010-质点、刚体的角动量、角动量守恒定律

合集下载

角动量和角动量守恒定律

角动量和角动量守恒定律

恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .


L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验

质点系角动量守恒定律

质点系角动量守恒定律
第五章 角动量•关于对称性
前言 质点的角动量 质点系的角动量定理及角动量守恒定律 质点系对质心的角动量定理和守恒定律 对称性 • 对称性与守恒律 经典动力学的适用范围
§5.1 前
一、本章的基本内容及研究思路

角动量概念的建立和转动有密切联系,在研究物体的运动 时,人们经常可以遇到质点或质点系绕某一确定点或轴线运动 的情况,并且在这类运动中也存在着某些共同的重要规律。例 如,天文观测表明,行星绕日运动遵从开普勒第二定律,在近 日点附近绕行速度较快,远日点速度较慢,这个特点如果用角 动量及其规律很容易说明。特别是在有些过程中动量和机械能
都不守恒,却遵从角动量守恒定律,这就为求解这类运动问题 开辟了新途径。
角动量不但能描述经典力学中的运动状态,在近代物理理 论中仍然是表征微观运动状态的重要物理量,例如原子核的角 动量,通常称为原子核的自旋,就是描写原子核特性的。 角动量守恒定律和动量守恒定律一样,是自然界最基本最
普遍的定律之一。由于角动量这个物理量,从概念到数学表达,
都比动量要难理解,我们循序渐进逐步深入地来理解。 本章还要触及对称性的概念,尽管经典力学中的对称性没
有在微观领域中那么重要,但是介绍一下与本课水平相当的对
称性问题是十分有益的。
二、本章的基本要求
1. 理解质点及质点系角动量的物理意义; 2. 掌握质点、质点系的角动量定理; 3. 掌握角动量守恒定律; 4. 理解对称性的概念,了解守恒律与对称性的关系。
由上(1)式可以看出,在过程中如果外力对参考点的力矩
的矢量和始终为零,则质点系对该点的角动量保持不变,称为 质点系对该点的角动量守恒定律,即
当τi 0时,
L 常量.
由(2)式可以看出,有时外力矩对参考点虽不为零,但 是,外力矩沿某固定的 z 轴分量为零,则质点系对 z 轴的角动 量保持不变,叫做质点系对 z 轴的角动量守恒定律。即

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。

2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。

(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。

3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。

练习:1角动量守恒的条件是 。

0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。

刚体动力学刚体的转动与角动量守恒定律

刚体动力学刚体的转动与角动量守恒定律

刚体动力学刚体的转动与角动量守恒定律刚体动力学——刚体的转动与角动量守恒定律刚体动力学是研究刚体运动的物理学分支,主要研究刚体的平动和转动。

在刚体的运动过程中,角动量的守恒定律是关键的一条定律,它在很多物理问题的求解中起着重要的作用。

一、刚体转动的基本概念刚体是指具有一定形状和大小的物体,在运动过程中保持其形状和大小不变的情况下,绕一个固定轴线进行旋转。

在刚体转动的过程中,存在着固定轴线上的角位移、角速度、角加速度等概念。

角位移表示刚体在转动过程中的角度变化,通常用符号θ表示;角速度表示单位时间内刚体转动的角度变化率,通常用符号ω表示;角加速度表示单位时间内角速度的变化率,通常用符号α表示。

