高考数学 超 常见题型 解题思路
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
高考数学各题型答题技巧
高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高中数学各大题型详细解题方法总结,建议高考生收藏!
高中数学各大题型详细解题方法总结,建议高考生收藏!高考数学大题考查的包括三角函数、立体几何、数列、圆锥曲线、函数与导数。
每类题都有对应的出题套路,每一种套路都有对应的解题方法:三角函数三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。
1. 解三角形不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。
所以,解三角形的题目,求面积的话肯定用面积公式。
至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。
2. 三角函数然后求解需要求的。
套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。
解决方法就是,首先利用“和差倍半”对式子进行化简。
化简成:掌握以上公式,足够了。
关于题型,见下图:立体几何立体几何的相关题目,稍微复杂一些,可能会卡住一些人。
这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。
这类题目的解题方法有两种:空间向量法和传统法。
这两种方法各有利弊。
向量法:使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。
缺点就是计算量大,且容易出错。
使用空间向量法,首先应该建立空间直角坐标系。
建系结束后,根据已知条件可用向量确定每条直线。
其形式为AB=(a,b,c),然后进行后续证明与求解。
箭头指的是利用前面的方法求解。
如果有些同学会觉得比较乱,以下为无箭头标注的图。
传统法:在学立体几何的时候,有很多性质定理和判定定理。
但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。
所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。
另外,还有一类题,是求点到平面距离的,这类题百分之百用等体积法求解。
数列从这里开始,会明显感觉题目变难了,但是掌握了套路和方法,解决这类题目并不困难。
高考数学解题思路12种
高考数学解题思路12种1500字
高考数学解题思路主要包括了以下12种:
1. 定义法:通过明确题目中一些术语或概念的定义,来理解和解答问题。
2. 推理法:根据已知条件和问题要求,运用逻辑推理的方法,得出结论。
3. 构造法:通过构造出特殊的情况或对象,来找出规律或解题思路。
4. 分类讨论法:将题目中涉及的情况进行分类,分别进行讨论和分析。
5. 反证法:先假设问题的反面,然后通过推理推出矛盾的结论,从而证明原命题是正确的。
6. 代入法:将已知的数值代入方程或不等式中,来求解问题。
7. 求极值法:通过求导或其他方法,找出函数的极值点,从而解答问题。
8. 空间变换法:通过对问题中的几何图形进行平移、旋转、缩放等变换,来获得更好的解题角度。
9. 递推法:通过找出数列或几何图形中的规律,推导出后面的项或图形的特征。
10. 数学建模法:将问题抽象化为数学模型,运用数学知识来解决实际问题。
11. 统计法:通过统计已知数据的特征和规律,预测未知数据的情况。
12. 概率法:通过概率的知识和计算,来解决涉及概率的问题。
在解题过程中,根据不同的题目类型和题材,选择合适的解题思路是非常重要的。
以上所列的解题思路可以作为参考,但具体的解题方法还需要根据具体的问题进行调整和应用。
因此,多做题、多思考、多总结是提高数学解题能力的关键。
高考数学考试中常见题型的解题方法
高考数学考试中常见题型的解题方法在高考数学考试中,有一些题型经常会出现,题目的形式和难度各有不同。
为了帮助大家更好地备考,本文将介绍一些常见题型的解题方法,希望能为大家提供一些思路和指导。
一、选择题选择题是高考数学考试中常见的题型之一,题目一般由一问多选的形式构成。
解答选择题的关键在于理解题意和运用正确的解题方法。
下面以几个常见的选择题为例进行讲解:1. 方程题方程题是一种常见的选择题,主要需要求解给定方程的解。
其中,一元二次方程是高考中经常出现的考点。
解答这类题目时,可以运用因式分解、配方法、求根公式等方法,具体使用哪种方法要根据具体情况而定。
2. 几何题几何题是另一种常见的选择题,主要涉及平面几何和空间几何的知识。
解答这类题目时,需要理解几何定理和性质,并运用几何画图、相似三角形、勾股定理等方法进行推理和计算。
二、填空题填空题是高考数学考试中常见的题型之一,要求填入一个或多个值,使得等式或不等式成立。
解答填空题的关键是确定未知数的取值范围和运用合适的代数方法。
下面以几个常见的填空题为例进行讲解:1. 寻找规律有些填空题需要通过观察数列或图形的特点,找到规律并推算出空缺位置的数值。
