圆周角教学设计
《圆周角的性质》数学教案
《圆周角的性质》数学教案标题:《圆周角的性质》数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆周角的概念和性质。
- 能够运用圆周角的性质解决相关问题。
2. 过程与方法:- 通过观察、分析、归纳等活动,培养学生抽象思维和逻辑推理能力。
- 在探究过程中,学会用图形语言表达思考过程,提高几何直观能力。
3. 情感态度价值观:- 培养学生对数学的兴趣和热爱,体验数学的魅力。
- 让学生感受到数学知识在实际生活中的应用价值,增强学习的动力。
二、教学重点和难点:重点:理解并掌握圆周角的定义和性质。
难点:运用圆周角的性质解决实际问题。
三、教学准备:教具:多媒体课件,圆规,直尺,白板。
四、教学过程:(一) 导入新课(5分钟)1. 教师展示一些关于圆的图片,引导学生回顾之前学过的有关圆的知识,如半径、直径、弧度等。
2. 提出问题:“在圆中,除了直线角度,还有其他特殊的角吗?”引出圆周角的概念。
(二) 新授内容(30分钟)1. 定义讲解:教师以实例的形式,让学生明确什么是圆周角。
即顶点在圆上,两边都与圆相交的角就是圆周角。
2. 性质讲解:教师引导学生观察、比较圆周角与它所对应的圆心角的关系,发现圆周角等于它所对应圆心角的一半。
3. 练习巩固:设计一些简单的练习题,让学生通过实践来加深对圆周角性质的理解。
(三) 巩固提升(15分钟)1. 例题解析:选择一些典型的题目,详细解释解题思路,让学生了解如何运用圆周角的性质解决问题。
2. 自主练习:给出一些相关的题目,让学生独立完成,教师巡回指导。
(四) 小结反馈(10分钟)1. 学生小结:请学生分享本节课的学习心得,教师给予适当的点评和补充。
2. 教师总结:再次强调圆周角的定义和性质,并指出它们在解题中的重要作用。
五、作业布置:1. 复习课堂内容,整理笔记。
2. 完成课本上的习题。
六、教学反思:在教学过程中,要注意关注学生的反应,及时调整教学策略。
同时,要注重培养学生的自主学习能力和合作精神,让他们在探索中体验到学习的乐趣。
九年级数学上册《圆周角》教案、教学设计
(3)运用信息技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
2.教学过程:
(1)导入:以生活中的圆形物体为例,引导学生关注圆周角,激发他们的学习兴趣。
(2)新知探究:通过画图、观察、猜想、验证等环节,引导学生自主探究圆周角定理及其推论。
(2)关注学生的情感态度,鼓励他们在学习中勇于尝试、不怕困难。
(3)重视学生的反馈,及时调整教学策略,使教学更符合学生的实际需求。
四、教学内容与过程
(一)导入新课
在课堂开始时,我将以生活中的实例引入圆周角的概念。我会向学生展示一些圆形物体,如自行车轮、时钟等,并提问:“这些物体上有什么共同的特点?”引导学生关注圆形物体上的角度问题。接着,我会提出问题:“我们知道,圆是由无数个点组成的,那么这些点与圆心之间的角度有什么关系呢?”通过这个问题,激发学生对圆周角的探究欲望,从而引出本节课的主题——圆周角。
3.应用题:将圆周角知识应用于实际生活中,如测量圆形物体的周长、面积等。
让学生在练习中逐步提高解题能力,同时培养他们学以致用的意识。
(五)总结归纳
在课堂的最后,我会对本节课的知识点进行总结,强调圆周角的定义、定理和推论的重要性。同时,我会让学生分享他们在学习过程中的心得体会,以及如何运用所学知识解决实际问题。此外,我会布置课后作业,让学生进一步巩固所学知识,为下一节课的学习打下基础。
(二)讲授新知
1.圆周角的定义:首先,我会让学生观察圆上的任意两点与圆心所形成的角,引导学生发现这些角的度数是相等的。然后,我会给出圆周角的定义:圆周角是由圆上两点与圆心所形成的角,其度数等于所对圆弧的一半。
2.圆周角定理:在学生理解圆周角定义的基础上,我会引导学生通过画图、测量、计算等方法,发现并证明圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等。
关于圆周角教案四篇
•••••••••••••••••关于圆周角教案四篇关于圆周角教案四篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。
来参考自己需要的教案吧!下面是小编为大家收集的圆周角教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆周角教案篇1教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.掌握圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学流程安排活动流程图活动内容和目的活动1 创设情景,提出问题活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动5小结,布置作业从实例提出问题,给出圆周角的定义.通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.反馈练习,加深对圆周角定理的理解和应用.回顾梳理,从知识和能力方面总结本节课所学到的东西.