二、刚体的转动与力矩刚体在转动过程中需受到外力的作用,这些外力可以将刚体带动产生转动现象。

力矩是刚体转动的重要力学量,它描述了力对于刚体转动的影响程度。

力矩的大小等于力乘以作用点到转轴的距离,用数学式表示为:τ = F × r其中τ表示力矩,F表示力的大小,r表示作用点到转轴的距离。

三、刚体的转动惯量与角动量刚体的转动惯量与角动量是刚体转动过程中的另外两个重要概念。

转动惯量描述了刚体对于转动的惯性程度,它的大小取决于刚体的质量分布和几何形状。

角动量描述了刚体在转动过程中的旋转性质,它等于刚体质量的转动惯量乘以角速度,用数学式表示为:L = I × ω其中L表示角动量,I表示转动惯量,ω表示角速度。

四、角动量守恒定律角动量守恒定律是刚体动力学中的一个基本定律,它表明在没有外力矩作用的情况下,刚体转动过程中的角动量保持不变。

如果一个刚体在初态时角动量为L1,在末态时角动量为L2,且没有外力矩作用,则有L1 = L2。

这一定律体现了一个自然规律,对于理解刚体的转动过程和求解相关物理问题具有重要意义。

五、应用案例角动量守恒定律可以应用于各种实际物理问题的求解中,例如刚体的转动稳定性、陀螺的运动等。

质点角动量定理 角动量守恒

质点角动量定理 角动量守恒

v2
o
v1
4)角动量守恒定律是物理学的基本定律之一。不 仅适用于宏观体系,也适用于微观系统。
2.5 质点角动量定理 角动量守恒
例1 一小球在光滑平面上作圆运动,小球被穿 过中心的线拉住 。开始时绳半径为r1 ,小球速 率为 v1 ;后来,往下拉绳子,使半径变为 r2 , 小球速率变为 v2 ,求v2 =?
ri fi 0
i

dL M外 dt
质点系的角动量定理:质点系对某定点的角 动量的时间变化率等于质点系对该点的合外 力矩。
2.5 质点角动量定理 角动量守恒
结论:
1)内力对定点的力矩之和为零。 2)只有外力矩才能改变系统的总角动量。 3.质点系的对轴的角动量
L Lx i Ly j Lz k
当质点系对某点的合外力矩为零时,则质点 系对该点的角动量保持不变,称为角动量守恒定 律。
角动量守 恒例题
2.5 质点角动量定理 角动量守恒
盘状星系——角动量守恒的结果
质点系对o点的角动量
r2
o
r1
L Li ri Pi
i i
质点系对o点的角动量等于系统中各质点对 同一点角动量的矢量和。
2.5 质点角动量定理 角动量守恒
2.质点系的角动量定理
用 f i 表示第i个质点所受内力之和
用 Fi 表示第i个质点所受外力之和
三、质点的角动量定理 dP 由牛顿第二定律 F dt
dP 两边用位矢叉乘 r F r dt dp d dr r (r p) p dt d dt t
由速度定义
dr v v p 0 dt

角动量 冲量矩 角动量守恒定律

角动量 冲量矩 角动量守恒定律
力的时间累积效应: 冲量、动量、动量定理.
力矩的时间累积效应: 冲量矩、角动量、角动量定理.
41..4.质1 点质的点角的动角量动量定理和角动量z守L恒定v律

v
质量为m 的质点以速
在空间运动,某时对
O 的位矢为 r ,质点对O
rm
xo
y
的角动量
L

r

p

r

mv
L

1 2
mv 12

r1 r2
2

1

4.4.2 刚体定轴转动的角动量定理
和角动量守恒定律
1 刚体定轴转动的
角动量

L
mi ri 2
i
(
miri2 )
L

Ji
z

O ri
v i
mi
2 刚体定轴转动的角动量定理
质M点i mi受dd合Lti力矩dM(diJ(t包 )括Midedxt、(mMiiirni
t2
t1
Mdt

J 22

J11
当转轴给定时,作用在物体上的冲量矩等于在
这段时间内转动物体的角动量的增量
例 在通过定滑轮的一条轻绳的两 端,分别连有质量为 m1和 m2的物体, 设滑轮是质量为M 、半径为R的质 量均匀分布的圆盘。设绳的质量可 不计,求两物体的加速度。 解: 支撑力与滑轮的重力皆通原 点。只有 m1和m2 的重力才有对原 点的力矩。
R
M
m 1
m 2
作用于该系统的力矩为
M Rm1g Rm2g m1 m2 Rg
整个系统的角动量为
L

