稀土配合物发光的类型概述

合集下载

稀土材料功能概述

稀土材料功能概述

稀土发光材料、稀土荧光粉、用途功能技术介绍自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。

在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。

一、稀土发光材料物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。

以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。

稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。

稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。

自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。

1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。

随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。

稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。

稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。

因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。

根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。

二、光致发光材料—灯用荧光粉灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。

主要用于各类不同用途的光源,如照明、复印机光源、光化学光源等。

其中三基色荧光粉(由红、绿、蓝三种稀土的荧光粉按一定比例混合而成)制成的节能灯,由于光效高于白炽灯二倍以上,光色也好,受到世界各国的重视。

稀土配合物发光性能的实验研究(精)

稀土配合物发光性能的实验研究(精)

稀土配合物发光性能的实验研究
稀土配合物所发出的荧光有稀土离子发光强度高、颜色纯正,又有有机化合物所需激发能量低、荧光效率高、易溶于有机溶剂的优点,为人们探索新的发光能源、发光材料提供了新的思路。

本文将对稀土配合物作为发光材料进行研究,合成出系列光效率高的光致发光材料Eu_(1-x)Tb_x(BA)_3Phen。

选用发光效率较高的铕离子,同时引入可以敏化铕离子的铽离子,有机配体选择苯甲酰丙酮(BA)和邻菲罗琳(1,10-phen),制备稀土有机发光材料。

本文应用紫外-可见吸收光谱、激发光谱、荧光光谱、和Z-扫描实验等实验手段,系统研究了稀土有机配合物的光谱性质、相互敏化的过程与机理、能量传递过程和非线性光学性质。