教学过程设计问题与情境师生行为设计意图[活动1 ]问题演示课件或图片(教科书图24.1-11):(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.本次活动中,教师应当重点关注:(1)问题的提出是否引起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义.(4)学生是否清楚了要研究的数学问题.从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的`关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;3.改变圆的半径大小.本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的过程和结果.(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性.(3)学生是否会利用问题2的结论进行证明.数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题[活动4]问题(1)半圆(或直径)所对的圆周角是多少度?(2)90°的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.学生独立思考,回答问题,教师讲评.对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.对于问题(6),教师应重点关注(1)学生是否能由已知条件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解.(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.[活动5]小结通过本节课的学习你有哪些收获?布置作业.(1)阅读作业:阅读教科书P90—93的内容.(2)教科书P94 习题24.1第2、3、4、5题.教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.圆周角教案篇2教学目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号“”应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8圆周角教案篇3教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
初中数学初三数学下册《圆周角》教案、教学设计
本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了基本的几何知识和逻辑推理能力,具备了一定的图形观察能力和空间想象能力。在此基础上,学生对圆的性质和方程有一定了解,为学习圆周角奠定了基础。然而,圆周角涉及的概念和性质较为抽象,学生在理解上可能存在一定难度。此外,学生在解决与圆周角相关的问题时,可能缺乏有效的解题方法和技巧。因此,在教学过程中,教师应关注以下几点:
四、教学内容与过程
(一)导入新课
1.教学活动设计:利用多媒体展示生活中常见的圆形物体,如车轮、硬币、圆桌等,让学生观察并思考这些物体上的圆周角特点。
2.提问方式:教师提问:“大家知道什么是圆周角吗?圆周角有哪些特点?它在我们生活中有哪些应用?”
3.学生回答:鼓励学生积极回答,分享他们对圆周角的观察和认识。
2.提高题:选取一些涉及圆周角的几何图形,让学生独立完成求解。此类题目旨在培养学生的空间想象能力和逻辑推理能力。
设计意图:通过提高题目的练习,使学生能够将圆周角知识应用于实际问题中,提高解题技巧和思维水平。
3.拓展题:设计一些综合性的问题,让学生运用圆周角定理以及其他相关知识解决。此类题目有助于提高学生的综合运用能力和创新意识。
4.教师引导:根据学生的回答,教师总结圆周角的初步概念,并指出本节课将深入探讨圆周角的性质和应用。
(二)讲授新知
1.教学内容:讲解圆周角的定义,阐述圆周角与圆心角的关系,引入圆周角定理。
2.教学方法:采用直观演示、举例说明、推理证明等方式,让学生理解并掌握圆周角的性质。
3.教学步骤:
a.展示圆的图形,指出圆周角的定义。
1.注重启发式教学,引导学生通过观察、操作、推理等途径,发现圆周角的性质,提高学生的几何直观能力。
《圆周角》 教学设计
《圆周角》教学设计一、教学目标1、知识与技能目标理解圆周角的概念,掌握圆周角的两个特征。
经历探索圆周角定理的过程,理解并掌握圆周角定理及其推论。
能运用圆周角定理及其推论进行简单的计算和证明。
2、过程与方法目标通过观察、比较、分析圆周角与圆心角的关系,发展学生的合情推理能力和演绎推理能力。
通过小组合作交流,培养学生的合作意识和创新精神。
3、情感态度与价值观目标让学生在探索圆周角定理的过程中,体验数学活动的乐趣,激发学生学习数学的兴趣。
通过数学知识的实际应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。
二、教学重难点1、教学重点圆周角的概念和圆周角定理。
圆周角定理的推论及其应用。