第5讲 质点的角动量角动量守恒定律

第5讲 质点的角动量角动量守恒定律
第5章 质点(系)的角动量 角动量守恒定律
5.1 质点的角动量定理 5.2 质点系的角动量定理 5.3 角动量守恒定律
Law of Conservation of Angular Momentum
在自然界中经常会遇到质点围绕着一定的中心运转 的情况。例如,行星绕太阳的公转,人造卫星绕地 球转动,电子绕原子核转动以及刚体的转动等等。 在这些问题中,动量定理及其守恒定律未必适用, 这时若采用角动量概念讨论问题就比较方便。
r F v mv r F 令 r F M ─力矩 dL 于是有 M 可见: 引起转动状态改变的原 dt 因是由于力矩的作用
dL M —角动量定理的微分形式 dt 质点所受的合力矩等于其角动量对时间的变化率。
例题4 用绳系一小球使它在光滑的水平面上做匀速 率圆周运动,其半径为 r0 ,角速度为ω0 。 现通过圆心处的小孔缓慢地往下拉绳使半径 逐渐减小。求当半径缩为 r 时的角速度。 解: 以小孔 o 为原点 绳对小球的拉力为有心力,
r o
v
r0 m
其力矩为零。 则小球对o 点的角动量守恒。
初态
mv0r0 mr0 20
n ——各个质点所受的各内力矩 M int ri fij 的矢量和。 i 1 j i
考察一对内力矩的矢量和。内力是成对出现的
ri f ij rj f ji ri rj f ij

角动量也是一个重要概念。□
5.1 质点的角动量定理
一 质点的角动量 对于作匀速直线运动的质点,可以用动量也可用 角动量的概念进行描述。 设质点沿 AB 作匀速直线运动, 在相等的时间间隔Δt 内,走过的 距离 ΔS = vΔt 都相等。 选择O 为原点,从O 到质点处引 位矢 r 。 r 在单位时间内扫过的 面积,称为掠面速度。

《大学物理》3.4刚体定轴转动的角动量定理 角动量守恒定律

《大学物理》3.4刚体定轴转动的角动量定理  角动量守恒定律

我国第一颗人造地球卫星沿椭圆轨道绕地球运动, 例:我国第一颗人造地球卫星沿椭圆轨道绕地球运动,地心为该椭圆 的一个焦点。 的一个焦点。已知地球半径 R ,卫星的近地点到地面距离 l ,卫星的远 地点到地面距离 l 。若卫星在近地点速率为 v1 ,求它在远地点速率 v2 。
1 2
卫星在运动过程中,所受力主要是万有引力, 解:卫星在运动过程中,所受力主要是万有引力,其它力忽 略不计,故卫星在运动过程中对地心角动量守恒。 略不计,故卫星在运动过程中对地心角动量守恒。 m
0
r
A
θ = 90
0
mv
质点作圆周运动的角动量
θ
L = rmv = mr ω
2
2.2刚体的角动量 刚体的角动量 刚体对 oz轴的角动量为
z
ω
v
2
i
L = ∑ m r ω = (∑ m r )ω
2 i i i i
o
r
i
m
i
∑ m r 刚体绕 oz 轴的转动惯量
2 i i
L = Jω
L = Jω
刚体对转轴的角动量等于其转动惯量与角速度乘积。 刚体对转轴的角动量等于其转动惯量与角速度乘积。
1 m v 0 a = ( ML2 + ma 2 )ω 3
子弹射入后一起摆动的过程只有重力做功,故系统机 械能守恒。
1 1 L 2 2 2 ( ML + ma )ω = mga (1 cos60°) + Mg (1 cos60°) 2 3 2
ω=
3(2ma + ML)g 2(3ma 2 + ML2 )
二、角动量定理和角动量守恒定理
1× mv 对时间求导 = r × (mv ) + × mv dt dt dt dr d dL ∵ = v , F = (mv ) M = dt dt dt dL 质点所受合外力矩等于质 ∴ = r × F + v × mv dt 点角动量对时间的变化率

角动量守恒定律的公式

角动量守恒定律的公式

角动量守恒定律的公式
1. 角动量守恒定律公式。

- 对于质点,角动量L = r× p(其中r是质点相对于某参考点的位矢,p = mv 是质点的动量,×表示矢量叉乘)。

- 在合外力矩M = 0时,角动量守恒,即L_1 = L_2。

- 对于定轴转动的刚体,角动量L = Iω(其中I是刚体对轴的转动惯量,ω是刚体的角速度)。

当合外力矩M = 0时,I_1ω_1=I_2ω_2。

2. 相关知识点(人教版教材相关内容补充)
- 转动惯量。

- 对于离散质点系,I=∑_im_ir_i^2,其中m_i是第i个质点的质量,r_i是该质点到转轴的垂直距离。

- 对于质量连续分布的刚体,I = ∫ r^2dm。

不同形状的刚体转动惯量有不同的计算公式,例如,对于质量为m、半径为R的均匀圆盘绕通过圆心且垂直于盘面的轴转动,其转动惯量I=(1)/(2)mR^2;对于质量为m、长为l的细棒绕通过中心且垂直于棒的轴转动,I=(1)/(12)ml^2。