在解答这类题目时,可以通过列数、行数、差值、倍数关系等确定规律,然后计算出空缺位置的数值。
2. 利用等式填空题中的一部分可以通过列方程、联立方程等方法求解。
这类题目要求根据已知条件建立等式,然后解方程求解未知数的值。
在解答这类题目时,需要注意方程的推导和求解过程,确保最后得出的结果符合题目要求。
三、计算题计算题是高考数学考试中常见的题型之一,主要考察应用能力和计算能力。
解答计算题的关键是理解问题,选择合适的计算方法,并注意计算过程的准确性和规范性。
下面以几个常见的计算题为例进行讲解:1. 理解问题在解答计算题时,首先要理解问题的意思和要求。
明确问题的数学模型、已知条件和需要求解的目标,然后选择合适的计算方法进行求解。
高考数学常考题型和答题技巧
高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧(大全)高考数学常考题型和答题技巧1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元一换兀一解兀一还元5.待定系数法待定系数法是在已知对象形式式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(__)(__)=0两种情况为或型②配成平方型:(__)2+(__)2=0两种情况为且型数学中两个最伟大的解题思路求值的思路列欲求值字母的方程或方程组2)求取值范围的思路列欲求范围字母的不等式或不等式组数学解题小技巧1、精神要放松,情绪要自控最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。
高考数学答题技巧与解题思路
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
高考数学题型分析与解题技巧
高考数学题型分析与解题技巧高考数学作为高考中的重要科目,对于考生的总成绩有着举足轻重的影响。
了解高考数学的题型,并掌握相应的解题技巧,是取得高分的关键。
以下将对高考数学常见的题型进行分析,并分享一些实用的解题技巧。
一、选择题选择题在高考数学中所占比例较大,通常考查基础知识和基本概念。
1、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论。
2、排除法从选项入手,逐一排除不符合条件的选项,从而得出正确答案。
这种方法在解决一些具有明显错误选项的题目时非常有效。
3、特殊值法通过选取特殊值,代入题目中进行验证,从而快速得出答案。
比如在函数问题中,可以选取特殊的点来判断函数的性质。
4、数形结合法将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化,抽象问题具体化。
二、填空题填空题注重考查考生的计算能力和对概念的准确理解。
1、直接计算对于一些简单的填空题,直接进行计算即可得出答案。
2、概念理解有些填空题考查的是对数学概念的深入理解,需要考生准确把握概念的内涵和外延。
3、分类讨论当题目中存在多种情况时,要进行分类讨论,确保答案的完整性。
三、解答题解答题是高考数学中的重头戏,分值较高,考查的知识点也较为综合。
1、三角函数与解三角形这类题目通常会涉及到三角函数的公式运用、化简求值以及解三角形等问题。
解题技巧在于熟练掌握三角函数的基本公式,如正弦定理、余弦定理等,并能灵活运用。
2、数列数列问题常见的有求通项公式、前 n 项和等。
要掌握等差数列和等比数列的通项公式和求和公式,同时注意错位相减法、裂项相消法等求和方法的运用。
3、立体几何证明线面平行、垂直关系,计算几何体的体积、表面积等是常见的考点。
解题时要善于运用空间向量法或者传统的几何方法,建立空间直角坐标系可以简化很多问题。
4、概率与统计概率问题要明确各种概率模型,如古典概型、几何概型等。
高考数学最值问题及解题思路分享
高考数学最值问题及解题思路分享在高考数学中,最值问题是一道经典的题型,出现频率较高。
关于最值问题,我们可以从以下三个方面来进行探讨:最大值、最小值和最优解。
接下来,我们将从这三个方面入手,来一起学习解题思路。
一、最大值最大值问题通常可以通过以下步骤来解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最大值点。
2. 计算:将最大值点代入原函数,可得函数的最大值。
3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。
在多数情况下,最值点就是导数为零的点。
举个例子:已知函数$f(x)=x^3-3x+1$,求其在区间$[-2,2]$上的最大值。
解:首先,求导数:$f'(x)=3x^2-3$。
令$f'(x)=0$,可得极值点$x=\pm1$。
由此得出,当$x=\pm1$时,函数$f(x)$取得最大值。
将$x=\pm1$代入原函数,可得最大值为$f(1)=f(-1)=3$。
二、最小值与最大值问题类似,最小值问题也可以通过以下步骤解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最小值点。
2. 计算:将最小值点代入原函数,可得函数的最小值。