2、教学难点圆周角定理的证明。
圆周角定理推论的灵活应用。
三、教学方法讲授法、探究法、练习法相结合四、教学过程1、导入新课展示生活中常见的含有圆周角的图片,如摩天轮、自行车车轮等,引导学生观察并思考这些图片中角的特点。
提出问题:这些角与我们之前学过的圆心角有什么不同?从而引出课题——圆周角。
2、讲授新课(1)圆周角的概念结合图形,给出圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角。
强调圆周角的两个特征:顶点在圆上;两边都与圆相交。
让学生通过观察、比较,判断一些角是否为圆周角,加深对概念的理解。
(2)圆周角定理的探究提出问题:在同圆或等圆中,同弧或等弧所对的圆周角与圆心角有什么关系?让学生动手画一画,量一量,通过测量同弧所对的圆周角和圆心角的度数,猜测它们之间的关系。
小组交流讨论,展示测量结果和猜测。
(3)圆周角定理的证明引导学生将圆周角的顶点进行移动,分三种情况进行讨论:圆周角的顶点在圆心处;圆周角的顶点在圆内;圆周角的顶点在圆外。
分别证明这三种情况下圆周角与圆心角的关系,从而得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半。
(4)圆周角定理的推论由圆周角定理,引导学生思考并得出推论 1:同弧或等弧所对的圆周角相等。
人教版九年级上册24.1.4圆周角教学设计
(四)课堂练习,500字
1.教师设计具有梯度性的练习题,让学生独立完成。
a.基础题:求给定圆周角的度数。
b.提高题:已知圆周角,求圆心角或弧度。
c.应用题:解决实际问题,如求圆的周长、面积等。
2.学生在练习过程中,巩固圆周角的知识,提高解题能力。
4.能够运用圆周角知识,结合其他数学知识,解决综合性问题,提高学生的数学综合运用能力。
(二)过程与方法
1.通过直观演示、动手操作、合作交流等教学活动,引导学生自主探究圆周角的性质和定理,培养学生的观察能力和逻辑思维能力。
2.通过对圆周角定理的证明,让学生体会数学推理的逻辑严密性,提高学生的推理能力。
(1)让学生通过画圆、量角等实践活动,自主发现圆周角的性质。
(2)组织学生进行小组讨论,引导学生运用已有知识,推导圆周角定理。
(3)教师适时给予指导,帮助学生突破证明过程中的难点。
3.案例分析,巩固知识
通过对典型例题的分析和讲解,让学生掌握圆周角定理的应用,提高学生的解题能力。
4.紧扣重难点,梯度训练
3.培养学生勇于挑战困难、克服困难的精神,增强学生的自信心和自我价值感。
4.引导学生认识到数学知识在实际生活中的应用价值,提高学生的数学素养,培养学生的社会责任感。
在教学过程中,教师要关注学生的个体差异,因材施教,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。同时,教师要善于运用教育机智,创设生动活泼的课堂氛围,激发学生的学习兴趣,提高教学效果。
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆周角的概念、性质和定理的理解与应用。
2.难点:圆周角定理的证明过程,以及在实际问题中的应用。
圆周角(三)数学教案
圆周角(三)数学教案标题:圆周角(三)数学教案一、教学目标:1. 知识与技能:学生能够理解和掌握圆周角的定义,性质及其应用。
2. 过程与方法:通过观察、分析和推理,提高学生的逻辑思维能力和空间想象能力。
3. 情感态度价值观:培养学生对数学学习的兴趣,养成良好的学习习惯。
二、教学重点和难点:重点:圆周角的定义和性质。
难点:圆周角的应用。
三、教学过程:(一)导入新课教师可以通过一些生活中的例子,比如钟表指针形成的角,来引入圆周角的概念。
让学生在实际情境中感知圆周角的存在,并激发他们的学习兴趣。
(二)讲授新课1. 圆周角的定义:顶点在圆心的角叫做圆心角;顶点不在圆心,而两边都与圆相交的角叫做圆周角。
2. 圆周角的性质:同弧所对的圆周角相等;等弧所对的圆周角相等;直径所对的圆周角是直角。
教师可以结合图形,引导学生理解并记住这些性质。
同时,鼓励学生自己动手画图,加深对圆周角的理解。
(三)课堂练习设计一些关于圆周角的习题,让学生进行练习。
如判断哪些角是圆周角,计算圆周角的度数等。
通过练习,检查学生是否真正掌握了圆周角的知识。
(四)课堂小结回顾本节课的主要内容,强调圆周角的定义和性质,提醒学生注意理解和记忆。
(五)作业布置布置一些关于圆周角的习题,让学生在课后进行复习和巩固。
四、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略。
对于学生的疑惑和困难,要耐心解答,帮助他们克服困难。
同时,也要注重培养学生的自主学习能力,让他们学会独立思考和解决问题。
圆周角的教学设计
圆周角的教学设计教学目标:1.理解圆周角的概念和相关术语。
2.掌握计算圆周角的方法和公式。
3.运用圆周角的概念和计算方法解决实际问题。
教学内容:1.圆周角的定义和概念。
2.弧度与度数的转换。
3.圆周角的计算方法和相关公式。
教学步骤:引入活动:1.准备一张圆形的图片或实物,引导学生观察和描述圆形的特点。
2.引导学生思考,一个完整的圆周有多少度?为什么?3.引导学生理解圆周角的概念,即一个完整的圆周对应的角度为360度。