- 角动量定理。

- 对于质点,M=(dL)/(dt)(M是合外力矩),这表明质点所受合外力矩等于它的角动量对时间的变化率。

- 对于刚体定轴转动,M = Iα(α是角加速度),结合L = Iω也可推导出
M=(dL)/(dt)。

角动量、角动量守恒定律的分析

角动量、角动量守恒定律的分析

02
3
4. 求质量 m ,半径 R 的球体对直径的转动惯量
解:以距中心 r ,厚 dr 的球壳
R
dr
r
为积分元
o
dV 4r 2dr
m
m 4 R3
3
dJ
2 3
dm r 2
2mr 4dr R3
dm dV
J
R
dJ
0
2mr 4dr R3
2 5
mR2
注意: 对同轴的转动惯量才具有可加减性。
直于杆,分别过杆的中点和一端端点的轴的转动惯量。
解:(1) 轴过中点
dm
x
L2
ox
L 2
L
J
r 2dm
m L
1 3
L3 8
L
x2dm
x 2 2
L
L3 8
1 12
2
mL2
m dx L
m L
1 3
x3
2 L
2
(2) 轴过一端端点
dm
o
x
Lx
J r2dm x2dm L x2 mdx 0L m 1 x3 L 1 mL2 L3 0 3
o r m p
p
or
* 质点对某参考点的角动量反映质点绕该参考点旋
转运动的强弱。
*必须指明参考点,角动量才有实际意义。
2. 质点系角动量
L
系i统L内i vr所ii 有i vr质rcci 点 rvp对iii 同 无一有i':'参:r对i对考参质考点m心点i角vi 动o量r1pr的c1 矢crrp量2ir2i和
i
i
i
式中 J ri2mi
i
刚体对轴的转动惯量

刚体的角动量和角动量守恒定律

刚体的角动量和角动量守恒定律
2.刚体的角动量
如图所示,刚体绕转轴 Oz 以角速度 ω 转动。 由于刚体上的每个质元都绕转轴 Oz 做圆周运动,因此都具有一定的角动量。 设第 i 个质元的质量为 mi ,它到转轴的垂直位矢为 ri ,线速度为 vi ,则该质元对转轴的角动量 Li 大 小为 Li miviri miri2
刚体的角动量和角动量守恒定律
计转轴处的摩擦力和空气阻力)。
【解】 把人和转台看作一个系统,系统不受外力矩作用,
其角动量守恒,即 mR2 1 MR2 0
2
解得 2 m
M 负号表示转台转动的方向与人跑动的方向相反。
大学物理
大学物理
刚体的角动量和角动量守恒定律 1.1 角动量
1.质点的角动量
如图所示,质量为 m 的质点相对于某一参考点 O 运动,在某一时刻,质点相对于参考点 O 的位矢为 r, 质点的速度为 v,质点的动量为 p mv ,则位矢 r 与动量 p 的矢积称为质点相对于 O 点的角动量(动量矩), 用 L 表示,即 L r p r mv
m2 Lv0
Байду номын сангаас
m2 Lv
1 3
m1L2
根据线量与角量的关系 v L ,
可解得子弹和杆一起运动时的角速度 ω 为 3m2v0
(3m2 m1)L
刚体的角动量和角动量守恒定律
, ,


例题讲解 5
如图所示,质量为 M、半径为 R 的转台,可绕过中心的竖直轴转动。质量为 m 的人站在台的边缘。最
初人和台都静止,后来人在台的边缘开始跑动。设人相对地面的角速度为 ω,求转台转动的角速度 (不
刚体的角动量和角动量守恒定律 1.1 角动量
1.质点的角动量