3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。
在多数情况下,最值点就是导数为零的点。
举个例子:已知函数$f(x)=(x-1)^3-x^2$,求其在区间$[0,2]$上的最小值。
解:首先,求导数:$f'(x)=3(x-1)^2-2x$。
令$f'(x)=0$,可得极值点$x=\frac{3}{4}$和$x=2$。
由此得出,当$x=\frac{3}{4}$和$x=2$时,函数$f(x)$取得最小值。
将$x=\frac{3}{4}$和$x=2$代入原函数,可得最小值为$f(\frac{3}{4})=\frac{-49}{64}$和$f(2)=-4$。
三、最优解在实际问题中,我们通常要找到一个最优解,这个解可能既不是最大值也不是最小值,而是在某种条件下最合适的解。
高考数学必考题型及答题技巧免费
高考数学必考题型及答题技巧免费(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学必考题型及答题技巧免费高考数学必考题型及答题技巧免费下载虽说高考数学题型灵活多变,历年考纲也会有所变动,但是,依然能够从中发现一些规律,以下是本店铺准备的一些高考数学必考题型及答题技巧免费,仅供参考。
数学高考数学的常见题型及解题方法归纳
数学高考数学的常见题型及解题方法归纳数学是高考的一门重要科目,也是令许多考生头疼的科目之一。
针对数学高考的题型,掌握常见的题型以及解题方法是非常重要的。
本文将对数学高考中的常见题型进行归纳,并探讨解题方法。
一、选择题选择题是高考中常见的题型之一。
选择题根据题面给出的信息,考查考生的理解和运算能力。
常见的选择题题型有线段的比例、函数的图像、平面几何等。
对于选择题,考生应注意审题,理清思路。
其中一些题目可以通过画图辅助解题。
对于数学题目,画图能够直观地展示出题目中的关系,帮助考生分析解题思路。
二、填空题填空题是考察考生对数学知识掌握程度的题型。
在填空题解答中,考生需要根据已有的信息,填写适当的数值或符号。
在解答填空题时,考生要注意运用已有的公式、性质和规律进行推导。
如果题目中给出一些条件,可以先将这些条件进行整理和推导,然后根据所得结论填写空缺。
三、解答题解答题是高考数学中较为复杂的题型,要求考生综合运用所学知识进行推理、分析和解答。
解答题的解答过程应该展现出完整的逻辑思维和严密的推理。
对于解答题,考生要注意以下几点。
首先,认真审题。
解答题通常会给出一些条件、要求和问题,考生需要根据这些信息来进行解答。
其次,构建解决问题的思路和步骤。
对于一些较为复杂的解答题,可以先进行分析,并构建一个步骤清晰的解题思路。
最后,解答时要注重思路的连贯性和准确性。
解答每一个小问时,要逐步推导、阐述,尽量避免跳跃性和模糊性。
四、应用题应用题是数学高考中的重点和难点之一,涉及到数学知识和解决实际问题的能力。
在解答应用题时,考生需要进行实际情境的理解和分析。
首先,理清题目中给出的条件和要求,并根据情境进行合理的假设和推理。
其次,建立数学模型。
应用题的解答通常需要建立一个数学模型,将实际问题转化为数学问题,然后根据模型进行求解。
最后,对解答的结果进行解读。
应用题通常会要求对所求解的结果进行解释或判断,考生应将解答结果与实际情况进行对比和解读。
高考常见数学题型及答题技巧
高考常见数学题型及答题技巧高考温习面广量大,不少学生感到既畏惧,又无从下手。
同砚们怎样才华进步温习的针对性和实效性呢?下面来看看高考常见数学题型,相信对你的温习有很大帮助~1.选择题——“不择手段”题型特点:(1)概念性强:数学中的每个术语、标记,乃至习习用语,往往都有明确具体的含义,这个特点反应到选择题中,表现出来的便是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科准则与习惯为依据,决不标新创新。
(2)量化突出:数量干系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为谋略定量型选择题,本来不是简略或机械的谋略标题,此中往往蕴含了对概念、原理、性质和准则的考察,把这种考察与定量谋略精密地连合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简略谋略或直观感知便能正确作答的试题不多,险些可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的查看、剖析和逻辑推测能力。
思辨性的要求充满标题的字里行间。
(4)形数兼备:数学的研究工具不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤独开来破裂举行,而是有分有合,将它们辩证联合起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反应出形数兼备这一特点,其表现是几多选择题中常常隐藏着代数标题,而代数选择题中往往又寓有几多图形的标题。
因此,数形连合与形数分散的解题要领是高考数学选择题的一种重要且有效的思想要领与解题要领。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰裕的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大地面增加明白答的途径和要领。
