
应以多大速率向细杆端点爬行?
解: 碰撞前后系统角 动量守恒
mv0
l 4
1 12
ml
2
m(
l 4
)
2
12v0 7l
12 v0
1
例1 两个转动惯量分别为 J1 和 J2 的圆盘 A和 B. A 是机器上的飞轮, B 是用以改变飞轮转速的离合器圆
盘. 开始时, 他们分别以角速度ω1 和ω2 绕水平轴转
动. 然后,两圆盘在沿水平轴方向力的作用下.啮合为 一体, 其角速度为 ω, 求 齿轮啮合后两圆盘的角速度.
解: 系统角动量守恒
J
2mu
l 2
1 12
ml 2
1 2
ml 2
mvMl ml 2 12
2 ml 2
6m(2gh)1 2 2 (m 6m)l
演员 N 达到的高度
h u 2 l 2 2 ( 3m )2 h
2g 8g m 6m
例3 质量很小长度为l 的均匀细杆, 可绕过其中心
O 并与纸面垂直的轴在竖直平面内转动 . 当细杆静止于
力的时间累积效应 冲量、动量、动量定理.
力矩的时间累积效应
冲量矩、角动量、
角动量定理.
刚一体定质质轴点点转运的动动角0运状,动p动态量状的和0态描刚的述体描的述角p 动Lm量vJ0E,kpEkm0vJ222 2
pi
p j
一 质点的角动量和刚体的角动量
1 质点角动量
质点在垂直于 z 轴平面
z
上以角速度 作半径为 r
若 J 不变, 不变;若 J 变, 也变,但 L J 不变.
➢ 内力矩不改变系统的角动量.
➢ 在冲击等问题中 M in M ex L 常量
➢ 角动量守恒定律是自然界的一个基本定律.
有许多现象都可以用角 动量守恒来说明. 它是自然 界的普遍适用的规律.
➢花样滑冰 ➢跳水运动员跳水
飞轮
2
航天器调姿
相关文档
最新文档