结果表明,目标稀土配合物Eu_(1-x)Tb_x(BA)_3Phen是一种发光性能良好的稀土配合物。

【关键词相关文档搜索】:光学; 稀土配合物; 双核; Eu1-xTbx(BA)3Phen; 敏化
【作者相关信息搜索】:新疆大学;光学;葛文萍;王睿;。

稀土配合物的发光原理

稀土配合物的发光原理

稀土配合物的发光原理稀土配合物是一类由稀土离子与有机配体形成的化合物。

它们在化学、物理、材料科学等领域中具有广泛的应用,其中最引人注目的是它们在发光领域中的应用。

稀土配合物不仅被用作荧光材料以增强光的亮度和色彩,还被应用于光电器件和生物成像中。

要了解稀土配合物的发光原理,首先需要理解稀土离子的能级结构和能量跃迁过程。

稀土离子的能级结构与一般的过渡金属离子有所不同。

在稀土系列中,由于电子的内层排布方式,稀土离子在外层电子排布上与其他元素有明显差异。

稀土离子的电子配置使其有多个能级,这些能级之间的距离较小,从而导致稀土配合物在可见光区域和近红外区域发射光。

稀土配合物发光的过程可以分为两个步骤:激发和自发发射。

首先是激发步骤。

当稀土配合物暴露在外部光源下时,其能级结构中的电子可以通过吸收光子的能量而被激发到高能级。

只有当光子的能量与稀土离子能级之间的能量差相等或接近时,才能有效地激发电子。

因此,外部光源的波长对于激发电子起到关键作用。

常见的激发光源包括紫外线灯、激光器和白炽灯等。

其次是自发发射步骤。

在激发过程中,被激发到高能级的电子会在极短的时间内回到其最稳定的、低能级状态。

这个过程中,电子会释放出能量,部分能量以光的形式发射出来。

这就是稀土配合物所发出的荧光或磷光。

不同的稀土元素具有不同的电子能级,因此具有不同的发光波长和颜色。

稀土配合物发光的机理主要包括基态吸收-激发态发射、电荷转移过程和能量转移过程。

首先,基态吸收-激发态发射是最常见的发光机制。

当稀土配合物吸收光能时,电子从基态吸收到激发态,然后自发地返回基态并发射荧光或磷光。

这种机制广泛应用于许多稀土配合物中,如氧化物、硝酸盐和有机配合物等。

其次,电荷转移过程也是一种重要的发光机制。

在某些配合物中,有机配体与稀土离子之间发生电子转移,将电子从有机配体转移到稀土离子上。

这种电荷转移过程在有效的配位环境下可以实现,从而激发稀土离子发射光。

最后,能量转移过程也可以导致稀土配合物发光。

稀土配合物发光与材料

稀土配合物发光与材料

与金属离子配位的水分子、溶剂分子会削弱稀 土金属配合物的发光性能。
测定配合物的溶液荧光时要避免使用配位能力 较强的溶剂,以免溶剂分子取代原有配体。
如果加入与稀土金属离子配位能力更强的较大配体或 螯合配体以取代水分子或溶剂分子,发光性能将增强。
所以对于稀土离子,常采用2种或2种以上的 配体形成三元或多元配合物。
630nm, 645 ~ 670nm, 685 ~ 725nm
10000 8000
5D 7F
0
0
5D 7F
0
2
Relative Intensity/a.u.
6000 4000
17200
17225
17250
17275
Wavenumber/cm-1
5D 7F
0
1
2000
5D 7F
0
4
0 14000
14500
稀土配合物发光 与材料
发光:当分子或固体材料从外界接收一定 的能量之后,发射出一定波长和能量的光的 现象。
常见的几种发光类型
发光类型 光致发光 电致发光 阴极发光 摩擦发光 化学发光 生物发光 X-射线发光 声致发光 热致发光 溶剂发光
激发源 光子 电场 电子流 机械能 化学反应能 生物化学反应能 X-射线 超声波 热能 光子
应用 等离子体显示器 发光二极管,电致发光显示器 彩色电视机,监测器材
分析化学
X-射线放大器
检测器
1 光致发光
金属离子发光配合物中的金属离子多为稀土 金属离子。 稀土离子荧光寿命:~ms。 Sm(6.26), Eu(9.67), Tb(9.02), Dy(1.85) 磷光:寿命长。
稀土配合物的发光机理

稀土配合物发光材料

稀土配合物发光材料

稀土配合物发光材料摘要:本文首先介绍了稀土离子具有优良的光学、电学和磁学性质,尤其发光性能受到人们的广泛关注。

接着讲述了稀土光致发光配合物的研究进展,阐述了稀土配合物光致发光的基本原理。

在此基础上讨论了稀土配合物光致发光性能影响因素。

考虑到稀土荧光配合物的寿命短,寻找合适的配体通过天线效应制备稳定长寿命,这是未来发展的趋势。

然后介绍了稀土光致发光配合物在很多领域的应用。

为了让读者更好的理解稀土光致发光配合物,我们讲述了稀土铕和铽配合物电致发光的研究进展。

关键词:稀土离子,光致发光,配体,天线效应,稀土铕和铽配合物1.前言稀土离子作为一类特殊的无机离子具有优良的光学、电学和磁学性质,因此研究稀土配位化合物就显得尤为重要。

在这些性质中,稀土配合物的发光性能一直受到人们的广泛研究,并且目前在发光分子器件、荧光探针、电致发光器件等应用方面已成为人们关注的热点。

研究表明:配体向稀土离子的能量传递是实现稀土配合物发光的关键。

而多足配体具有合成简单、结构可调和共轭敏化基团可换等优点,便于调整配体的功能基团以实现配合物更好的荧光性质。

本综述报道了稀土光致发光配合物的发光原理、影响因素、研究进展及应用。

当分子或固体材料从外界接受一定的能量(外部刺激)之后,发射出一定波长和能量的现象称之为发光。

根据外部刺激(激发源)的方式可以把发光分为光致发光、电致发光、阴极发光、摩擦发光等。

下面我们将主要介绍研究较多的稀土有机配合物的光致发光。

从发光原理来讲,无论是何种外界刺激都是使分子从基态激发到激发态,而这种激发态不是一种稳定的状态,需要通过某种途径释放出多余的能量后回到稳定的基态,如果这个释放能量的途径是以辐射光子的形式来实现的就会产生发光现象。

2.稀土光致发光配合物的研究进展稀土配合物的光致发光现象早在上世纪40-50年代就已陆续地被观察到了,1942年,Weissmantl首先发现不同的β-二酮类铕(Ⅲ)配合物吸收紫外光后,出现了铕(Ⅲ)离子的特征线状发射。

