圆周角教案

合集下载

圆周角初中三年级教案

圆周角初中三年级教案

【教案】圆周角一、教学目标:1.理解圆周角的概念,认识圆周角的性质和计算方法。

2.能够根据已知条件,计算圆周角的具体大小。

3.培养学生观察、分析和解决问题的能力。

二、教学内容:1.圆周角的定义和性质。

2.圆周角的计算方法。

3.相关的例题和练习。

三、教学过程:1.导入(5分钟)引导学生回顾上节课学习的内容,复习角的概念和性质,并了解与圆有关的角。

2.概念解释和性质讲解(10分钟)在黑板上画一个圆O,并画出一条弧段AB。

解释圆周角的概念,即以圆心为顶点,弧段AB所对的角。

讲解圆周角的性质:圆周角的度数等于所对弧度数的一半,即∠AOB=0.5×∠ACB。

3.计算方法讲解(15分钟)根据圆周角的性质,可得到计算圆周角的方法:已知弧段所对的角的度数,可通过乘以2得到所对圆周角的度数,反之亦然。

导入例题:已知弧AB所对的圆周角的度数为60°,求弧度数。

解答:由圆周角的性质可得,弧度数等于所对圆周角的度数乘以2,即∠AOB=2×60°=120°。

4.例题解析(20分钟)解答例题1:已知弧AB所对的圆周角的度数为120°,求所对弧的度数。

解答:根据圆周角的性质,所对弧的度数等于圆周角的度数的一半,即∠AOB=0.5×120°=60°。

解答例题2:已知弧AB所对的圆周角的度数是弧AC所对的圆周角度数的2倍,弧AC的度数为80°,求弧AB的度数。

解答:设弧AB的度数为x°,根据已知条件可得:2×80°=x°,解得x=160°。

5.练习题(20分钟)创设一些练习题,让学生运用所学的知识,解答题目。

1)已知弧BC所对的圆周角的度数是60°,求弧BC的度数。

2)已知弧DE的度数是弧FG的度数的3倍,弧FG所对的圆周角的度数为100°,求弧DE的度数。

四、教学总结(10分钟)对本节课所学的内容进行小结,并与学生分享学习的感受和想法。

圆周角教案

圆周角教案

圆周角教案【教学目标】1.理解圆周角的概念,能够正确计算圆周角的度量值。

2.掌握圆周角的性质,能够运用圆周角的性质解决问题。

3.培养学生的观察能力和逻辑思维能力。

【教学重点】1.理解圆周角的概念。

2.掌握圆周角的度量方法。

【教学难点】1.运用圆周角的性质解决问题。

2.培养学生的观察能力和逻辑思维能力。

【教学过程】一、导入(10分钟)1.结合生活实际中的例子,引导学生探索圆周角的概念,激发学生的学习兴趣。

2.提问:你们知道什么是圆周角吗?圆周角有哪些度量方法?二、概念解释与角度固定(20分钟)1.通过PPT或黑板板书给学生解释圆周角的定义,即以圆心为顶点的角,记作∠AOB。

2.引导学生体验圆周角中的两条弧的关系,通过实际操作可以观察到,位于圆上的任何两条弧所对应的圆周角都是固定的。

3.引导学生体会到角度的度量方法,即使用角度的弧度制和角度的度制进行度量,并给予相关例题进行讲解。

三、性质总结与例题演练(25分钟)1.教师总结圆周角的性质,包括相等的圆周角所对应的弧是相等的,相等的弧所对应的圆周角是相等的等等。

2.给学生一些简单的练习题,检测学生是否理解了圆周角的性质,并帮助学生解答疑惑。

3.引导学生运用圆周角的性质解决一些实际问题,培养学生的观察能力和逻辑思维能力。

四、知识扩展(15分钟)1.通过一些拓展问题,引导学生进一步思考圆周角的概念和性质。

2.调动学生的积极性,鼓励学生提出自己的问题和讨论。

可以组织小组讨论,加强学生的合作和交流。

五、作业布置(5分钟)1.出示一些能够锻炼圆周角相关知识的练习题,布置作业。

2.提醒学生合理安排时间,认真完成作业,以便复习和巩固所学内容。

【板书设计】圆周角概念:以圆心为顶点的角,记作∠AOB性质:相等的圆周角所对应的弧是相等的,相等的弧所对应的圆周角是相等的【教学反思】本节课通过生活实例引入,结合概念解释与角度固定、性质总结与例题演练、知识扩展等环节,循序渐进地帮助学生理解和运用圆周角的概念和性质。