高考数学必考题型及答题技巧整理
高考数学必考题型及答题技巧整理(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学必考题型及答题技巧整理高考数学必考题型及答题技巧整理总结高考临近,你是否还在焦虑数学做的不好。
高考数学各题型答题技巧及解题思路
高考数学各题型答题技巧及解题思路高考数学是高考三科中重要的一科,而其中数学各题型更是着重考查学生的数学基础和逻辑思维能力。
如何应对高考数学各题型,答题技巧及解题思路是重中之重,下文将对此进行详细阐述。
一、选择题型选择题型是高考数学中的必考题型,考查学生对于数学知识点的掌握以及运算技能的理解和应用。
在做选择题时,我们首先需要掌握以下答题技巧:1、理清题意,分析选项,进行排除。
首先要认真阅读题目中的条件和限制,充分理解题目意思。
接着,结合选项进行逐一排除,将不符合题目要求的选项进行剔除,尽可能缩小正确选项的范围。
2、关注题目中的关键点,确定答案。
有一些题目中会存在一些难以计算的数值,但是这些数值可能不是答案,只是一些附加信息。
因此,我们需要关注题目中的关键点,如某个几何图形的形状、数量、运算符号等,有时候答案就隐藏在其中。
3、复核答案,避免扣分。
做完选择题后,一定要检查答案的合理性和准确性,避免因为抄错、计算错误等原因导致分数的扣除。
二、填空题型填空题型是高考数学中常见的一种题型,也考查学生对于数学知识点的理解和运用,同时也是考查学生的计算技巧及对于一些表述的差别的理解。
具体答题技巧如下:1、仔细阅读题目,确定无关量并化简。
在做填空题时,首先要仔细阅读题目,将无关量进行化简,避免因为计算量过大而导致错误。
2、对于公式进行熟记熟练的运用。
对于常见的数学公式和定理,我们需要进行熟知和熟记,再进行熟练的运用。
例如对于等差数列,我们应该熟记其首项 a 和公差 d 的计算方法,并尽可能减少计算出错的可能性。
3、注意单位和精度要求。
填空题中,有时候会要求保留小数位数,或者使用特定单位。
我们需要注意这些细节,尽量减少算术粗劣的错误。
三、解答题型解答题型是高考数学中最常见的题型,也是最考验学生数学综合能力的题型之一。
其答题思路较为复杂,需要在做题时注意以下技巧:1、理解题目,寻求解题思路。
在解答题时,我们需要先仔细阅读题目,理解题目的条件、运算符号等,并寻求解题的思路。
高考数学题型解题技巧及解题思路汇总
一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+...+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
高考数学必考题型及答题技巧
高考数学必考题型及答题技巧高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;高考数学考试大纲①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
高考数学高频考点题型归纳与方法总结(新高考通用)
高考数学高频考点题型归纳与方法总结(新高考通用)
高考数学的高频考点题型主要包括以下几类:
1. 函数与方程:包括一次函数、二次函数、指数函数、对
数函数、三角函数等的性质、图像和应用;一元二次方程、一元二次不等式、一元一次方程组等的解法与应用。
解题方法:熟悉各种函数的性质和图像特点,掌握解方程
和解不等式的方法和步骤。
2. 数列与数列的通项公式:包括等差数列、等比数列、递
推数列等的性质、求和公式和通项公式。
解题方法:了解数列的性质和公式,掌握数列的求和方法
和通项公式的推导。
3. 三角函数与解三角形:包括三角函数的性质、图像和应用;解三角形的正弦定理、余弦定理和正弦定理。
解题方法:熟悉三角函数的性质和图像特点,掌握解三角
形的定理和公式。
4. 平面几何与立体几何:包括平面图形的性质、面积和周
长计算;立体图形的性质、体积和表面积计算。
解题方法:熟悉各种图形的性质和计算公式,掌握平面几
何和立体几何的解题方法和步骤。
5. 概率与统计:包括事件的概率计算、随机变量的期望计算、样本调查和数据处理等。
解题方法:掌握概率和统计的基本概念和计算方法,了解常见的概率分布和统计图表的绘制方法。
6. 解析几何:包括平面解析几何和空间解析几何的性质、方程和应用。
解题方法:熟悉解析几何的基本概念和计算方法,掌握平面解析几何和空间解析几何的解题方法和步骤。
总结起来,高考数学的高频考点题型主要集中在函数与方程、数列与数列的通项公式、三角函数与解三角形、平面几何与立体几何、概率与统计、解析几何等方面。
解题方法主要是熟悉各种概念和公式,掌握解题方法和步骤。
高考数学必考题型及答题技巧有哪些