稀土材料的电荷转移与发光性质研究

稀土材料的电荷转移与发光性质研究

稀土材料的电荷转移与发光性质研究稀土元素是指元素周期表中镧系元素,包括了镧、铈、镨、钕、钷、铕、钐、铽、镝、钬、铒、铥、镱、镥等15个元素。

这些元素由于其特殊的能级结构和电子结构,具有独特的光学、磁学和电学性质,因此广泛应用于光学、电子学、磁性材料、催化剂、永磁材料、放射性同位素等领域。

其中,稀土材料在光学领域的应用尤其广泛。

稀土材料激发后能够发出可见光和近红外光,这种发光现象被称为稀土荧光。

稀土材料的荧光是由电子从基态向激发态的能级跃迁引起的。

在晶体中,其中的稀土离子可以被激发到高能级激发态,这可能是通过吸收能量的方式实现的,例如电子束和激光束。

通过外部能量输入,稀土离子会从基态跃迁到激发态,这种跃迁可以是从3d和4f能级向高能级的5d和6s能级跃迁,也可以是从4f能级向高能级的5p能级跃迁。

稀土材料的荧光有很多特殊的性质,这些性质是由稀土元素的电子结构所决定的。

一般来说,稀土材料的荧光可分为两种类型:单电子跃迁和多电子跃迁。

单电子跃迁单电子跃迁通常发生在稀土材料中的镝、铽、铑、镱和铥离子。

这些离子的荧光主要由4f-4f跃迁引起,即4f能级的电子跃迁到同一能级的另一个电子状态。

这种跃迁的能量差通常在1-2电子伏特之间。

4f能级的电子跃迁到4f能级的另一个电子状态时,由于这些能级之间的距离非常小,所以单电子跃迁的发生效率较低。

多电子跃迁多电子跃迁通常发生在稀土材料中的钕、铕、铒、铈、钷、镝和钬离子。

这些离子的荧光主要由4f-5d或4f-6s跃迁引起,即4f能级的电子跃迁到5d或6s能级的电子状态。

这种跃迁的能量差通常在2-5电子伏特之间。

由于稀土材料中的离子数目非常多,因此多电子跃迁的发生效率较高。

稀土材料发光的颜色和强度可以通过稀土元素的晶体质量、晶体结构、外部条件如温度、压力等控制。

除此之外,对于稀土材料中的激子和次级电子的影响,通过相应的电荷转移和自旋换向现象也可以调控发光性质。

电荷转移和自旋交换稀土元素中的电子结构具有独特的特性,即存在f电子壳层内电荷转移和自旋交换的过程。

稀土发光材料的分类

稀土发光材料的分类

稀土发光材料的分类
1. 有机稀土发光材料,哎呀,这就好比是夜空中闪烁的星星!想想那些会发光的玩具,很多就是用了有机稀土发光材料呀。

像我们常见的荧光棒。

2. 无机稀土发光材料,嘿,这不就是科技界的小明星嘛!你看那些漂亮的节能灯,里面不就有它的身影嘛,比如稀土荧光灯。

3. 稀土掺杂发光材料,哇塞,这就像是给材料注入了神奇的魔法!好比给蛋糕加上了最漂亮的装饰,能让材料焕发出独特的光彩。

像一些特殊的防伪标志就是用的稀土掺杂发光材料呢。

4. 稀土配合物发光材料,嘿呀,这可真是个神奇的存在!就像是一场完美的团队合作,产生让人惊叹的效果。

比如在一些生物检测中就会用到它哦。

5. 纳米稀土发光材料,哎呀呀,这可是材料世界里的小精灵呀!就好像是微观世界里的璀璨宝石。

像一些高级的显示屏幕中就有纳米稀土发光材料在发挥作用。

6. 固态稀土发光材料,哇哦,这可是不折不扣的实力派!如同坚固的堡垒一般。

常见的一些荧光粉就是固态稀土发光材料呢。

7. 稀土上转换发光材料,嘿,这家伙可有着神奇的本领呢!就像是能把不可能变为可能,能将低能量的光转化为高能量的光。

比如在一些特殊的光通信领域就用到了它呀。

我觉得稀土发光材料真的是太神奇、太重要了,给我们的生活带来了这么多的惊喜和便利!。

稀土聚合物发光材料

稀土聚合物发光材料

稀土聚合物发光材料李建宇(北京工商大学化工学院 北京 100037)摘 要近年来稀土聚合物发光材料显现出广泛的应用前景,它主要包括两类材料:稀土配合物-聚合物发光材料和长余辉发光塑料。

本文介绍掺杂型稀土配合物-聚合物材料用于有机电致发光和荧光塑料的研究状况;评述键合型稀土配合物-聚合物发光材料的几种合成方法;并对长余辉发光塑料作简要概述。

关键词 稀土 聚合物 复合材料 发光材料 由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质,稀土发光材料格外引人注目。

稀土发光材料广泛应用于照明、显示和检测三大领域,形成了工业生产和消费市场规模,并正在向其他新兴技术领域拓展,因而稀土聚合物发光材料应运而生,目前它主要分为两类:稀土配合物-聚合物发光材料和长余辉发光塑料。

1 稀土配合物-聚合物发光材料稀土配合物在发光与显示领域表现出独特的荧光性能,但是往往又因其自身固有的在材料性能方面的缺陷限制了它的应用。

制成发光稀土配合物-聚合物复合材料,可以改善它的应用性能,拓宽它的应用范围。

制备方法分为两种:掺杂法和键合法。

前者实用、简便,但稀土配合物与高分子基质之间相容性差,不可避免地出现相分离和荧光猝灭等现象;后者克服了掺杂型材料中稀土配合物与高分子基质亲和性小、材料透明性和力学性能差等缺点,为获得宽稀土含量、高透光率的稀土高分子功能材料提供了可能,但制备工艺比较复杂。