教学展示:1.介绍弧度制和度数制的概念。
2.引导学生将度数制的角度转换为弧度制。
3.在黑板上绘制一个单位圆,并在圆周上标出一个角度为60度的弧。
4.引导学生计算这个角度对应的弧度数。
教学探究:1.引导学生思考,如果一个角度的度数是60度,它对应的弧度数又是多少呢?2.引导学生推测圆周角的计算方法和公式。
3.让学生自行计算度数为90度和120度的角对应的弧度数,并与其他同学分享计算结果。
4.分组活动:将学生分成小组,在给定的角度范围内计算角度和弧度的对应关系,并讨论归纳出计算公式。
教学总结:1.梳理圆周角的概念和弧度制、度数制的转换关系。
2.引导学生总结出计算圆周角的方法和公式。
3.解答学生在探究活动中提出的问题。
巩固练习:1.给学生发放练习册,让他们在规定的时间内完成练习题。
2.师生互动,解答学生在练习中的问题。
拓展活动:1.给学生提供更复杂的问题,要求他们运用圆周角的概念和计算方法解决实际问题。
2.分角度组织小组竞赛,让学生通过回答问题比赛来锻炼对圆周角的理解和应用能力。
教学反思:1.教学设计的目标是否达到?2.学生对圆周角的理解和应用能力如何?3.教学过程中有没有什么需要改进的地方?4.学生对圆周角的学习有没有什么困难和疑惑?5.针对学生的困惑,如何进行差异化辅导和帮助?。
人教版九年级上册数学【教学设计】 圆周角定理
玻璃乙圆周角的定理 教学目标(一)知识与技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。
(二)过程与方法1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。
2、通过观察图形,提高学生的识图的能力3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。
(三)情感与价值观1、经过探索圆周角定理的过程,发展学生的数学思考能力。
2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。
教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点1.认识圆周角定理需要分三种情况逐一证明的必要性。
2.推论的灵活应用以及辅助线的添加教学突破让学生学会分类讨论、转换化归是教学突破的关键教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容,制作圆形纸片教学过程活动1: 创设情景,引入概念师:课件(出示圆柱形海洋馆图片)右图是圆柱形海洋馆的俯视图.海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物.如图是圆柱形的海洋馆横截面的示意图, AB⌒表示圆弧形玻璃窗.同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,师:同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角.师:提出问题问题1:观察∠ACB、∠ADB和∠AEB的边和顶点与圆的位置有什么共同特点?问题2:∠ACB、∠ADB和∠AEB与∠AOB有什么区别?问题3:∠ACB、∠ADB和∠AEB有哪些共同点?(教师引导学生进行探究,并关注以下问题)1、问题的出示是否引起学生的兴趣2、学生是否理解示意图3、学生是否理解圆周角的定义4、学生是否清楚了要探究的数学问题生:这三个角的共同点有两个:①顶点都在圆周上;②两边都与圆相交.师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.)设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?(学生思考片刻之后,教师就每个图形分别请一位学生作答.)玻璃乙(C)设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较.活动2:问题探究探究同弧所对圆周角及圆周角与圆心角的关系师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景象范围更广一些?预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了.师提出:你是如何知道的?预设生1:因为我发现∠AOB 比∠ACB 、∠ADB 和∠AEB 都大.预设生2:因为发现在圆内当角的顶点距离弧越近角就越大师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的. 师提出问题:1、弧AB 所对的圆周角的个数有多少个?2、弧AB 所对的圆周角的度数是否发生变化?预设生:有无数个,度数相等师:你是怎么知道的?预设生:观察猜到的。
《圆周角》教学设计
《圆周角》教学设计1、教学目标分析(1)知识与技能①理解圆周角的概念,掌握圆周角与圆心角的关系;②探索圆周角的性质和直径所对圆周角的特征;③能运用圆周角的性质解决问题。
(2)过程与方法①通过观察、比较、分析圆周角与圆心角的关系,发展学生合理推理能力和演绎推理能力;②通过观察图形,提高学生的识图能力;③通过引导学生添加合理的辅助线,培养学生的创新能力。