高考数学必考题型及答题技巧有哪些高考数学选择题秒杀技巧有哪些1.正难则反法:从数学选择题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从数学选择题四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过数学选择题题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学万能答题模版整理1、数学三角变换与三角函数的性质问题一、解题路线图①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h;④结合性质求解。
二、构建答题模板①化简:高考数学三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查数学三角变换与三角函数结果是否规范性。
2、高考数学数列的通项、求和问题一、解题路线图①先求某一项,或者找到数列的关系式。
高考数学17个必考题型及解题技巧
高考数学17个必考题型及解题技巧17个必考题型01题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
02题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
03题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
04题型四数列的通项公式求法05题型五数列的前n项求和的求法。
06题型六利用导数研究函数的极值、最值。
07题型七利用导数几何意义求切线方程08题型八利用导数研究函数的单调性,极值、最值09题型九利用导数研究函数的图像。
10题型十求参数取值范围、恒成立及存在性问题。
11题型十一数形结合确定直线和圆锥曲线的位置关系。
12题型十二焦点三角函数、焦半径、焦点弦问题。
13题型十三动点轨迹方程问题。
14题型十四共线问题。
15题型十五定点问题。
16题型十六存在性问题。
存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆17题型十七最值问题。
02选择填空答题技巧选择题01.排除法、代入法当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。
排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
例题已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为()A、(2,+∞)B、(-∞,-2)C、(1,+∞)D、(-∞,-1)解析:取a=3,f(x)=3x3-3x2+1,不合题意,可以排除A与C;取a=-4/3,f(x)=-4x3/3-3x2+1,不合题意,可以排除D;故只能选B(2014年高考全国卷Ⅰ理数第11题)02.特例法有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时不妨从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【小直文库整理收集】一、函数1、求定义域(使函数有意义)分母 ≠0偶次根号≥0对数log a x x>0,a>0且a ≠1三角形中 0<A ∠<180, 最大角>60,最小角<60 2、求值域判别式法 V ≥0 不等式法 222113y x x x x x =+=++≥=导数法 特殊函数法 换元法 题型: 题型一:1y x x =+法一:111(,222同号)或y x x x x x xy y =+=+≥∴≥≤-法二:图像法(对(0)by ax ab x =+>有效题型二:()1(1,9)y x x x =-∈()/2(1)(9)110180,,0,9导数法:函数单调递增即y xy x xy f f y =+>∴=-⎛⎫∴∈∈ ⎪⎝⎭ 题型三:2sin 11sin 1sin ,1,2112化简变形又sin 解不等式,求出,就是要求的答案y yyyy y θθθθ-=++=≤-+∴≤-题型四:2sin 11cos 2sin 1(1cos ),2sin cos 1)1,sin()sin()11化简变形得即又由解不等式,求出,就是要求的答案y y y yx y x x y θθθθθθθθθ-=+-=+-=++=++=+≤题型五2222333(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y+=-+=-+-+==--⨯≥V反函数1、反函数的定义域是原函数的值域2、反函数的至于是原函数的定义域3、原函数的图像与原函数关于直线y=x 对称 题型1()(2)32,2322,2已知求解:直接令,解出就是答案x xf f x xx x --=+-=+周期性()()()(2)()()(2)00(2,函数 -)式相减)是一个周期是2t 的周期函数x x t x t x t x x x t f f f f f f f +++++=+==对称()()()(2)()()()),(2,), 函数关于直线x=a 对称对称的判断方法:写出2个对应点的坐标A(x,求出其中点的坐标C(a,)。