111 掺杂型稀土配合物-聚合物发光材料掺杂型稀土配合物-聚合物发光材料,即是直接将发光稀土配合物作为添加成分掺杂于高分子基质中,大多数稀土聚合物发光材料都是这样制备的,在许多领域得到应用。

11111 有机电致发光材料有机电致发光(organic electroluminescence,OE L)是目前国际上的一个研究热点,它具有高亮度、高效率,低压直流驱动,可与集成电路匹配,易实现彩色平板大面积显示等优点。

稀土配合物发光的类型概述

稀土配合物发光的类型概述

稀土配合物发光的类型概述稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。

稀土发光配合物是一类具有独特性能的发光材料。

发光现象当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。

在这个过程中,一部分能量会通过光或热的形式释放出来。

如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。

这种能量的发射过程具有一定的持续时间。

对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。

1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。

发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。

当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。

历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。

一般常以持续时间10-8s 为分界,持续时间短于10-8s的发光被称为荧光,而把持续时间长于10-8s的发光称为磷光。

现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。

因为任何形式的发光都以余辉的形式来显现其衰减过程,而衰减时间可以极短(<10-8s),也可能很长(十几小时或更长)。

发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。

发光类型1.对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发光、x射线及高能粒子发光、化学发光和生物发光等。

(1)光致发光。

光致发光是用光激发发光体引起的发光现象。

它大致经过吸收、能量传递及光发射三个阶段。

稀土有机配合物发光及其应用研究概况

稀土有机配合物发光及其应用研究概况

D n 的配 合 物 容 易 发 生 这 种 现 象 ,所 以 也 常 不 加 v 区 别地 称 为 “ 系敏 化 发 光 ” 或 “ 系敏 化 荧 光 ” 镧 镧 . 这 种 配 体 敏 化 中心 离 子 发 光 的 效 应 称 为 A tn a效 ne n
应 .
稀 土 有 土 有 机 配合 物 常 被 用 作 发 光 材 料 ,具 有 极 其
重 要 的 应 用 和 理 论研 究 价 值 .人 们 对 于稀 土 配 合物 中 敏 化 发 射 的 兴 趣 始 于 14 9 2年 , 当时 wesn n1 i -a… s 第 一 次 用 紫 外 光 激 发 b - 酮 类 E (I) 配合 物 观 _二 u I I 察 到 中心 离 子 E (I) 的 特 征 线 状 发 射 .在 这 之 u I I
The St dy on Lu i s e c u m ne c n e ofRar e Earh m plx s a t p ̄ a on t Co e e nd is Ap c f i
YUAN ao— i g Xi —ln
(u Sb—clg i c ,Y h nC 如 ,Y h n,3 6 0 ) oe eo s ̄ e w u 0 l f cR wu 3 0 0
后可能以两种方式传递能量如果发生s1一s0辐射跃迁则显示配体荧光如果以非辐射跃迁形式系间窜跃至三重激发态t1又有两种可能或者通过自旋禁阻的辐射方式回到基态而发射配体磷光或者以非辐射跃迁形式将能量传递给稀土离子适宜的4f能级共振能级而发射出稀土离子的特征荧光
维普资讯
稀 土 有 机 配 合 物 发 光 及 其 应 用 研 究 概 况
袁 晓 玲 ( 宜春 学 院理 学 院 , 江 西 宜春 3 6 0 ) 30 0