(3)情感态度与价值观①引导学生对图形的观察,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心;②在探索圆周角定理的过程中,体会、学习运用分类讨论、转化的数学思想解决问题,激发学生学习几何的热情,丰富学生数学活动的成功体验。
2、教学重、难点分析重点:圆周角与圆心角的关系;圆周角的性质和直径所对圆周角的特性。
难点:运用圆周角的性质解决问题。
3、教学准备多媒体演示。
4、教学过程 4.1温故引新 (1)什么叫圆心角?(2)圆心角、弧、弦及弦心距之间有什么关系? 说明:复习旧知,为探究新知做好准备。
4.2创设情境,引出课题(1)观察下面的三幅图的∠ABC 与圆O 的位置关系有什么相同,又有什么不同?图3图2图1B(2)图1的∠ABC 有什么特征? 4.3自主合作、探索新知 探究1 圆周角定义我们把图1中的∠ABC 这样的角叫做圆周角。
现在请你给“圆周角”下一个定义吗?做一做:如图所示,请说出哪些是圆周角?⑤⑥⑦⑧③①BB探究2 圆周角性质1想一想:如图所示,你能画出多少个弧AB 所对的圆周角? 这些圆周角有什么关系?同弧所对的圆周角有无数个,而所有圆周角都是由它所对的弧决定的,那么这条弧所对的圆周角与圆心角有什么数量关系(如图)?先自己思考,测量,再小组讨论,证明。
探究3圆周角性质2半圆或直径所对的圆周角是什么角?90度的圆周角所对的弦是什么?4.4巩固练习 4.5本课小结(1)本节课学习了哪些知识?图3图2图1。
人教版数学九年级上册24.1.4《圆周角》教案
学生小组讨论的环节,让我看到了学生们的思维碰撞。他们提出了很多有创意的想法,也尝试着去解决实际问题。不过,我也发现有些学生在讨论中过于依赖同伴,自己的思考还不够深入。
人教版数学九年级上册24.1.4《圆周角》教案
一、教学内容
人教版数学九年级上册24.1.4《圆周角》教案,主要包括以下内容:
1.圆周角的定义:通过直观演示和实例,让学生理解圆周角是由圆上的两条半径或弦所夹的角,并掌握圆周角的度数是360度。
2.圆周角定理:引导学生探究并证明圆周角等于其所对的圆心角的一半,以及圆内接四边形的对角互补。
-着重讲解圆周角定理的证明过程,特别是如何通过几何构造和演绎推理得出圆周角等于其所对圆心角的一半。
-结合实际例题,如测量圆形场地中的角度问题,强调圆周角定理在解决具体问题中的应用。
-对于特殊圆周角,通过对比分析,让学生掌握直角圆周角和锐角圆周角的性质,并能灵活应用。
2.教学难点
-理解并掌握圆周角定理的证明过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,如圆周角定理的证明过程,我会通过举例和比较来帮助大家理解。
人教版九年级数学上册24.1.4《圆周角》教学设计
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
圆周角(一)数学教案
圆周角(一)数学教案
标题:圆周角
一、教学目标:
1. 学生能够理解并掌握圆周角的概念。
2. 学生能够运用圆周角的性质解决实际问题。
3. 通过探究学习,培养学生的观察力和逻辑思维能力。
二、教学重点与难点:
1. 教学重点:圆周角的概念及其性质。
2. 教学难点:运用圆周角的性质解决实际问题。
三、教学准备:
1. 圆形教具
2. 多媒体设备
四、教学过程:
1. 导入新课:
通过回顾以前学习过的关于圆的知识,引入圆周角的概念。
2. 新课讲解:
(1)定义:圆周角的概念,强调圆周角的顶点在圆上,两边都与圆相交。
(2)性质:引导学生观察并总结圆周角的性质,如圆心角等于它所对的圆周角的两倍等。
3. 实例解析:
通过具体的例子,让学生理解如何运用圆周角的性质解决问题。
4. 小组讨论:
分小组进行讨论,设计一些题目让各小组完成,然后分享他们的答案和解题思路。
5. 巩固练习:
设计一些习题供学生自我检查,巩固他们对圆周角的理解。
6. 课堂小结:
让学生复述本节课学到的内容,教师进行补充和点评。
7. 布置作业:
设计一些难度适中的题目作为家庭作业,以进一步巩固学生的学习效果。
五、教学反思:
在课程结束后,反思本次教学的效果,包括学生对知识的掌握程度,教学方法的有效性,以及需要改进的地方。
《圆周角教案》
《圆周角教案》word版一、教学目标1. 让学生理解圆周角的概念,掌握圆周角的性质。
2. 培养学生运用圆周角定理解决实际问题的能力。
3. 提高学生对圆的知识的认知,为学习圆的其他性质和定理打下基础。
二、教学重点与难点1. 教学重点:圆周角的概念,圆周角的性质。
2. 教学难点:圆周角定理的证明和应用。
三、教学方法1. 采用问题驱动法,引导学生探究圆周角的性质。
2. 运用直观演示法,让学生通过观察、操作、体验圆周角的特征。
3. 运用合作学习法,培养学生团队协作精神,提高解决问题的能力。
四、教学准备1. 教具:圆规、直尺、多媒体设备。
2. 学具:每人一套圆规、直尺、练习本。
五、教学过程1. 导入新课利用多媒体展示圆周角动画,引导学生观察圆周角的特点,引发学生思考。
2. 探究圆周角的性质(1)让学生用圆规和直尺画一个圆,并标出圆心O和任意一点A。