刚体角动量定理角动量守恒定律

刚体角动量定理角动量守恒定律
布)有关;
3) 与转轴的位置有关.
4. 刚体定轴转动定律的应用
例3-5. 质量为 M =16kg 的实心滑轮, 半径为 R =0.15m. 一根细绳绕在滑轮上, 细绳一端挂质量为 m=8kg 的物体. 设细 绳不伸长且与滑轮间无相对滑动, 求: (1) 由静止开始 1 秒钟后, 物体下降的距离; (2) 细绳的张力.
§3.2 刚体定轴转动定律 角动量守恒定律
3.2.1 力矩
zF
Mz
F//
o d r F
力矩: 外力在转动平面内投影的大小与力 线到转轴距离 d 的乘积等于外力对转轴 力矩的大小.
M z Fr sin
力矩的方向由右螺旋法则确定
M z r F
单位: N·m
转动定律 M J
刚体定轴转动的角加速度与它所受的合外力矩成正 比, 与刚体的转动惯量成反比 .
解: 将重物, 滑轮隔离分析
由牛顿定律 mg T ma
由转动定律
TR J 1 MR2 2
滑轮与细绳切点
at R
at a
N M
N
m2 > m1
拓展
M
R
T Mg
m
mg
T1 1m
Mg T2 2
m1g
m2g
a m g 810 5 m s2 mM 2 88
h 1 at2 1 512 2.5 m 22
T 1 165 40 N 2
N
m2 > m1 M R
拓展
T1 1m
Mg T2 2
m1g
m2g
m2 g T2 m2a T1 m1g m1a
T2 R T1R J
J 1 MR2 2
a R
N1
m1

定轴转动的角动量定理 角动量守恒定律

定轴转动的角动量定理 角动量守恒定律
O
C
零点, 表示棒这时的角速度, 零点,用ω表示棒这时的角速度,则
l 1 11 2 2 2 mg = J ω = ml ω 2 2 23
( 1)
第二阶段是碰撞过程 。 因碰撞时间极短, 第二阶段是 碰撞过程。 因碰撞时间极短 , 自由的 碰撞过程 冲力极大,物体虽然受到地面的摩擦力, 冲力极大,物体虽然受到地面的摩擦力,但可以忽略 这样,棒与物体相撞时, 。这样,棒与物体相撞时,它们组成的系统所受的对 的外力矩为零,所以, 转轴O的外力矩为零,所以,这个系统的对O轴的角 动量守恒。 表示物体碰撞后的速度, 动量守恒。我们用v表示物体碰撞后的速度,则
讨论: 讨论:
a.对于绕固定转轴转动的刚体,因J保持不变, 对于绕固定转轴转动的刚体, 保持不变 保持不变, 对于绕固定转轴转动的刚体 当合外力矩为零时,其角速度恒定。 当合外力矩为零时,其角速度恒定。
当 M z = 0时, J =恒量
ω
=恒量
b.若系统由若干个刚体构成,当合外力矩为零时,系 若系统由若干个刚体构成,当合外力矩为零时, 若系统由若干个刚体构成 统的角动量依然守恒。 统的角动量依然守恒。J 大→ ω , J 小→ 大。 小 ω
(6)
l h = + 3 µ s − 6 µ sl 2
的匀质细杆, 例13:一长为 l 的匀质细杆,可绕通过中心的固定 13: 水平轴在铅垂面内自由转动, 水平轴在铅垂面内自由转动,开始时杆静止于水平位 置。一质量与杆相同的昆虫以速度 v0 垂直落到距点 O点 l/4 处的杆上,昆虫落下后立即向杆的端点爬行 处的杆上, ,如图所示。若要使杆以匀角速度转动 如图所示。 求: 昆虫沿杆爬行的速度。 昆虫沿杆爬行的速度。
r r vi ∆m i L r ri