稀土配合物的发光原理

稀土配合物的发光原理

稀土配合物的发光原理
稀土配合物的发光原理主要基于4f电子的跃迁。

具有未充满4f壳层的稀土原子或离子拥有大约30000条可观察到的谱线,这些谱线可以发射从紫外光、可见光到近红外光区的各种波长的电磁辐射。

由于稀土原子具有5s5p 轨道的屏蔽作用,内部4f电子的跃迁几乎不受外部环境的影响,使得其发射谱带窄、色纯度高。

在稀土配合物的发光过程中,配体受到激发后产生的单重激发态激子经系间窜越跨越到三重激发态激子,然后三重激发态激子的能量传递给稀土离子,进而稀土离子辐射发光。

稀土配合物的发光可利用单重态和三重态激子的能量,理论上可以实现100%的量子效率,因而稀土配合物被视为理想的发光材料。

以上内容仅供参考,如需更全面准确的信息,可以查阅化学专业书籍或咨询相关化学专家。

稀土发光材料及其发光原理综述

稀土发光材料及其发光原理综述

2020/2/29
2
稀土发光材料-阴极射线发光材料
目前在投影电视需要的荧光体比较少,红色荧光体
主要为前面所述的掺铕硫氧化钇,蓝色荧光体主要有
ZnS:Ag , 绿 色 荧 光 体 种 类 较 多 , 有 钇 铝 镓 石 榴 石 系
(Y3(Al,Ga)5O12),如YAG:Tb,Y(Al,Ga)G:Tb等;卤氧化 镧体系(LaOX),如LaOBr:Tb,LaOCl:Tb等;正硅酸氧钇
5D4→7F5跃迁产生的,颜色为黄绿色,与标准绿色有较 大差距。
2020/2/29
3
稀土发光材料-光致发光材料
光致发光材料早前主要用于隐蔽照明、紧急照明以
及飞机的仪表盘等,随着上世纪70年代能源危机的出现, 发光材料用于照明设备的研究逐渐成为热点,荧光灯稀
土材料迅速发展。荧光灯使用的三基色材料主要为发红
光 的 Y2O3:Eu3+ , 发 蓝 光 的 BaMg2Al16O27:Eu2+ 及 绿 光 的 Ce0.67Tb0.33Al11O19荧光体。由于人眼对绿光的敏感性最 强且荧光灯中绿色成分占重要地位,需要选择一种高效
的绿色发光材料。Tb3+是绿光的主要发光材料,因此通 过Tb与不同化合物的结合,晶体结构与晶体场的作用使 Tb3+更容易吸收能量进行发射。Ce3+作为敏化剂,将能 量高效的吸收传递给Tb3+。目前使用的绿色荧光体主要 有 CeMgAl11O19:Tb(CAT) , LaPO4:Ce,Tb 及 其 变 体 , Y2SiO5:Ce,Tb(正硅酸氧钇)以及REMg5BO10(稀土五硼酸 盐)等。
右图显示了部分稀土 离子与金属硫化物电 致发光材料部分能级 跃迁发射光峰值对应 的波长