九年级数学上册《圆周角》教案、教学设计

九年级数学上册《圆周角》教案、教学设计
(2)创设生活情境,将数学知识融入实际生活,激发学生的学习兴趣,提高他们解决实际问题的能力。
(3)运用信息技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
2.教学过程:
(1)导入:以生活中的圆形物体为例,引导学生关注圆周角,激发他们的学习兴趣。
(2)新知探究:通过画图、观察、猜想、验证等环节,引导学生自主探究圆周角定理及其推论。
(2)关注学生的情感态度,鼓励他们在学习中勇于尝试、不怕困难。
(3)重视学生的反馈,及时调整教学策略,使教学更符合学生的实际需求。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将以生活中的实例引入圆周角的概念。我会向学生展示一些圆形物体,如自行车轮、时钟等,并提问:“这些物体上有什么共同的特点?”引导学生关注圆形物体上的角度问题。接着,我会提出问题:“我们知道,圆是由无数个点组成的,那么这些点与圆心之间的角度有什么关系呢?”通过这个问题,激发学生对圆周角的探究欲望,从而引出本节课的主题——圆周角。
3.应用题:将圆周角知识应用于实际生活中,如测量圆形物体的周长、面积等。
让学生在练习中逐步提高解题能力,同时培养他们学以致用的意识。
(五)总结归纳
在课堂的最后,我会对本节课的知识点进行总结,强调圆周角的定义、定理和推论的重要性。同时,我会让学生分享他们在学习过程中的心得体会,以及如何运用所学知识解决实际问题。此外,我会布置课后作业,让学生进一步巩固所学知识,为下一节课的学习打下基础。
(二)讲授新知
1.圆周角的定义:首先,我会让学生观察圆上的任意两点与圆心所形成的角,引导学生发现这些角的度数是相等的。然后,我会给出圆周角的定义:圆周角是由圆上两点与圆心所形成的角,其度数等于所对圆弧的一半。
2.圆周角定理:在学生理解圆周角定义的基础上,我会引导学生通过画图、测量、计算等方法,发现并证明圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等。

初中数学初三数学下册《圆周角》教案、教学设计

初中数学初三数学下册《圆周角》教案、教学设计
二、学情分析
本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了基本的几何知识和逻辑推理能力,具备了一定的图形观察能力和空间想象能力。在此基础上,学生对圆的性质和方程有一定了解,为学习圆周角奠定了基础。然而,圆周角涉及的概念和性质较为抽象,学生在理解上可能存在一定难度。此外,学生在解决与圆周角相关的问题时,可能缺乏有效的解题方法和技巧。因此,在教学过程中,教师应关注以下几点:
四、教学内容与过程
(一)导入新课
1.教学活动设计:利用多媒体展示生活中常见的圆形物体,如车轮、硬币、圆桌等,让学生观察并思考这些物体上的圆周角特点。
2.提问方式:教师提问:“大家知道什么是圆周角吗?圆周角有哪些特点?它在我们生活中有哪些应用?”
3.学生回答:鼓励学生积极回答,分享他们对圆周角的观察和认识。
2.提高题:选取一些涉及圆周角的几何图形,让学生独立完成求解。此类题目旨在培养学生的空间想象能力和逻辑推理能力。
设计意图:通过提高题目的练习,使学生能够将圆周角知识应用于实际问题中,提高解题技巧和思维水平。
3.拓展题:设计一些综合性的问题,让学生运用圆周角定理以及其他相关知识解决。此类题目有助于提高学生的综合运用能力和创新意识。
4.教师引导:根据学生的回答,教师总结圆周角的初步概念,并指出本节课将深入探讨圆周角的性质和应用。
(二)讲授新知
1.教学内容:讲解圆周角的定义,阐述圆周角与圆心角的关系,引入圆周角定理。
2.教学方法:采用直观演示、举例说明、推理证明等方式,让学生理解并掌握圆周角的性质。
3.教学步骤:
a.展示圆的图形,指出圆周角的定义。
1.注重启发式教学,引导学生通过观察、操作、推理等途径,发现圆周角的性质,提高学生的几何直观能力。