(2)让学生以点A为顶点,分别画出两条射线,使其分别与圆相交于点B和点C。
(3)引导学生观察∠AOB和∠AOC的关系,发现∠AOB=∠AOC。
(4)让学生总结圆周角的性质,得出结论:圆周角等于其所对圆弧的两倍。
3. 讲解圆周角定理讲解圆周角定理的证明过程,让学生理解圆周角定理的含义。
4. 课堂练习(1)让学生运用圆周角定理,解决实际问题。
(2)让学生独立完成练习题,巩固所学知识。
5. 总结与拓展总结本节课所学内容,强调圆周角的概念和性质。
拓展:引导学生思考圆周角在实际生活中的应用,如测量圆的直径等。
6. 布置作业让学生课后完成相关练习题,巩固所学知识。
六、教学评价1. 课堂问答:通过提问学生对圆周角的概念和性质的理解,检查学生掌握情况。
2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对圆周角定理的应用能力。
3. 小组讨论:观察学生在小组讨论中的参与程度,合作解决问题的情况,评价学生的团队协作能力和问题解决能力。
七、教学反思课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
《圆周角》教案设计
《圆周角》教案设计一、教学目标1.理解圆周角的概念,掌握圆周角定理及其推论。
2.能够运用圆周角定理解决实际问题,提高学生的逻辑推理能力。
3.培养学生的几何直观能力和空间想象力。
二、教学重难点1.教学重点:圆周角定理及其推论。
2.教学难点:圆周角定理的应用。
三、教学过程1.导入新课(1)引导学生回顾初中阶段学习的圆的相关知识,如圆的性质、圆的周长和面积等。
(2)提问:在圆中,哪些角与圆有关?它们之间有什么关系?(3)引导学生思考并回答,从而引出圆周角的概念。
2.探索圆周角的性质(1)让学生通过观察、画图、讨论等方式,发现圆周角定理。
(2)引导学生运用已学的圆的性质,证明圆周角定理。
3.应用圆周角定理(1)让学生通过练习题,巩固圆周角定理的应用。
(2)引导学生运用圆周角定理解决实际问题,如求圆弧的长度、圆的半径等。
(3)教师选取典型题目进行讲解,帮助学生掌握解题方法。
4.圆周角定理的推论(1)引导学生发现圆周角定理的推论,并证明。
5.课堂小结(2)教师点评本节课学生的表现,给予鼓励和指导。
6.课后作业(1)布置课后作业,巩固本节课所学知识。
(2)要求学生独立完成作业,培养独立思考能力。
四、教学反思1.圆周角的概念圆周角是指以圆心为顶点的角,其两边分别是圆的切线和弧。
2.圆周角定理圆周角定理:圆周角等于其所对的圆心角的一半。
证明:设圆的半径为r,圆心角为A,圆周角为B。
由圆心角的定义,可知圆心角的度数为360°/r。
由圆周角的定义,可知圆周角的度数为弧长所对的圆心角的度数。
设弧长为l,则圆周角的度数为l/r。
由圆心角和圆周角的定义,可知圆周角的度数为A/2。
因此,圆周角定理得证。
3.圆周角定理的推论推论1:圆周角的度数等于其所对的圆弧的度数。
推论2:圆周角的度数等于其所对的圆心角的度数的一半。
4.圆周角定理的应用(1)求圆弧的长度已知圆的半径r和圆周角B,求圆弧的长度l。
解:由圆周角的定义,可知圆周角的度数为B=l/r。
《圆周角》教案
《圆周角》教案【学习目标】1.理解圆周角的定义,理解与圆心角的关系,会在具体情景中辨别圆周角.2.掌握圆周角定理及推论,并会使用这些知识实行简单的计算和证明.【教学重点】是理解并掌握圆周角定理及推论【教学难点】难点是圆周角定理的证明中采用的分类思想及由“一般到特殊”的数学思想方法; 【学法指导】预习课本、完成课前导学案学习内容,对于疑难问题,小组长收集信息,反馈给老师,老师在本堂课向学生逐一解答【学习流程】导 学 过 程方法导引 【自主学习,基础过关】 (一)知识回顾,温故知新1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? (二)自学自悟,自主检测1.阅读教材p85第一、二段,并认真读图,如图1,视角∠AOB 叫做 角, 而视角∠ACB 、∠ADB 和∠AEB 不同于视角∠AOB 这个类的角,我们把 ∠ACB 、∠ADB 和∠AEB 这个类的角叫做 . 2. 圆周角定义:----------------------------------------------. 圆周角定义的两个特征:(1)顶点都在 ; (2)两边都与圆. 3.自己完成“当堂达标”的第1题。
(独立完成)【合作探究,释疑解惑】活动1:(1) 阅读教材P85“探究”内容,动手量一量(如图2):问题1:同弧(弧AB )所对的圆心角AOB ∠与 圆周角ACB ∠的大小关系是怎样的?问题2:同弧(弧AB )所对的圆周角ACB ∠与圆周角ADB ∠的大小关系是怎样的?(2)规律:同弧所对的圆周角的度数 ,并且它的度数恰好等于这条弧所对的圆心角的度数的 .活动2:(1) 同学们在下面图3的⊙O 中任取所对的圆周角,并思考圆心与圆周角有哪几种位置关系?(2)实际上,圆心与圆周角存有三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如图4)学生思考,抢答,教师补充 阅读教材P85-86结合课前导学案学习内容,完成独立完成达标练习后,小组互查。