稀土发光的原理

稀土发光的原理

稀土发光的原理
稀土发光是指稀土元素在某些条件下发出特征性的发光现象。

其原理可以概括为以下几个方面:
1. 能级跃迁:稀土元素具有复杂的内电子构型,其电子在不同的能级之间跃迁可以发出特定波长的光。

当稀土元素处于激发态时,电子会从高能级跃迁至低能级,放出能量,即光子。

2. 能带结构:在晶体中,稀土元素的能带结构对其发光性质起到重要的影响。

稀土元素通常处于价带的禁带之上,而在激发态下,电子可以跃迁至传导带或价带的其他能级,放出光子。

3. 半导体材料:稀土元素往往嵌入在半导体材料中,通过掺杂等方式引入。

半导体材料能够提供稀土元素所需的能带结构和激发态的能级,使其能够实现能级跃迁和发光现象。

4. 能量转移:在某些情况下,稀土元素的发光可以通过与其他元素进行能量转移来实现。

例如,通过与氧原子的能量转移,稀土元素可以从一个激发态跃迁至另一个激发态,放出特定波长的光。

需要注意的是,稀土元素的发光性质与其离子态的结构、晶体结构、杂质等因素密切相关,因此不同的稀土元素和不同的材料条件下,发光现象会有所差异。

稀土发光的研究和应用在光学、材料科学、能源等领域具有重要的意义。

稀土材料的发光特性和荧光应用

稀土材料的发光特性和荧光应用

稀土材料的发光特性和荧光应用导言稀土材料是一类具有特殊发光性质的材料,由于它们在发光材料和光电器件中的广泛应用,备受研究者的关注。

本文将介绍稀土材料的发光特性以及其在荧光应用中的重要性。

发光特性稀土材料的发光特性是由于其特殊的能级结构和电子跃迁机制而产生的。

稀土元素由于其外层电子构型的特殊性,使得它们的能级分布和电子跃迁方式与其他元素有所不同。

稀土材料的发光特性可以分为两类:吸收光谱和发射光谱。

吸收光谱稀土材料的吸收光谱通常具有特殊的吸收峰值,这是由于稀土元素能级结构中的电子跃迁引起的。

不同的稀土元素具有不同的吸收峰值,这使得它们在不同波长区域的光吸收方面具有独特的特点。

例如,铒离子的吸收峰位于紫外光区域,而铽离子的吸收峰位于可见光区域。

发射光谱当受到激发能量后,稀土材料会发射特定波长的光。

这是因为电子从高能级向低能级跃迁所释放出的能量以光的形式散发出来。

稀土材料的发射光谱通常具有窄的谱线宽度和高的发射强度。

这使得稀土材料成为制备高纯度荧光材料的理想选择。

荧光应用稀土材料的发光特性使得它们在荧光应用中具有广泛的应用前景。

以下是几个常见的荧光应用领域:环境污染检测稀土材料的发光特性使得它们可以被用于环境污染检测。

通过将稀土材料与污染物相结合,可以设计出能够测量和监测环境中特定污染物浓度的传感器。

例如,镝离子可以与重金属离子结合形成复合材料,在特定激发波长下发射特定的荧光信号,从而实现对重金属污染物的定量检测。

生物荧光成像稀土材料的发光特性使其在生物荧光成像中有广泛的应用。

通过将稀土材料引入生物体内,可以将其用作荧光标记剂。

稀土材料的窄谱线宽度和长寿命使得它们能够提供高对比度和高分辨率的图像,这对于生物体内细胞和组织的研究具有重要意义。

光电器件稀土材料的发光特性使其在光电器件中有广泛应用。

例如,稀土材料可以用作发光二极管(LED)的发光层,通过激发材料内部的稀土离子发射特定波长的光来实现显示和照明功能。

稀土有机配合物发光及光声光谱研究方法

稀土有机配合物发光及光声光谱研究方法

稀土有机配合物发光及光声光谱研究方法近些年来,稀土有机配合物(Rare Earth Organic Compounds, REOCs)作为一种新型的复合材料,在科学和技术领域受到了广泛的关注。