圆周角(三)数学教案

圆周角(三)数学教案

圆周角(三)数学教案标题:圆周角(三)数学教案一、教学目标:1. 知识与技能:学生能够理解和掌握圆周角的定义,性质及其应用。

2. 过程与方法:通过观察、分析和推理,提高学生的逻辑思维能力和空间想象能力。

3. 情感态度价值观:培养学生对数学学习的兴趣,养成良好的学习习惯。

二、教学重点和难点:重点:圆周角的定义和性质。

难点:圆周角的应用。

三、教学过程:(一)导入新课教师可以通过一些生活中的例子,比如钟表指针形成的角,来引入圆周角的概念。

让学生在实际情境中感知圆周角的存在,并激发他们的学习兴趣。

(二)讲授新课1. 圆周角的定义:顶点在圆心的角叫做圆心角;顶点不在圆心,而两边都与圆相交的角叫做圆周角。

2. 圆周角的性质:同弧所对的圆周角相等;等弧所对的圆周角相等;直径所对的圆周角是直角。

教师可以结合图形,引导学生理解并记住这些性质。

同时,鼓励学生自己动手画图,加深对圆周角的理解。

(三)课堂练习设计一些关于圆周角的习题,让学生进行练习。

如判断哪些角是圆周角,计算圆周角的度数等。

通过练习,检查学生是否真正掌握了圆周角的知识。

(四)课堂小结回顾本节课的主要内容,强调圆周角的定义和性质,提醒学生注意理解和记忆。

(五)作业布置布置一些关于圆周角的习题,让学生在课后进行复习和巩固。

四、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略。

对于学生的疑惑和困难,要耐心解答,帮助他们克服困难。

同时,也要注重培养学生的自主学习能力,让他们学会独立思考和解决问题。

数学教案-圆周角

数学教案-圆周角

数学教案-圆周角教学目标:1.让学生理解圆周角的概念,掌握圆周角定理。

2.培养学生运用圆周角定理解决实际问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

教学内容:1.圆周角的概念2.圆周角定理3.圆周角定理的应用教学过程:一、导入1.引导学生回顾已学的圆的性质,如圆的周长、面积等。

2.提问:在圆中,哪些角与圆周有关?二、探究圆周角的概念1.用PPT展示一个圆,让学生观察并找出圆周角。

2.请学生尝试用自己的语言描述圆周角的概念。

三、讲解圆周角定理1.用PPT展示一个圆,标出圆心、圆周角和圆心角。

2.讲解圆周角定理:圆周角定理指出,圆周角等于它所对的圆心角的一半。

3.举例说明:如圆周角为30度,则它所对的圆心角为60度。

四、练习圆周角定理的应用1.请学生在纸上画出一个圆,标出圆心、圆周角和圆心角。

2.让学生运用圆周角定理,计算圆周角和圆心角的度数。

3.互相交流,检查答案。

五、巩固提高1.出示练习题,让学生运用圆周角定理解决实际问题。

题目1:已知一个圆的半径为10cm,求圆周角为60度所对的弦长。

题目2:一个圆的直径为20cm,求圆周角为45度所对的弧长。

2.学生独立完成,教师巡回指导。

3.交流答案,分析解题过程。

六、拓展延伸1.请学生思考:圆周角定理在实际生活中有哪些应用?2.学生举例说明,如钟表的时针与分针所成的圆周角等。

2.强调圆周角定理在解决实际问题中的应用价值。

教学反思:本节课通过引导学生观察、思考、实践,让学生掌握了圆周角的概念和圆周角定理。

在教学过程中,注重培养学生的空间想象能力和逻辑思维能力,使学生在解决实际问题时能够灵活运用圆周角定理。

但在教学过程中,仍有个别学生对于圆周角的概念理解不够深刻,需要在今后的教学中加强引导和辅导。

重难点补充:一、圆周角的概念难点:学生可能难以直观地理解圆周角的定义。

对话设计:师:同学们,你们能告诉我什么是圆周角吗?生1:是不是圆上的一个角?师:很好,但我们要更准确地定义它。

《圆周角》教案

《圆周角》教案

《圆周角》教案1教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.能在证明或计算中熟练运用圆周角的定理.过程与方法经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解.情感态度1.在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力.2.通过分组讨论,培养合作交流意识和探索精神.教学重点理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.教学难点分类讨论及由特殊到一般的转化思想的应用.教学过程一、情境导入,初步认识阅读教材,回答下列问题.1.如图所示的角中,哪些是圆周角?2.顶点在______上,并且两边都与圆_________的角叫做圆周角.3.在同圆或等圆中,_____或_______所对的圆周角相等,都等于这条弧所对的______的一半.4.在同圆或等圆中,相等的圆周角所对的弧也_______.二、思考探究,获取新知探究圆周角定理.1.同学们作出»AB所对的圆周角,和圆心角,学生分组讨论,并回答下列问题:问题1»AB所对的圆周角有几个?问题2度量下这些圆周角的关系.问题3这些圆周角与圆心角∠AOB的关系.【教学说明】①»AB所对的圆周角的个数有无数个.②通过度量,这些圆周角相等.③通过度量,同弧对的圆周角是它所对圆心角的一半.2.同学们思考如何推导上面的问题(3)的结论?教师引导,学生讨论①当点O在∠BAC边AB上,②当点O在∠BAC的内部,③当点O在∠BAC外部.①②由同学们分组讨论,自己完成.③由同学们讨论,代表回答.【教学说明】作直径AE,由∠BAC=∠OAC-∠OAB,由∠OAC=12∠EOC,∠OAB=12∠BOE得:∠BAC=12∠EOC-12∠BOE=12(∠EOC-∠BOE)=12∠BOC.从①②③得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.还可以得出下面推论:同圆或等圆中,如果两个圆周角相等,那么它们所对的弧一定相等;3.