质点的角动量守恒定律

质点的角动量守恒定律

质点的角动量守恒定律
质点的角动量守恒定律是物理学中的一个基本定律,它指出,在没有外力作用的情况下,一个质点的角动量保持不变。

角动量是描述物体旋转运动的物理量,它的大小等于物体的质量乘以旋转半径和旋转速度的乘积。

当一个物体在自身轴线上旋转时,它的角动量可以表示为:
L = Iω
其中L是角动量,I是质量分布在旋转轴周围的惯性矩,ω是角速度。

如果在旋转过程中没有外力作用,那么固定在旋转轴上的惯性矩
I不会改变,因此角速度ω也不会改变。

这意味着角动量L将保持恒定,即L = 常数。

例如,当一个自行车车轮在自行车轴上旋转时,如果没有外力作用,那么车轮的角动量将保持不变。

当自行车轮开始旋转时,它的角动量由于角速度的增加而增加,但当自行车轮停止旋转时,它的角动量将保持不变。

类似地,一个旋转的陀螺在没有外力作用时也会保持角动量恒定。

这种现象被广泛应用于导航和稳定控制系统中。

总之,质点的角动量守恒定律是一个非常重要的定律,它被广泛应用于许多物理问题的解决中,包括机械、电磁和量子力学等领域。

只要没有外力作用,角动量将保持不变,这为物理学研究提供了一个强有力的工具。

定轴转动刚体的角动量定理和角动量守恒定律

定轴转动刚体的角动量定理和角动量守恒定律

定轴转动刚体的角动量定理和角动量守恒定律【教学设计思想】通过一个花样滑冰的视频引入新课,提出问题,引发同学思考,并将该问题做为悬念引导学生在接下来的听课中寻找答案。

再详细推导刚体对定轴转动角动量的计算公式,角动量定理,角动量守恒定律,强调角动量守恒定律不仅可适用于刚体,也可以适用于非刚体。

分别介绍了角动量守恒定律在日常生活中的应用,如常平架回转仪,在此处又与课堂开始时的视频相呼应,解释视频中看到的现象。

接下来以两个关于角动量守恒定律的例题加深同学们对该定律的理解,解题过程注意受力分析,强调角动量守恒的适用条件。

最后以一个有趣的例子——猫背对地面从空中下落哪个部分先落地的问题作为结束,激发学生对物理知识的兴趣。

【教学目标】(1)掌握刚体绕定轴转动角动量的计算、角动量定理、角动量守恒定律。

(2)理解角动量守恒定律的适用条件,并学会应用。

【教学重点】(1) 概念:刚体定轴转动的角动量。

(2) 规律:刚体定轴转动的角动量定理和角动量守恒定律。

【教学难点】角动量守恒定律的应用【教学对象】电子信息科学与技术专业一年级本科生【教材】程守珠《普通物理学》第六版 【教学过程】 知识点复习刚体的定轴转动定律 z M J α=解释每个符号所代表的物理量。

并强调转动惯量J 与质元质量i m ∆以及质元到定轴的距离i r 有关。

新课的引入播放一段关于花样滑冰的视频。

引导学生变观看运动员转速变化与他双臂动作的关系。

设计问题:当运动员双臂展开时,他的转速是怎样的?当运动员收拢双臂时,他的转速又是怎样的?与学生互动,请一个同学回答上述问题。

得到结论:当手臂收拢,运动员转速变快。

当手臂伸展,运动员转速变慢。

反问学生如何解释该现象,留下悬念。

引导学生带着问题学习这堂课的知识。

一、刚体的角动量结合图形复习质点绕定点转动的角动量L r mv =⨯ 提出问题:如果把研究对象换成刚体,它的角动量该如何计算呢? 以一细棒为模型推导刚体角动量计算公式。

大学物理——角动量定理和角动量守恒定律

大学物理——角动量定理和角动量守恒定律

解:把飞船和排出的 废气看作一个系统, 废气质量为m。可以 认为废气质量远小于 飞船的质量,
dm/2
u
Lg
r

L0
u dm/2
上页 下页 返回 退出
所以原来系统对于飞船中心轴的角动量近似地等 于飞船自身的角动量,即
L0=J
在喷气过程中,以dm表示dt时间内喷出的气体
, 这 些 气 体 对 中 心 轴 的 角 动 量 为 dm·r(u+v) , 方 向
量为JB=20kgm2 。开始时A轮的转速为600r/min,B
轮静止。C为摩擦啮合器。求两轮啮合后的转速;在 啮合过程中,两轮的机械能有何变化?
A
B
C
A
B
C
A

上页 下页 返回 退出
解:以飞轮A、B和啮合器C作为一系统来考虑,在
啮合过程中,系统受到轴向的正压力和啮合器间的 切向摩擦力,前者对转轴的力矩为零,后者对转轴 有力矩,但为系统的内力矩。系统没有受到其他外 力矩,所以系统的角动量守恒。按角动量守恒定律 可得
由匀减速直线运动的公式得
0 v2 2as
亦即 v 2 2gs
(3)
(4)
由式(1)、(2)与(4)联合求解,即得