稀土有机配合物具有特殊的光、磁、电和热性能,因此具有重要的应用前景,如荧光探测器、电致发光器件、功能材料等。

因此,研究和理解稀土有机配合物的发光性能和机理十分重要。

发光及光声光谱技术是一种重要的分析技术,为了研究稀土有机配合物的发光性能和机理,提供了理论和实验的基础和支持。

一般来说,发光及光声光谱是指稀土有机配合物发出的光在不同波长范围内的强度分布,这种分布的特点和空间结构有关。

发光及光声光谱技术也具有检测分子结构和活性中心的特点。

发光及光声光谱技术的研究主要集中在以下几类技术:(1)发射光谱技术。

发射光谱是在稀土有机配合物样品被外部刺激后,其被激发释放出的发射光谱。

它们能够提供样品中各种元素和活性中心的相关信息,例如发射波长及发射强度等。

(2)激发源光谱技术。

激发源光谱是指在激发源的作用下,样品的外部刺激的发光特性。

它可以用来检测分子的结构和活性中心,并且可以用来解释样品的发射光谱特性。

(3)反射光谱技术。

反射光谱是指样品受到外部刺激后,发射出的反射光谱。

它们可以帮助我们更清楚地了解样品的结构和活性中心,从而获取更多的发射光谱信息。

(4)荧光技术。

荧光技术是指样品受到外部刺激后,发射出的荧光特性。

它可以用来检测样品中各种元素的存在情况,并且可以用来测定样品的活性中心的位置和强度。

上述发光及光声光谱技术在研究稀土有机配合物的发光性能和机理方面有着重要的应用。

首先,发射光谱和激发源光谱可以用来探测样品中不同活性中心的存在,并且可以用来测定样品的发射强度。

另外,反射光谱可以帮助我们更清楚地了解样品的结构和活性中心,从而获取更多的发射光谱信息。

最后,荧光技术可以测定样品中各种元素的存在,并且可以用来测定样品的活性中心的位置和强度。

稀土钐配合物发光材料的研究

稀土钐配合物发光材料的研究

稀土钐配合物发光材料的研究稀土钐配合物发光材料的研究引言:随着光电子技术的快速发展,人们对高性能发光材料的需求日益增加。

稀土钐配合物作为一种重要的发光材料,在光电子器件、激光器、LED照明等领域得到了广泛的应用。

本文将对稀土钐配合物发光材料的研究进行综述,包括其发光机制、制备方法以及应用前景。

一、稀土钐配合物的发光机制稀土钐配合物的发光主要源于钐离子在激发能量作用下的发射过程。

当稀土钐配合物受到激发能量的激发时,内部的钐离子会跃迁至高能级,然后再返回低能级时会辐射处于可见光范围内的光子,从而实现发光效果。

其中,稀土钐配合物的结构和化学组成对其发光性能有着重要影响。

通过调控配体的结构和钐离子的配位环境,可以优化钐离子的能级结构,提高发光效率和色纯度。

二、稀土钐配合物的制备方法稀土钐配合物的制备主要依赖于合成化学和材料化学的方法。

常见的制备方法包括水热法、溶胶凝胶法、热法和溶液法等。

其中,水热法是一种常用且简便的制备方法。

通过在高温高压水的条件下反应,可以得到颗粒均匀、纯度高的稀土钐配合物。

溶胶凝胶法是一种通过控制溶胶和凝胶的形成过程来制备材料的方法,能够实现对材料形貌和晶体结构的精确控制。

热法和溶液法则更适用于大批量材料的合成。

三、稀土钐配合物的应用前景稀土钐配合物具有发光效率高、发光色纯度好、发光色温可调等优点,因此在光电子器件、激光器、LED照明等领域具有广阔的应用前景。

在光电子器件中,稀土钐配合物可以用于制作荧光显示屏、荧光探针和传感器。

在激光器中,稀土钐配合物可以用作激发材料,通过激光激发产生高能量激光。

在LED照明领域,稀土钐配合物可以用于制备高效能的白光LED。

然而,目前稀土钐配合物发光材料在制备过程中还存在一些挑战和问题,例如合成方法复杂、制备成本高、发光效率低等。

因此,未来的研究需要在改进制备方法的同时,进一步探究稀土钐配合物的内部发光机制,以提高发光效率并完善其性能。

结论:稀土钐配合物作为一种重要的发光材料,在光电子技术领域具有广阔的应用前景。

稀土配合物发光的类型概述(精)

稀土配合物发光的类型概述(精)

稀土配合物发光的类型概述稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。

稀土发光配合物是一类具有独特性能的发光材料。

发光现象当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。

在这个过程中,一部分能量会通过光或热的形式释放出来。

如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。

这种能量的发射过程具有一定的持续时间。

对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。

1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。

发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。

当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。

历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。

一般常以持续时间10-8s为分界,持续时间短于——108s的发光被称为荧光,而把持续时间长于108s的发光称为磷光。

现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。

因为任何形式的发光都以—余辉的形式来显现其衰减过程,而衰减时间可以极短(<108s),也可能很长(十几小时或更长)。

发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。

发光类型1. 对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发光、x射线及高能粒子发光、化学发光和生物发光等。

(1)光致发光。

光致发光是用光激发发光体引起的发光现象。

它大致经过吸收、能量传递及光发射三个阶段。

稀土发光

稀土发光
稀土发光
Hale Waihona Puke 定义稀土发光是由稀土4f电子在不同能 及间跃出而产生的,因激发方式不同, 发光可区分为光致发光 (photoluminescence)、阴极射线发 光(cathodluminescence)、电致发 光(electroluminescence)、放射性 发光(radiation luminescence)、X 射线发光(X-ray luminescence)、摩 擦发光(triboluminescence)、化学 发光(chemiluminescence)和生物发 光(bioluminescence)等。
5、激光:固体激光材料 YAG:Nd3+; YAP:Nd3+; YLF:Nd3+ 玻璃激光材料 掺Nd3+硅酸盐、硼酸盐 和磷酸盐玻璃 化学计量激光 PrCl3; NdP5O14; NdLiP4O12; NdKP4O12; NdK3(PO4)2; NdAl3(BO3)4; NdK5(MoO4)4 液体激光 Eu3+激活的苯酰丙酮(BA)、 二苯酰甲烷(DBM)、三氟乙酰丙酮(TFA)和苯三 氟丙酮(BTFA)等 气体激光 Sm(I), Eu(I), Eu(II), Tm(I), Yb(I), Yb(II), Yb等金属蒸气
主要应用
1、光源:日光灯 Ca5(PO4)3(Cl,F):[Sb3+,Mn2+]; BaMg2Al16O27:Eu2+; MgAl11O16:[Ce3+, Tb3+]; Y2O3:Eu3+ 高压汞灯 Y(PV)O4:Eu; YVO4:Eu,Tb 黑光灯 YPO4:Ce,Th; MgSrBF3:Eu 固体光源 GaP;GaAs;GaN;InGaN;YAG:Ce
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稀土配合物发光的类型概述
稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。

稀土发光配合物是一类具有独特性能的发光材料。

发光现象
当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。

在这个过程中,一部分能量会通过光或热的形式释放出来。

如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。

这种能量的发射过程具有一定的持续时间。

对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。

1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。

发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。

当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。

历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。

一般常以持续时间10-8s为分界,持续时间短于10—8s的发光被称为荧光,而把持续时间长于10—8s的发光称为磷光。

现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。

因为任何形式的发光都以余辉的形式来显现其衰减过程,而衰减时间可以极短(<10—8s),也可能很长(十几小时或更长)。

发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。

发光类型
1.对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发
光、x射线及高能粒子发光、化学发光和生物发光等。