例题1:如图,(1)已知»»AD BC=.求证:AB=CD.(2)如果AD=BC,求证:»»DC AB=.证明:(1)∵»»AD BC=,∴»»»»AD AC BC AC+=+,∴»»DC AB=,∴AB=CD.(2)∵AD=BC,∴»»AD BC=,∴»»»»AD AC BC AC+=+,即»»DC AB=.例题2:如课本图,OA,OB,OC都是圆O的半径,∠AOB=50°,∠BOC=70°.求∠ACB 和∠BAC的度数.【教学说明】在今后证明线段相等的题目中又加了一种有弧相等也可以得到线段相等的方法了.练习题:1、如课本图,各角是不是圆周角?请说明理由.2、如课本图,在圆O中,弦AB与CD相交于点M,若∠CAB=25度,∠ABD=95°,试求∠CDB与∠ACD的度数.3、如课本图,点A,B,C在圆O上,AC∥OB.若∠OBA=25°,求∠BOC的度数.三、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上.【教学说明】①圆周角的定义是基础.②圆周角的定理是重点,圆周角定理的推导是难点.③圆周角定理的应用才是重中之重.《圆周角》教案2教学目标1.巩固圆周角概念及圆周角定理.2.掌握圆周角定理的推论:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.过程与方法在探索圆周角定理的推论中,培养学生观察、比较、归纳、概括的能力.情感态度在探索过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.教学重点对直径所对的圆周角是直角及90°的圆周角所对的弦是直径这些性质的理解.教学难点对圆周角定理推论的灵活运用是难点.教学过程一、情境导入,初步认识1.如图,木工师傅为了检验如图所示的工作的凹面是否成半圆,他只用了曲尺(它的角是直角)即可,你知道他是怎样做的吗?【分析】当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,因为90度的圆周角所对的弦是直径.解:当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,否则工作不合格.2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【教学说明】半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径都是圆周角定理可推导出来的.试着让学生简单推导,培养激发他们的学习兴趣.二、思考探究,获取新知1.直径所对的圆周角是直角,90°的角所对的弦是直径.如图,∠C1、∠C2、∠C3所对的圆心角都是∠AOB,只要知道∠AOB的度数,就可求出∠C1、∠C2、∠C3的度数.【教学说明】∵A、O、B在一条直线上,∠AOB是平角,∠AOB=180°,由圆周角定理知∠C1=∠C2=∠C3=90°,反过来也成立.2.例3:如课本图,BC是圆O的直径,∠ABC=60°,点D在圆O上,求∠ADB的度数.【教学说明】在圆中求角时,一种方法是利用圆心角的度数求,另一种方法是把所求的角放在90°的三角形中去求.3.讲圆内接四边形和四边形的外接圆的概念.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;圆内接四边形对角互补.例1如图所示,OA为⊙O的半径,以OA为直径的圆⊙C与⊙O的弦AB相交于点D,若OD=5cm,则BE=10cm.【教学说明】在题中利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线,从而求解.例2如图,已知∠BOC=70°,则∠BAC=_____,∠DAC=______.【分析】由∠BOC=70°可得所对的圆周角为35°,又∠BAC与该圆周角互补,故∠BAC=145°.而∠DAC+∠BAC=180°,则∠DAC=35°.答案:145°5°例3如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,使得点E一定是AC的中点(直接写出结论)例4:如课本图,四边形ABCD为圆O的内接四边形,已知∠BOD=100°,求∠BAD与∠B CD的度数.三、练习题:1、如课本图,在圆O中,AB是直径,C,D是圆上两点,且AC=AD.求证:BC=BD.2、怎样运用三角板画出如课本图所示的圆形表面上的直径,并标出圆心,是说明画法的理由.3、如课本图,圆内接四边形ABCD的外角∠DCE=85°,求∠A的度数.【教学说明】连接AD,得AD⊥BC,构造出Rt△ABD≌Rt△ACD.解:(1)AB=AC.证明:如图,连接AD,则AD⊥BC.∵AD是公共边,BD=DC,∴Rt△ABD≌Rt△ACD,∴AB=AC.(2)△ABC为正三角形或AB=BC或AC=BC或∠BAC=∠B或∠BAC=∠C.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?在学生回答基础上.2.教师强调:①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③关于圆周角定理运用中,遇到直径,常构造直角三角形.课后作业1、课后习题2.22、完成同步练习册中本课时的练习.。

圆周角教案

圆周角教案

圆周角教案圆周角教案一、教学目标:1. 知识目标:了解什么是圆周角,能够计算圆周角的大小。

2. 能力目标:掌握圆周角的计算方法,能够灵活应用于解决实际问题。

3. 情感目标:培养学生对几何概念的兴趣,提高数学学习的积极性。

二、教学重点:1. 圆周角的定义。

2. 常见圆周角的计算方法。

三、教学难点:能够将圆周角的计算方法应用于实际问题的解决。

四、教学过程:步骤一:导入新课教师通过出示一个圆形物体,让学生观察并想一想:圆内的点与圆周上的两个点可以形成什么样的角?这个角叫什么名字?步骤二:引入概念教师解释,圆周角是由圆心、圆周上的两个点所组成的角,用∠AOC表示,其中点O为圆心。