圆周角教学设计
圆周角教学设计【教学设计】圆周角一、教学目标:1. 理解圆周角的概念,能够正确运用圆周角的定义;2. 掌握圆周角的度量方法,能够准确计算圆周角的度数;3. 能够运用圆周角的性质解决与圆周角相关的问题。
二、教学重点与难点:1. 教学重点:圆周角的定义、度量方法和性质;2. 教学难点:能够运用圆周角的性质解决与圆周角相关的问题。
三、教学过程:1. 导入(5分钟)教师通过引入一个实际生活中的例子,如钟表上的时针和分针,引发学生对角度的认识和度量方法的思考。
2. 概念讲解(15分钟)教师通过幻灯片或黑板板书,给出圆周角的定义:当一个角的顶点在圆的圆心上,两边分别与圆上两条弧相交时,这个角叫做圆周角。
并解释圆周角的度量方法。
3. 计算练习(20分钟)教师在黑板上给出一些圆周角的图形,让学生根据定义和度量方法计算角的度数。
学生可以尝试使用计算器进行计算。
4. 性质讲解(15分钟)教师讲解圆周角的性质,如:同一个圆上的圆周角相等;圆周角的度数等于其对应的弧所对的圆心角的度数。
5. 解决问题(25分钟)教师给出一些与圆周角相关的问题,让学生运用圆周角的性质解决。
例如:已知一个圆的半径为5cm,圆心角的度数为60°,求对应的弧长;已知一个圆的半径为8cm,弧长为10πcm,求对应的圆心角的度数。
6. 拓展延伸(10分钟)教师提出一些拓展问题,让学生思考和探索更多与圆周角相关的问题。
例如:如何证明同一个圆上的圆周角相等?7. 总结归纳(5分钟)教师对本节课的内容进行总结归纳,强调圆周角的重要性和应用价值。
四、教学资源与评价:1. 教学资源:幻灯片、黑板、计算器等;2. 教学评价:教师观察学生的学习情况,检查学生计算和解决问题的能力,以及对圆周角概念和性质的理解程度。
可以通过课堂练习、小组讨论和个人答题等方式进行评价。
五、教学延伸:1. 学生可以通过观察日常生活中的圆形物体,如车轮、餐盘等,寻找其中的圆周角,并尝试计算其度数;2. 学生可以通过在线学习资源,如视频教程、练习题等,进一步加深对圆周角的理解和应用。
初中圆周角教案
初中圆周角教案教学目标:1. 理解圆周角的概念,掌握圆周角的性质和定理。
2. 培养学生的观察、分析、推理和归纳能力。
3. 渗透数学思想方法,引导学生从特殊到一般,再从一般到特殊的思考方式。
教学重点:圆周角的概念和定理。
教学难点:圆周角定理的证明和应用。
教学准备:1. 教学课件或黑板。
2. 几何图形和模型。
教学过程:一、导入(5分钟)1. 复习提问:什么是圆心角?圆心角的度数定理是什么?2. 引出新的角:如果顶点不在圆心而在圆上,会得到什么样的新角?二、新课讲解(15分钟)1. 圆周角的概念:顶点在圆周上,并且两边都和圆相交的角叫做圆周角。
2. 圆周角的性质:圆周角的度数等于它所对弧的度数。
3. 圆周角定理:圆周角的度数等于所对圆弧的度数。
三、实例演示和练习(10分钟)1. 通过电脑演示或实物模型,展示圆周角的形成和性质。
2. 让学生观察和分析实例,引导学生运用圆周角定理进行计算和论证。
四、课堂练习(10分钟)1. 布置一些有关圆周角的练习题,让学生独立完成。
2. 引导学生运用圆周角定理解决问题,巩固所学知识。
五、总结和拓展(5分钟)1. 总结本节课所学内容,强调圆周角的概念和定理。
2. 提出一些拓展问题,激发学生进一步探究的兴趣。
教学反思:本节课通过导入、新课讲解、实例演示和练习、课堂练习、总结和拓展等环节,让学生掌握了圆周角的概念和定理。
在教学过程中,注意引导学生从特殊到一般,再从一般到特殊的思考方式,培养了学生的观察、分析、推理和归纳能力。
同时,通过课堂练习和拓展问题,让学生灵活运用所学知识解决问题,提高了学生的学习兴趣和思维能力。
在今后的教学中,要继续加强对圆周角定理的证明和应用的讲解,让学生更好地理解和掌握圆周角的性质。
同时,要注意引导学生运用数学思想方法,培养学生的逻辑思维能力。
最新圆心角和圆周角教案(实用5篇)
最新圆心角和圆周角教案(实用5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!最新圆心角和圆周角教案(实用5篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周角教学设计
简易多媒体教学环境□交互式多媒体教学环境□网络多媒体环境教学环境□移动学习□其他
五、信息技术应用思路
充分运用电脑多媒体技术,利用几何画板制作课件,先让学生用度量的方法猜想同一条弧所对的圆周角相等,再利用几何画板的动态演示功能,拖动圆周角的顶点,使其与这个弧所对的圆周角重合的过程,直观、动态地展现出几何对象的位置关系、数量关系及运动变化规律,引导学生对图形进行观察,并让学生在观察中从不同的角度丰富感性的认识,清楚的认识圆周角,并能从中感知圆周角与圆心角的位置关系,使学生对所学知识清楚易懂,从而轻松的解决了教学的难点,同时也培养了学生的逻辑思维能力,激发了学生的求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习数学的自信心。
从而顺利地实现了数学教学的三维目标。
六、教学流程设计
教学环节教师活动学生活动信息技术支持
创设情境,导入新课(5分钟)演示课件:展示一个圆柱形的海洋馆.