因a 是常数,故整个函数关于直线对称x a a x x a x x x x f f f f f B a x f f x a +--=⇔=-=不等式 题型一:2(0)113322x =x (应用公式a+b+c 者的乘积变成常数)x xx x +>++≥=≥题型二:33()13()32x (3-2x)(0<x<1.5)x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)a b c +⋅⋅≤=++≤数列:(熟记等差数列,等比数列的基本公式,掌握其通项公式和求和公式的推导过程) 等差数列:112569712()2...5...(),,...n 2n 2n n 3n 2n 当是奇数时,应写成n S (不能写上试卷) S S S S S 是等差数列,公差是n d nn m m n m na a n a n a a a a a a a n m a ++++=⋅⋅+++=+++=--- 等比数列:1121()(),,...1)lim (1n n 2n n 3n 2n n (当是奇数时,应写成S 是等比数列,公比是S S S S S 无穷递缩等比数列( s=也说是等比数列中所有项的和)S n n n nnn a n a a q q a q +→∞=--<=-通项公式的求法 1、n a = 11 n=1时n>1时n n S S S --2、1()11122111(1)12234...1234...1234...2 叠加(可参考等差数列通项公式的求法) 例:+) (叠加) n n n n n n n n n a a f a a a n a a n a a na a nn n na a -----==-=-=--=-=+++++=+++++=+++++=⋅L L3、 1()1111211(1)12234... 叠乘(可参考等比数列通项公式的求法)例: =n ==) (叠乘)n n n nn n n nn na a f a a a a n a a n a a a a n a ----=⨯=⨯=-⨯⨯⨯⨯⨯=L L 1234...1234... =! n a a n n n ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯== 4、{}11111111()323(),32,111(1)323n n n n n n n n n n n n n n a k a b a x k a x a a a x a x a a x x a a a (待定系数法) 令 例: 令展开得即 是等比数列,-------=⋅++=+=⋅++=+=+=∴++=+⋅=⋅5、{}111111111111()323(),33,222230.51222212(2)322n n n n n n n nn n n n n n n n n n n n nn n n n a k a b a xb k a xb a a a x a x a a x x x x x x a a a (待定系数法2) 令 例: 令展开得即 是等比数列,----------=⋅++=+=⋅++=+=+--=⇒=⇒=∴++⨯=+⨯⋅6、 111111111131311131111(倒数法)例: 取倒数:= 是等差数列, (n-1)3=1(n-1)3=3n-23n-2n n n n n n n n n n n n n a a k a ba a a a a a a a a a a a -------=⋅+==⋅+⋅+=+⎧⎫∴=+⋅+⋅⎨⎬⎩⎭∴=求和: 1、拆项1111()(2()剩余项(前后各k 项))k n n k k n n k =-++111...1324(2)11111()21212111111...()1223(1)1111111111111...()1425(3)3123123例: =(k=2,前后各2项,前2项全正,后2项全负)= =n n n n n n n n n n n n +++⋅⋅++--+++++-⋅⋅+++++++---⋅⋅++++2、叠减n 1122n nn n S ...(...S ... -)2S ...( -S ... S n n n n a b a b a b a b =++++鬃+?+?=鬃+?+??鬃++?×=+++-?\=123n123n 23nn+1123n n+1是等差数列,是等比数列)例:求 12+2232n 2解:令12+2232n 2,则12+22n-1)2n 2相减:2+222n 2(应该不用我求了吧,呵呵)注意,这几个题型是近几年高考的常见题型,应牢牢掌握) 三角 1、2+k θπ奇变偶不变 (对k 而言)符号看象限 (看原函数) 2、1的应用 (1)22221sin cos sin 1cos sin sin (1cos )(1cos )sin 1cos ()1cos sin cos 1sin 1sin cos 注意此式中的比例变形。