步骤三:定义和性质教师带领学生一起探究圆周角的一些定义和性质,如圆周角的度数等于所对弧所对的圆心角的度数,弧所对的圆心角是唯一确定的等等。

步骤四:计算方法教师通过示例,引导学生掌握计算圆周角的方法。

首先将圆周角转化为对应圆心角,然后使用适当的计算公式,如度数相等的圆周角所对的弧长相等的原理等,进行计算。

步骤五:练习教师出示一些练习题,让学生独立进行计算,然后互相交换答案进行核对。

步骤六:拓展应用教师设计一些与日常生活和实际问题相关的题目,让学生将所学的圆周角的计算方法应用于解决问题,如计算钟表指针的夹角、计算车轮的转角等。

步骤七:总结归纳教师让学生复习所学的知识点,并进行总结归纳,然后提出相关问题进行讨论。

五、教学反思:在教学过程中,通过引入圆周角的定义和性质,激发了学生对几何概念的兴趣。

通过设计练习题和应用题,让学生能够熟练掌握圆周角的计算方法,提高了学生的实际应用能力。

同时,通过教学总结,加深了学生对所学知识的理解和记忆。

然而,在教学中还可以增加一些趣味性的活动,如游戏、小实验等,以提高学生的参与度。

圆周角(一)数学教案

圆周角(一)数学教案

圆周角(一)数学教案
标题:圆周角
一、教学目标:
1. 学生能够理解并掌握圆周角的概念。

2. 学生能够运用圆周角的性质解决实际问题。

3. 通过探究学习,培养学生的观察力和逻辑思维能力。

二、教学重点与难点:
1. 教学重点:圆周角的概念及其性质。

2. 教学难点:运用圆周角的性质解决实际问题。

三、教学准备:
1. 圆形教具
2. 多媒体设备
四、教学过程:
1. 导入新课:
通过回顾以前学习过的关于圆的知识,引入圆周角的概念。

2. 新课讲解:
(1)定义:圆周角的概念,强调圆周角的顶点在圆上,两边都与圆相交。

(2)性质:引导学生观察并总结圆周角的性质,如圆心角等于它所对的圆周角的两倍等。

3. 实例解析:
通过具体的例子,让学生理解如何运用圆周角的性质解决问题。

4. 小组讨论:
分小组进行讨论,设计一些题目让各小组完成,然后分享他们的答案和解题思路。

5. 巩固练习:
设计一些习题供学生自我检查,巩固他们对圆周角的理解。

6. 课堂小结:
让学生复述本节课学到的内容,教师进行补充和点评。

7. 布置作业:
设计一些难度适中的题目作为家庭作业,以进一步巩固学生的学习效果。

五、教学反思:
在课程结束后,反思本次教学的效果,包括学生对知识的掌握程度,教学方法的有效性,以及需要改进的地方。

《圆周角教案》

《圆周角教案》

《圆周角教案》word版一、教学目标1. 让学生理解圆周角的概念,掌握圆周角的性质。

2. 培养学生运用圆周角定理解决实际问题的能力。

3. 提高学生对圆的知识的认知,为学习圆的其他性质和定理打下基础。

二、教学重点与难点1. 教学重点:圆周角的概念,圆周角的性质。

2. 教学难点:圆周角定理的证明和应用。

三、教学方法1. 采用问题驱动法,引导学生探究圆周角的性质。

2. 运用直观演示法,让学生通过观察、操作、体验圆周角的特征。

3. 运用合作学习法,培养学生团队协作精神,提高解决问题的能力。

四、教学准备1. 教具:圆规、直尺、多媒体设备。

2. 学具:每人一套圆规、直尺、练习本。

五、教学过程1. 导入新课利用多媒体展示圆周角动画,引导学生观察圆周角的特点,引发学生思考。

2. 探究圆周角的性质(1)让学生用圆规和直尺画一个圆,并标出圆心O和任意一点A。

(2)让学生以点A为顶点,分别画出两条射线,使其分别与圆相交于点B和点C。

(3)引导学生观察∠AOB和∠AOC的关系,发现∠AOB=∠AOC。

(4)让学生总结圆周角的性质,得出结论:圆周角等于其所对圆弧的两倍。

3. 讲解圆周角定理讲解圆周角定理的证明过程,让学生理解圆周角定理的含义。

4. 课堂练习(1)让学生运用圆周角定理,解决实际问题。

(2)让学生独立完成练习题,巩固所学知识。

5. 总结与拓展总结本节课所学内容,强调圆周角的概念和性质。

拓展:引导学生思考圆周角在实际生活中的应用,如测量圆的直径等。

6. 布置作业让学生课后完成相关练习题,巩固所学知识。

六、教学评价1. 课堂问答:通过提问学生对圆周角的概念和性质的理解,检查学生掌握情况。

2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对圆周角定理的应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度,合作解决问题的情况,评价学生的团队协作能力和问题解决能力。

七、教学反思课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。

2024年圆周角教案3篇_1

2024年圆周角教案3篇_1

2024年圆周角教案3篇圆周角教案篇1教材分析1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。

2.圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,在对圆与其他平面图形的研究中起着桥梁和纽带的作用。

学情分析九年级的学生虽然已具备一定的说理能力,但逻辑推理能力仍不强,根据数学的认知规律,数学思想的学习不可能“一步到位”,应当逐步递进、螺旋上升。

在具体的问题情境下,引导学生采用动手实践、自主探究、合作交流的学习方法进行学习,充分发挥其主体的积极作用,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发挥潜能,使知识和能力得到内化,体现“主动获取,落实双基,发展能力”的原则。

教学目标(1)知识目标:1、理解圆周角的概念。

2、经历探索圆周角与它所对的弧的关系的过程,了解并证明圆周角定理及其推论。

3、有机渗透“由特殊到一般”、“分类”、“化归”等数学思想方法。

(2)能力目标:引导学生从形象思维向理性思维过渡,有意识地强化学生的推理能力,培养学生的实践能力与创新能力,提高数学素养。

(3)情感、态度与价值观的目标:1、创设生活情境激发学生对数学的好奇心、求知欲,营造“民主”“和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验。