在这个海洋馆里,人们可以通过其中的圆
弧形玻璃窗AB观看窗内的海洋动物
出示海洋馆的横截面示意图:
利用几何画板演示,让学生感受圆周角的
概念,并结合示意图,给出圆周角的定义.
在课件、
几何画板的
演示下,感受
圆周角的概
念
多媒体课件
几何画板
(从生活中
的实际问题
入手,使学生
认识到数学
总是与现实
问题密不可
分)
合作交流,
探究新知
(20分
钟)活动一:
问题1 学生亲自动
手,利用度量
工具动手实
验,进行度
量,发现结
论.并总结发
现规律:同弧
多媒体课件
几何画板
(引导学生
发现,主动得
出结论,以激
另外两种情况如何证明,可否转化成第一种情况呢?
教师演示圆心与圆周角的三种位置关系.
教师引导学生从特殊情况入手证明所发现的结论:
同弧或等所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.
活动三:
问题1:一个特殊的圆弧——半圆,它所对的圆周角是什么样的角? A O
B
C 1
C 2
C 3
问题2:如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?
教师引导学生得出推论:
半圆(或直径)所对的圆周角是直角;
90°的圆周角所对的弦直径.
学生写出已知、求证,完成证明.
在圆周角定理的基础上通过探究得出圆周角定理的推论,并且能够正确
熟练的掌握
这个圆周角定理的推论
的数学思想研究问题.培养学生思维的深刻性. 问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题.)
多媒体课件展示活动三
课件出示例题:
如图7-30,OA ,OB ,OC 都是⊙O 的
一名中等生上黑板完成,多媒体课件
(通过本题,
例题示范,应用新知(5分钟)半径,∠AOB=2∠BOC.求证:∠ACB=2
∠BAC.
其它同学把
证明写在练
习本上.
让学生通过
自己的思维
活动得到解
题思路的探
索过程,由学
生自己完成
证明,使学生
切实从应用
上加深对圆
周角的理解)
灵活应用,巩固提高(5分钟)课件显示:
1、如图,已知圆心角∠AOB=100°,求
圆周角∠ACB、∠ADB的度数?
2、一条弦分圆为1:4两部分,求这弦所
对的圆周角的度数?
学生先独立
解决问题,然
后提出自己
的看法,再分
组讨论,并鼓
励学生上讲
台演示
多媒体课件
(通过课堂
练习,检查学
生对基础知
识的掌握情
况,了解学生
是否圆周角
的定理及推
论有更深刻
的理解,使学
生进一步巩
固知识,运用
知识。
)
归纳总结,形成体系(3分钟)课件显示:
通过这堂课的学习你有什么收获?知道了
哪些新知识?学会了做什么
通过小结使
学生归纳、梳
理总结本节
的知识、技
能、方法,将
本课所学的
知识与以前
所学的知识
进行紧密联
结,有利于培
养学生数学
思想、数学方
法、数学能力
和对数学的
积极情感.
多媒体课件
附:《问题训练评价单》
《24.1.4圆周角教学设计问题训练——评价单》
班级:姓名:
1.同圆中两弦长分别为x1和x2它们所对的圆心角相等,那么()
A.x1>x2 B.x1<x2 C. x1=x2 D.不能确定
2.下列说法正确的有()
①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴
A.1个B.2个C.3个D.4个
3.在⊙O中同弦所对的圆周角()
A.相等B.互补C.相等或互补D.以上都不对
4.一条弦恰好等于圆的半径,则这条弦所对的圆心角为________
5.如图所示,已知AB、CD是⊙O的两条直径,弦DE∥AB,
∠DOE=70°则∠BOD=___________
6.如图所示,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA为半径的圆交AB于点D,则∠ACD=___________
D
第 9 题图
第 8 题图
O
C
B
A B
C
D E
A
7.如图所示,在△ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°
(1)求证△BDE是等边三角形;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
A
B
C
E
自我评价:小组评价:教师评价:。