3gl 3 2gs
l
(5)
上页 下页 返回 退出
当’取正值,则棒向左摆,其条件为
3gl 3 2gs 0
亦即l >6s;当’取负值,则棒向右摆,其条件
上页 下页 返回 退出
数为 。相撞后物体沿地面滑行一距离s而停止。
求相撞后棒的质心C 离地面的最大高度h,并说明
棒在碰撞后将向左摆或向右摆的条件。
解:这个问题可分为三个阶段

8第八讲 质点角动量,角动量守恒定律

8第八讲 质点角动量,角动量守恒定律

解: L r p r mv d mv LA d1mv sin 1 2 LB d2 mv sin
d2 mv sin(
A
d1 d2
m
v


d2 mv cos d1mv
LC 0
2
)
B

d3
C
例2:(P80例5-2)质量为2.0kg的质点位于 1 v ( 1 . 0 i 3 . 0 j ) m s x=2.0m,y=1.0m处时,速度为 , 作用在质点上的力为 F (2.0i 3.0 j ) N ,求质点对 原点O角动量和力 F 对原点的力矩。 解:该质点的位置矢量 r xi yj (2.0i 1.0 j )m 质点的动量 p mv 2.0(1.0i 3.0 j )kg m s1
i
j
k
例题:(P80例5-2)质量为2.0kg的质点位于 1 v ( 1 . 0 i 3 . 0 j ) m s x=2.0m,y=1.0m处时,速度为 , 作用在质点上的力为 F (2.0i 3.0 j ) N ,求质点对 原点O角动量和力 F 对原点的力矩。
M x yFz zFy
力矩在各坐标轴的分量为: M y zFx xFz
i
j
k
M z xFy yF
如:力对O点的力矩 M 在通过O点的任一轴线(如 z 轴)上的分量,叫做力对 z 轴的力矩,用 M z表示。
2、质点的角动量(动量矩) 质点对定点O的角动量 质量为 m 的质点在t时刻 以速度 v 运动,质点相对于原 点的角动量定义为:
Mdt 角冲量:

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律一、力对点的力矩:如图所示,定义力F对O 点的力矩为: F r M ⨯=大小为: θsin Fr M =力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向.二、力对转轴的力矩:力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。

1)力与轴平行,则0=M;2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。

力的大小与力臂的乘积,称为力F对转轴的力矩,用M表示。

力矩的大小为: Fd M =或: θsin Fr M =其中θ是F 与r的夹角.3)若力F不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响.对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向.三、合力矩对于每个分力的力矩之和。

合力 ∑=i F F合外力矩 ∑∑∑=⨯=⨯=⨯i i i M F r F r F r M=即 ∑i M M=四、质点的角动量定理及角动量守恒定律在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。

同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。

角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。

在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。

至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容.本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点、刚体的角动量,角动量守恒定律1、选择题1.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒. (C)对地心的角动量守恒,动能不守恒.(B)动量守恒,动能不守恒. (D)对地心的角动量不守恒,动能守恒.[ ]2.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB .[ ]3.一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变.[ ]4.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.[ ]5.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (C) 只有对转轴O 的角动量守恒.(B) 只有动量守恒. (D) 机械能、动量和角动量均守恒.[ ]6.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变.[ ]7.一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是(A) 动能. (B) 绕木板转轴的角动量. (C) 机械能. (D) 动量.[ ]8.一个物体正在绕固定光滑轴自由转动,(A) 它受热膨胀或遇冷收缩时,角速度不变.(B) 它受热时角速度变大,遇冷时角速度变小.(C) 它受热或遇冷时,角速度均变大.(D) 它受热时角速度变小,遇冷时角速度变大.[ ]9.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球的(A)速度不变. (B)速度变小. (C)速度变大。