2、培养学生以严谨求实的态度思考数学。

教学重点和难点探索并证明圆周角与它所对的弧的关系是本课时的重点。

用分类、化归思想合情推理验证“圆周角与它所对的弧的关系”是本课时的难点。

圆周角教案篇2教学目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号“”应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8圆周角教案篇3教学目标:(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;(3)培养添加辅助线的能力和思维的广阔性.教学重点:圆周角定理的三个推论的应用.教学难点:三个推论的灵活应用以及辅助线的添加.教学活动设计:(一)创设学习情境问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?(二)分析、研究、交流、归纳让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.老师组织学生归纳:推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧——半圆,它所对的圆周角是什么样的角?(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论2:推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.(三)应用、反思例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:AB·AC=AE·AD.对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).解(略)教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.变式练习1:如图,△ABC内接于⊙O,∠1=∠2.求证:AB·AC=AE·AD.变式练习2:如图,已知△ABC内接于⊙O,弦AE平分∠BAC交BC于D.求证:AB·AC=AE·AD.指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;求BC,AD和BD的长.解:(略)说明:充分利用直径所对的圆周角为直角,解直角三角形.练习:教材P96中1、2(四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.(五)作业教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.探究活动我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.提示:(1)连结BC,可得∠E=(的度数—的度数)(2)延长AE、CE分别交圆于B、D,则∠B=的度数,∠C=的度数,∴∠AEC=∠B+∠C=(的度数+的`度数).。