同理,我们有k θθθθθθθθθθθπθθθθθθ=+⇒=-⇒⋅=-+-⇒=≠+-=+例:→1sin cos sin cos 1()1sin cos 1cos sin sin 1cos 1cos sin 1sin cos sin 1sin cos 1cos sin cos 1sin 1cos sin 1cos 1sin cos si 1sin cos b d b d b a c a c a θθθθθθθθθθθθθθθθθθθθθθθθθθθθ+-+-=+++--=++-+∴==⇒=+++++-=+-++-∴=++ 证明证 合比定理 Q n cos 11cos sin θθθθ+-+- (2)已知tanα=2,求sin 2α+sinαcosα-3cos 2α 解:()()()22222222tan tan 3sin sin cos 3cos sin cos tan 11cos 2sin 21cos 2cos 22sin cos 21sin (2原式= 降幂公式周期公式£º周期为周期为加""后周期减半)注意:周期公式是我个人的推导,绝不能写上试卷,自己知abax x x x x x a b x k kαααααααααπππ-+-=++-=+=⋅+⋅=道怎么做就行了.[]sin ()(0):2::222图像. y=A 值域-A,A 周期: T=对称轴: k +最大值 wx+= 2k +最小值 2k - 对称点 k注意:奇函数原点为对称点 (把x=0代入即可)偶函数y wx A i ii wiii k ϕππππϕππππϕπ+>=2轴为对称轴k πϕπ=+[]3sin(2),3332,3221223262232125223212如:对函数它的值域是,对称轴是即对称点是,即当,时,有最大值当,时,有最小值y x k x k x k x k x x k x k x k x k ππππππππππππππππππππ=+-+=+=++==-+=+=++=-=-解析几何 题型:1、已知点P (x.y )在圆x 2+y 2=1上, 2,(2),2(,20, (1)的取值范围(2)y-2的取值范围解:(1)令则是一条过(-2,0)的直线.d 为圆心到直线的距离,R 为半径) (2)令y-2即也是直线d d 2.求中点轨迹:y=kx+b 化为Ax2+bx+c=0形式 y x x yk y k x x R d x b y x b R λ+==+-≤=--=≤⇒1121212221+2000c.为交点横生标分别为x ,x .x (公式用不完,但后面有用,x 这里就直接写出来)x x x x 中点轨迹P(x .y),则 x y=kx 消元,得P 的轨迹.BA CA b +=-⋅=--==+22( 3.求交线长度 AB 若开始时设直线方程为x=ky+b,则 AB x y =-=-1212011224. OA OB + (x ,y ),(x ,y )为A.B 的坐标x x y y ⊥⇒=12125. 求的面积S = CF ABF ABF y y ∆∆⋅-性的问题,如第一、第二定义,焦半径公式等等,要求把公式记牢)若实在不会做,也应先代入,化简为Ax 2+Bx+c=0的形式,并写出12121Bx x A Cx x Ax x +=-⋅=-=二项式定理主要是公式2(((01n n n n 024n n n 135n-1n n n1. C C C 二项式等数和) C C C 奇数项) = C C C 偶数项)=2n+++=++++L L L(1)((1)(1)2(1)(1)2(1)01n 01n 023********.若()=a a a 则:a a a 各项系数和) a a a a a a a -a +a a nf x x x f f f f f f ++++=+-+++=--+++=-+=-L L L L L1064211 112x x x+6103.求常数项(特巧)比例法:求的常数项要3个,要2个,共5个3 2 56 4 10(总共有10次方)对应成比例.常数项为C 2.1266111,112612求中的系数得到,需要2次方,3 2 56 4+2 12-2( 先除掉2上使其变成的系数为C x x x x⎛⎫+ ⎪⎝⎭0()lim ()极限1.x x f x g x →=0000''00()()()()0lim lim ()()()()()0()0,lim ()()()()0()0,lim 0()()0()0,.时, 时 时 时无意义x x x x x x x x f x f x f x g x g x g x f x f x f x g x g x g x f x f x g x g x f x g x →→→→===≠≠==≠=≠=lim 342.n nn n x x y x y→∞+=+1,31,4只看 x <y 时只看 (x y )x y≠1、证垂直 (1)几何法线线垂直 线面垂直 面面垂直 2、向量法线线垂直⊥a b ⇔⋅ a b=0r r线面垂直n r为α的法向量αλ⊥⇔⇔=a a n a n r r r rP法向量求法ABC n r⇒n n y,2y ,-y )之类,注意化简r r 面面垂直n, n 2为α,β的法向量αβ⊥⇔⋅⇔⊥1212n n =0n n求角 1、线面夹角几何法:做射影,找出二面角,直接计算 向量法:找出直线a 及平面α的法向量n a a θ⋅⋅ncos =n2、线线成角几何法:平移(中点平移,顶点平移) 向量法:a ,b 夹角,a b a b θ⋅⋅cos =(几何法时常用到余弦定理2222a b c abθ+-cos =)3、面面成角(二面角)方法一:直接作二面角(需要证明) 方法二:面积法(一定有垂直才能用) PC ┴ 面ABC ,记二面角P —AB —C 为θ,则ABPABC S S θ∆∆cos =(先写公共边/点,再按垂线依次往后写,垂足放在分子) 附:使用时,可能会正弦定理与余弦定理搭配使用。