(D)速度怎么变,不能确定.[ ]10.如图所示,钢球A 和B 质量相等,正被绳牵着以角速度ω绕竖直轴转动,二球与轴的距离都为r 1.现在把轴上环C 下移,使得两球离轴的距离缩减为r 2.则钢球的角速度(A)变大. (B )变小. (C)不变.(D)角速度怎么变,不能确定.[ ]11.地球绕太阳作椭圆轨道运动,太阳的中心在椭圆的一个焦点上,把地球看作一个质点,则地球的(A) 动能守恒. (C) 对太阳中心的角动量守恒.(B) 动量守恒,. (D) 对太阳中心的角动量守恒,动能守恒.[ ]12.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角动量从小到大,角加速度从大到小.(B) 角动量从小到大,角加速度从小到大.(C) 角动量从大到小,角加速度从大到小.(D) 角动量从大到小,角加速度从小到大.[ ]13.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,在人跑向转台边缘的过程中,转台的角速度(A) 不变. (B) 变小. (C) 变大. (D)不能确定角速度是否变化.[ ]14.人造地球卫星,绕地球作椭圆轨道运动,地球的中心在椭圆的一个焦点上,设地球的半径为R ,卫星的近地点高度为R ,卫星的远地点高度为2R ,卫星的近地点速度为1v ,则卫星的远地点速度2v 为(A)12v . (B) 121v . (C) 132v . (D) 123v . [ ]15.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳放松,使半径扩大为2 r 1 ,此时小球做圆周运动的角速度为(A)1ω. (B) 121ω. (C) 12ω. (D) 141ω. [ ]2.判断题1.如图所示,一水平刚性轻杆,杆长为l ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离为d ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,在两球都滑至杆端的过程中,杆的角速度变小。

2.一个物体正在绕固定光滑轴自由转动,它受热时角速度变大,遇冷时角速度变小.3.将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住.先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球速度的大小保持不变.4.长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,杆和子弹系统的动量守恒.5.一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度ω0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度不变。

6.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,棒的角动量不守恒.7.刚体作定轴转动时,刚体角动量守恒的条件是刚体所受的合外力等于零.8.刚体作定轴转动时,角动量守恒的条件是刚体所受对轴的合外力矩等于零.3.填空题1.质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则物体的角速度ω=_____________________.2.在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s -1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =________ ____.3.在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s -1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体速度的大小v =__________________.4.如图所示,钢球A 和B 质量相等,正被绳牵着以ω0=4 rad/s 的角速度绕竖直轴转动,二球与轴的距离都为r 1=15 cm .现在把轴上环C 下移,使得两球离轴的距离缩减为r 2=5 cm .则钢球的角速度ω =_____ _____.5.哈雷慧星绕太阳的轨道是以太阳为一个焦点的椭圆.它离太阳最近的距离是r 1=8.75×1010 m ,此时它的速率是v 1=5.46×104 m/s .它离太阳最远时的速率是v 2=9.08×102 m/s ,这时它离太阳的距离是r 2=__ ____.6.一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为j t b i t a r ωωsin cos +=,其中a 、b 、ω 皆为常量,则此质点对原点的角动量L =_ _______. 7.如图所示,x 轴沿水平方向,y 轴竖直向下,在t =0静止释放,让它自由下落,则在任意时刻t ,质点对原点O的角动量L =__________________. 8.质量为m 的质点以速度v 沿一直线运动,则它对该直线上任一点的角动量为____. 9.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是__________.10.一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________.11.有一半径为R 的匀质圆形水平转台,可绕通过盘心O 且垂直于盘面的竖直固定轴OO '转动,转动惯量为J .台上有一人,质量为m .当他站在离转轴r 处时(r <R ),转台和人一起以ω1的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度ω2=_______________________.12.一个刚体绕轴转动,若刚体所受的合外力矩为零,则刚体的________________守恒.13.长为l 的杆如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,由_____________组成的系统对转轴O的角动量守恒.14.一水平的匀质圆盘,可绕通过盘心的竖直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量J =21MR 2.当圆盘以角速度ω0转动时,有一质量为m 的子弹沿盘的直径方向射入而嵌在盘的边缘上.子弹射入后,圆盘的角速度ω=______________.15.一杆长l =50 cm ,可绕通过其上端的水平光滑固定轴O 在竖直平面内转动,相对于O 轴的转动惯量J =5 kg ·m 2.原来杆静止并自然下垂.若在杆的下端水平射入质量m =0.01 kg 、速率为v =400 m/s 的子弹并嵌入杆内,则杆的角速度为ω =__________________. 16.一质量均匀分布的圆盘,质量为m ,半径为R ,放在一粗糙水平面上,圆盘可绕通过其中心O 的竖直固定光滑轴转动,圆盘和粗糙水平面之间摩擦力矩的大小为M f .开始时,圆盘的角速度为0ω,经过时间 =∆t 后,圆盘停止转动。

相关文档
最新文档