《圆周角》教案设计

《圆周角》教案设计

《圆周角》教案设计一、教学目标1.理解圆周角的概念,掌握圆周角定理及其推论。

2.能够运用圆周角定理解决实际问题,提高学生的逻辑推理能力。

3.培养学生的几何直观能力和空间想象力。

二、教学重难点1.教学重点:圆周角定理及其推论。

2.教学难点:圆周角定理的应用。

三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的圆的相关知识,如圆的性质、圆的周长和面积等。

(2)提问:在圆中,哪些角与圆有关?它们之间有什么关系?(3)引导学生思考并回答,从而引出圆周角的概念。

2.探索圆周角的性质(1)让学生通过观察、画图、讨论等方式,发现圆周角定理。

(2)引导学生运用已学的圆的性质,证明圆周角定理。

3.应用圆周角定理(1)让学生通过练习题,巩固圆周角定理的应用。

(2)引导学生运用圆周角定理解决实际问题,如求圆弧的长度、圆的半径等。

(3)教师选取典型题目进行讲解,帮助学生掌握解题方法。

4.圆周角定理的推论(1)引导学生发现圆周角定理的推论,并证明。

5.课堂小结(2)教师点评本节课学生的表现,给予鼓励和指导。

6.课后作业(1)布置课后作业,巩固本节课所学知识。

(2)要求学生独立完成作业,培养独立思考能力。

四、教学反思1.圆周角的概念圆周角是指以圆心为顶点的角,其两边分别是圆的切线和弧。

2.圆周角定理圆周角定理:圆周角等于其所对的圆心角的一半。

证明:设圆的半径为r,圆心角为A,圆周角为B。

由圆心角的定义,可知圆心角的度数为360°/r。

由圆周角的定义,可知圆周角的度数为弧长所对的圆心角的度数。

设弧长为l,则圆周角的度数为l/r。

由圆心角和圆周角的定义,可知圆周角的度数为A/2。

因此,圆周角定理得证。

3.圆周角定理的推论推论1:圆周角的度数等于其所对的圆弧的度数。

推论2:圆周角的度数等于其所对的圆心角的度数的一半。

4.圆周角定理的应用(1)求圆弧的长度已知圆的半径r和圆周角B,求圆弧的长度l。

解:由圆周角的定义,可知圆周角的度数为B=l/r。

初三几何教案圆周角教案

初三几何教案圆周角教案

初三几何教案圆周角教案课题:认识和计算圆周角教学目标:1.了解圆周角的概念。

2.学会计算圆周角的大小。

3.运用圆周角的性质解决实际问题。

教学内容:第一课时:认识圆周角1.引入(10分钟):o利用图像和实物引入圆周角的概念。

o引导学生思考:一个完整的圆周角有多大?2.定义和性质(15分钟):o定义圆周角,解释它是圆心对应于圆上两点的角。

o介绍圆周角的性质:一个完整的圆周角是360度。

3.示例和讨论(15分钟):o展示几个例子,让学生通过观察图形来理解圆周角。

o引导学生讨论不同情况下圆周角的度数。

4.小组活动(10分钟):o学生分组观察不同大小的圆周角,提出它们的度数,并解释他们的推理。

5.总结(5分钟):o整理学生的观点,强调一个完整的圆周角是360度。

第二课时:计算圆周角1.复习与引入(10分钟):o复习圆周角的概念。

o引入如何计算圆周角的问题。

2.公式和计算方法(15分钟):o引入计算圆周角的公式:圆周角(度数)= 圆心角(度数)。

o讲解如何通过已知圆心角来计算圆周角。

3.示例和练习(20分钟):o提供一些实际问题的示例,演示计算步骤。

o学生个别或小组练习计算圆周角。

4.应用问题(10分钟):o提供一些实际问题,要求学生运用所学知识解决问题。

5.总结与反思(5分钟):o回顾本节课的重点,鼓励学生提出问题和疑虑。

教学手段:1.图形和实物:使用图形和实物让学生直观感受圆周角。

2.小组活动:促使学生互相合作,共同讨论和解决问题。

3.多媒体演示:通过投影仪或电子白板展示图形和实例。

课后作业:1.练习册上关于圆周角的习题。

2.提出一个日常生活中的问题,要求计算其中涉及的圆周角。

通过这个教案,学生可以深入理解圆周角的概念,掌握计算的方法,并能够应用到实际问题中。

九年级数学上册《圆周角的概念和圆周角定理》教案、教学设计

九年级数学上册《圆周角的概念和圆周角定理》教案、教学设计
7.课后反思:教师对课堂教学效果进行反思,针对学生的掌握情况,调整教学策略。
二、学情分析
九年级的学生已经具备了一定的几何基础,对圆的相关性质有一定的了解,但在理解圆周角的概念和圆周角定理的运用上可能存在困难。他们对几何图形的观察和操作能力有待提高,对于几何证明的逻辑推理能力也需要进一步培养。此外,学生在解决实际问题时,可能缺乏将理论知识与生活实际相结合的意识。因此,在教学过程中,应注重引导学生从生活实例中提炼数学问题,通过直观演示和动手操作,帮助学生建立圆周角的概念,同时,鼓励学生参与合作探究,提高他们运用圆周角定理解决问题的能力。在此基础上,关注学生个体差异,为不同层次的学生提供有针对性的指导,使他们在原有基础上得到提高。
2.提问:“我们已经学过圆的一些性质,那么圆上的角有哪些特殊之处呢?”通过这个问题,激发学生对圆周角的好奇心,为新课的学习打下基础。
3.引入圆周角的概念,让学生思考圆周角与圆的关系,为后续学习圆周角定理做好铺垫。
(二)讲授新知
1.讲解圆周角的定义,即顶点在圆上,两边分别与圆相交的角。通过图形演示,让学生直观地理解圆周角的特点。
-对于基础薄弱的学生,重点辅导圆周角的基本概念和简单应用。
-对于基础较好的学生,引导他们探索圆周角定理的证明过程和拓展应用。
5.课堂小结,拓展延伸:对本节课的知识点进行总结,布置拓展性作业,激发学生的探究欲望。
-教师引导学生回顾本节课的学习内容,总结圆周角的概念和圆周角定理。
-布置拓展性作业,如研究圆周角定理在生活中的应用,提高学生的创新意识。
(二)过程与方法
1.通过直观演示和动手操作,让学生体会圆周角的定义,培养观察能力和动手能力。
2.通过小组合作探究圆周角定理,培养学生的合作意识和解决问题的能力。

九年级数学圆周角教案

九年级数学圆周角教案

word格式-可编辑-感谢下载支持九年级数学圆周角教案(1)学习目标:1、理解圆周角的概念。

2、经历探索圆周角的有关性质的过程,并能运用相关性质解决有关问题。

3、体会分类、转化等数学思想方法,学会数学地思考问题。

学习重点:理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题。

学习难点:体会分类、转化等数学思想方法,学会数学地思考问题.学习过程:一、认识圆周角。

1、还记的什么是圆心角?如图,∠BAC是圆心角吗?归纳得出结论:顶点在_______,并且两边________________________的角叫做圆周角。

2、指出下图哪些是圆周角。

二、探索圆周角的有关性质。

1、如图1,∠BOC、∠BAC有什么共同的地方,猜想他们的大小有什么关系?请你量一量验证一下。

2、你会证明吗?设BC所对的圆周角为∠BAC,圆心O与∠BAC有以下3种位置关系?(1)圆心O在∠BAC的一边上,(2)圆心O在∠BAC内,(3)圆心O在∠BAC外。

试通过三种情况证明你的猜想.得出结论:一条弧所对的圆周角等于它所对的圆心角的_______。

三、巩固练习。

练习册第28页第4、5、6、7、8、10、11、16、19、20、21题四、小结:1、顶点在_______,并且两边________________________的角叫做圆周角。

2、一条弧所对的圆周角等于它所对的圆心角的_______。

五、作业:六、反思:九年级数学圆周角教案(2)学习目标:1、掌握圆周角定理的推论,并会熟练运用这些知识进行有关的计算和证明;2、进一步培养观察、分析及解决问题的能力及逻辑推理能力;3、培养添加辅助线的能力和思维的广阔性。

学习重点:圆周角定理的推论及其推论的应用。

学习难点:熟练应用圆周角定理及其推论以及辅助线的添加。

学习过程:一、课前复习1、什么叫做圆周角?它的定理是什么?2、填空:(1)如图,∠BOC=50,∠BAC=_______。

(2)如图,∠BAC=120,∠BOC=_______。

最新圆心角和圆周角教案(实用5篇)

最新圆心角和圆周角教案(实用5篇)

最新圆心角和圆周角教案(实用5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新圆心角和圆周角教案(实用5篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