(1)光致发光。

光致发光是用光激发发光体引起的发光现象。

它大致经过吸收、能量传递及光发射三个阶段。

光的吸收及发射都发生于能级之间的跃迁,都经过激发态。

而能量传递则是由于激发态的运动。

(2)电致发光。

可将电能直接转换成光能的现象是电致发光(eIectroIuminescence)。

过去又因这是在电场作用下产生的发光,还曾使用过“场致发光”的术语。

(3)阴极射线发光。

发光物质在电子束激发下所产生的发光,被称做阴极射线发光(cathodeluminescenee)。

通常电子束激发时,电子所具有的能量是很大的,都在几千电子伏以上,甚至达几万电子伏。

和光致发光的情况相比,这个能量是巨大的。

因此,阴极射线发光的激发过程和光致发光不一样,这是一个很复杂的过程。

在光致发光的过程中,一个激发光于被发光物质吸收后,通常最多只能产生一个发光辐射的光子。

但是,单从能量的观点来
看,一个高速电子的能量是光子能量的几千倍或更多,这足以产生干百个发光辐射光子。

事实上,高速的电子入射到发光物质后,将离化原子中的电子,并使它们获得很大的动能,成为高速的次级(发射)电子。

而这些高速的次级电子又可以产生次级电子,最终,这些次级电子会激发发光物质产生发光。

(4)x射线及高能粒子发光。

在X射线、γ射线、α粒子、β粒子等高能粒子激发下,发光物质所产生的发光被称做x射线及高能粒子发光。

发光物质对x射线和高能粒子能量的吸收包括三个过程:带电粒子的减速、高能光子的吸收和电子—正电子对的形成。

x射线和γ射线是不带电的粒子流,也可以叫做高能光子流。

一般地说,x光子主要产生光电效应;比x光子能量更大的γ光子,三种效应都会产生。

这些效应都会产生大量的次级电子,而这些次级电子又会进一步激发或离化发光物质而产生发光。

粒子和β粒子等高能粒子入射到发光物质后,会发生晶格原子的离化,产生次级电子。

这就是发光物质在高能带电粒子激发下的能量吸收过程。

当这些激发或离化状态重新回到平衡态时,就产生了发光。

(5)化学发光。

由化学反应过程中释放出来的能量激发发光物质所产生的发光,被称作化学发光。

(6)生物发光。

在生物体内,由于生命过程的变化,其相应的生化反应释放的能量激发发光物质所产生的发光被称作生物发光。

2. 根据稀土离子配合物的荧光特性可将其分为四类:
(1)La3+,Gd3+,Lu3+和Y3+的配合物:无稀土离子荧光,主要呈现较强的配体荧光和磷光,发射为带谱。

Ia3+(4fo),Gd(4f7),Lu3+(4f14),Y3+(3d10)都为全空、半满或全满的稳定电子结构,不易被激发,在配体的三重态附近一般没有相应的发射能级,所以不能发生从三重态到稀土离子的能量传递。

配合物吸收的全部能量都以较强的分子荧光和磷光形式耗散。

(2)Pr3+,Nd3+,Ho3+,Er3+,TIn3+和Yb3+的配合物:该组稀土离子的4f电子层为非半满或全满状态,基本都有顺磁性。

弱的分子荧光表明配体的单重态到三重态的系间窜越过程比较有效。

因为顺磁性稀土离子产生磁场起伏使单重、三重态位能面交叉从而导致系问窜越过程的增强。

弱的分子磷光是因为从配体到离子f态的无辐射能量传递很大。

稀土离子的发生效率很低是因为这些离子具有很多能量相近能级,使其易发生能级间的无辐射跃迁。

(3)Eu3+,Tb3+,Dy3+和Sm3+的配合物:具有较强的离子荧光和弱的配体荧光和磷光。

这些离子的发生能级与配体的三重态能级接近,三重态到离子的能量传递更加有效。

另外,离子在配体三重态和基态之间不存在密集的能级,非辐射能量跃迁几率大为减少,因而这些离子的特征发射光谱较易观测到。

因此,这些离子的配合物特别是Eu3+和Tb3+离子配合物荧光特性引起了广泛的兴趣。

(4)Eu2+,Ce3+和Yb3+的配合物:表现为稀土离子的f—d跃迁,发射光谱为宽带,峰位容易受到配体和溶剂的影响。

由于稀土离子的f—f跃迁是宇称禁戒的,由f—f跃迁引起的紫外吸收很弱,而有机配体的单重态跃迁是自旋允许的,它的紫外吸收很强,因此,欲制备性能良好的发光体,必须使它们与具有吸光系数较高的有机配体结合在一起,形成稀土配合物,并借助配体的强紫外吸收和有效的分子内能量传递。

但并非所有可能的跃迂都能产生发光,还必须考虑环境、对称性和能级匹配的影响。

Sato和wada系统研究了Tb3+和Eu3+与(β—二酮的配合物的三重态能级和分子内能量传递之间的关系,认为当最低激发三重态与稀土离子的共振能级在达到一定的能级差时,可以产生最佳荧光量子效率。

如果这个能级差太小,则由于稀土离子激发态的热激活使荧光量子效率降低;当三重态能级比稀土离子的激发态能级高出很多时,则由于配体的磷光光谱与稀土离子的吸收谱重叠太小,使配体三重态到稀土离子的能量重叠效率
降低,导致稀土配合物的荧光量子效率降低。

相关文档
最新文档