圆周角教案

圆周角教案

圆周角教案一、教学目标1.了解什么是圆周角,掌握圆周角的定义。

2.熟练掌握圆周角大小的计算方法。

3.能够应用圆周角的知识进行相关的计算和应用。

二、教学内容1.圆周角的定义所谓圆周角,就是圆上的一个弧所对应的圆心角。

当一个圆周上的两点,与该圆心所构成的角为圆周角。

圆周角度量的单位是角度,记作°。

其中一周的角度为360°。

在弧AB与CB上角度相等,而且它们所对应的中心角α相等。

这时,α=2∠ACB。

①、弧长:在圆上AB一段弧,AB的长度为l,而圆周角所对应的弧为AB,则角度的度数为:α=l÷π×180°三、教学方法授课法和实例教学法相结合,以活跃班级气氛,培养学生的思考能力和计算能力。

四、教学过程1、知识导入老师通过引导学生对圆进行观察,引导学生用已有的知识来对这个新的知识点进行认识。

2、定义讲解老师根据教材内容,通过讲解和举例的方式,把圆周角的定义告诉学生,让学生明确圆周角的含义和要点。

3、大小计算方法的讲解4、设计问题应用知识点、策略解决问题,培养学生的思考能力和计算能力,并在实际应用中不断加深对知识点的理解,提高应用技能。

(1)求下列圆周角度数:a.弧长为5π cm,所对圆周角度数的大小是多少?(2)在圆心角B的弧AB所对的圆周角是300°,而弧DE所对的圆心角D的度数是200°,求弧DE的度数。

5、总结归纳为了让学生进一步加深对知识点的了解和理解,需要老师总结归纳,梳理整个学习过程,再次回顾、强化掌握的内容点,提高学生对知识点的理解和应用。

五、教学反思圆周角是初中数学中的一个比较重要和基础的知识点,它与数学中许多基础概念和概念密切相关,比如说:弧长、半径、圆心角等,而它的大小也有多种计算方法,如弧长、以及半径的相关计算方法等。

教师在授课时应注重理论讲解,结合实际,引导学生进行思考和思维实践。

同时,教师还应在教学中注重提高学生的实际应用能力,培养学生的计算能力,从而提高学生的数学水平和学习能力。

24.3圆周角定理(教案)

24.3圆周角定理(教案)
另一个让我感到惊喜的是,学生在小组讨论中能够积极思考,提出自己的观点,并与其他同学进行交流。这种积极的课堂氛围有助于学生更好地理解和吸收知识。但同时,我也意识到在讨论过程中,需要适时引导学生,避免讨论偏离主题,确保每个学生都能跟上课堂进度。
此外,实践活动中的实验操作环节,虽然能够让学生们亲身体验到圆周角定理的应用,但我也发现部分学生在操作过程中存在一些细节问题,如量角不准确、计算错误等。针对这些问题,我打算在接下来的课程中增加一些关于测量和计算技巧的讲解,以提高学生们的实践操作能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角定理的基本概念。圆周角定理指的是圆周角等于其所对圆心角的一半。它在几何学中具有重要地位,可以帮助我们解决与圆相关的各种问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆内接四边形的性质,展示圆周角定理在实际中的应用,以及如何用它来解决问题。
五、教学反思
在今天的课堂中,我们探讨了圆周角定理这一章节。我发现学生们在理解圆周角定理的基本概念和应用方面表现得相当不错。他们对于圆周角与圆心角的关系有了直观的认识,而且能够通过小组讨论和实验操作,将理论知识应用到实际问题中。
不过,我也注意到在证明圆周角定理的过程中,有一部分学生感到困惑。这可能是因为几何证明需要较强的逻辑推理能力,而这一点对于他们来说还不是很熟练。在未来的教学中,我需要更加注重培养学生的逻辑思维能力,通过更多的例题和练习,帮助他们逐步掌握证明方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆周角》教案设计
谢世明
教学目标:一.知识技能
1.理解圆周角概念,理解圆周用与圆心角的异同;
2.掌握圆周角的性质和直径所对圆周角的特征;
3.能灵活运用圆周角的性质解决问题;
二.解决问题
1.发现和证明圆周角定理;
2.会用圆周角定理及推论解决问题.
教学重点:圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.
教学难点:发现并证明圆周角定理.
教学过程:
一.创设情景
如图是一个圆柱形的海洋馆, 在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?
二、认识圆周角.
1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点?
2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.)
3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.
4.圆周角与圆心角的联系和区别是什么?
三、探究圆周角的性质.
1.在下图中,同弧⌒AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想. 同弧⌒AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你
有什么发现呢?大胆说出你的猜出想.
2.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示, 验证学生的发现.
四、证明圆周角定理及推论.
1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角
的位置关系有几种情况?(见课件)
2.学生自己画出同一条弧的圆心角和圆周角, 将他们画的
图归纳起来, 共有三种情况:①圆心在圆周角的一边上; ②圆心在圆周角的内部; ③圆心在圆周角的外部. 见课件)
3.问题:在第一种情况中,如何证明上面探究中所发现的结
论呢?另外两种情况如何证明呢?
4.怎样利用有上结论证明我们的第一个猜想:圆弧所对的圆周角相等?(利用圆弧所对的圆心角相等)
5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么?
6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗?
8.在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
总结推论1:同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。

(也是圆周角定理的逆定理,要通过圆心角来转换)
五.应用迁移,巩固提高.
见课件(学生完成,教师点评)
六. 小结:本节课你认识了什么?掌握了哪些定理?有什么收获?
七. 课外作业.
教材P86练习.。

相关文档
最新文档