BP算法的缺点与改进

合集下载

BP算法在负荷预测中存在的问题

BP算法在负荷预测中存在的问题

3.2.2 BP 算法在负荷预测中的存在的问题
BP 算法由于包含有隐含层的多层前馈网络,因而大大的提高了神经网络的分类,但是经过实践研究发现,BP 算法存在收敛速度慢,学习效率低等问题,因而如果将其直接使用在负荷预测中时往往会出现问题。

BP 算法应用在负荷预测中存在着以下缺点:
(1)易形成局部最小而全局得不到最优。

BP 算法是一种非线性优化算法,它的实质从数学上看其实是一种梯度下降法,而它得到的网络误差曲面是一种复杂的高维的曲面,沿着曲面的负梯度调整权值的时候,会出现容易收敛的局部最小点,但并不是全局最优点。

(2)BP 算法效率低,收敛速度慢。

由于要保证算法的收敛性,必须设定学习率η很小,反向传播的时候网络参数的调节幅度不能过大,因而往往需要进行成千上万次迭代才能得到预期的结果。

(3)BP 神经网络中隐含层神经元数、网络参数以及连接权初值选择等问题目前尚缺乏理论支撑,只能依靠经验进行选择。

(4)BP 神经网络的泛化能力弱,训练新样本的时候有遗忘旧样本的趋势。

从以上分析可知,BP 神经网络存在的主要问题有收敛速度慢,学习效率低,迭代次数高,计算量大、训练易瘫痪、隐含层神经元个数难以确定等问题。

另外因为BP 算法比较复杂,隐含层神经元个数、激励函数等都是靠经验进行选择,长久以来这方面的理论还不够成熟,缺乏理论支持。

要想将其更好的应用在电力负荷预测中,必须对其进行一定的改进。

BP神经网络介绍

BP神经网络介绍

BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。

它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。

一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。

BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。

在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。

在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。

最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。

二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。

BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。

(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。

BP神经网络算法

BP神经网络算法

BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。

每个连接都有一个权重,表示信息传递的强度或权重。

算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。

2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。

重复该过程,直到达到输出层。

3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。

4.反向传播:根据误差反向传播,调整网络参数。

通过链式求导法则,计算每层的误差并更新对应的权重和阈值。

5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。

优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。

(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。

(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。

(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。

2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。

(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。

(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。

三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。

2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。

3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。

4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。

基本 BP 神经网络算法改进研究

基本 BP 神经网络算法改进研究
A r t i f i c i a l I n t e l l i g e n c e・ 人工智能
基本 E I P神经 网络算法 改进研 究
文/ 顾润龙
键词】B P 神经 网络 算 法 改进
随着 科学 技 术的 飞速 发展 ,人 工神 经 网 I 得 到了迅速 的发展 ,它成 为了智能领域 中 [ 要 组成部分之一 ,现 已被应 用到多个领域 t B P神经 网络算 法模型 是人 工神经 网络 卜 _ ‘ 个典型算法 ,它具有 较强的非线性映射 f ,对 解决一些非线性 问题 具有重要作用 , 它 的网络拓扑结构较为 简单 ,还具有较高 搓 精度 以及较强的可操作性 。
收 敛 速 度 过慢
在标 准 B P网络学 习的过程 中,其学 习速 : 敛 的速度 较慢 ,这种 情况容易导 致 B P算 l 出现一个 持续时间较长的输 出误差平 台。
不 能确 保 收 敛 的 最 优 结 果
标准 B P网络算法是 一个针对数值 优化 的 } 性 优化问题 ,它不可避免 的也会存在局部 、 值 的问题 。BP网络会 沿着一 个局部 的方 改善 极值 ,然后希望使 输出的误差函数 、 化 的一组全局解 ,但通常得 不到这一组全 l 二 是得 到一个局部 的极小值 ,不能达到使 I 的误差 函数最小化的 目的 。
具 有 一 定 的 不稳 定 性
标 准的 B P算法具有 一定的不稳 定性 ,这 P网络 与人 脑 的主 要 区别 之一 ,BP在 完 练进入 新的学习模式 时,其 训练好的连接 数就 会被打乱 ,导致训练好 的记 忆消失 , 的学 习模 式也会被打破 ,只 能学 习新的模 而 人在 学习新的知识 时,不 会对 原有记忆 太大 的影响 , 人 的大脑 系统是 比较稳定的。

标准BP算法及改进的BP算法

标准BP算法及改进的BP算法

自适应学习速率应用
P = -1:0.1:1 T = [-0.96 -0.577 -0.0729 0.377 0.641 0.66 [0.461 0.1336 -0.201 -0.434 -0.5 -0.393 -0.1647 0.0988 0.3072 0.396 0.3449 0.1816 -0.0312 0.2183 -0.3201 ]; [R,Q] = size(P); [S2,Q] = size(T); S1 = 5; [W1,B1] = rands(S1,R); [W2,B2] = rands(S2,S1);
10
2
Performance is 0.0199998, Goal is 0.02
10 Training-Blue Goal-Black
1
10
0
10
-1
10
-2
0
100
200
300 400 664 Epochs
500
600
采用动量法时的训练误差记录
1.3 自适应学习率调整法
在BP算法中,网络权值的调整取决于学习 BP算法中,网络权值的调整取决于学习 速率和梯度。在标准BP 速率和梯度。在标准BP 算法中,学习速率 是不变的。 而在自适应学习率调整法中,通常学习速 率的调整准则是:检查权值的修正是否真 正降低了误差函数,如果确实如此,则说 明所选的学习率小了,可对其增加一个量; 若不是则说明产生了过调,那么就应减小 学习速率的值。
标准BP算法及改进的 标准BP算法及改进的BP 算法及改进的BP 算法应用
1.1 标准的BP算法 标准的BP算法
BP标准的BP算法是基于梯度下降法,通过 BP标准的BP算法是基于梯度下降法,通过 计算目标函数对网络权值和阈值的梯度进 行修正。 X(k + 1 ) = X(k) - µ∆F( X(K) ) X(K)为由网络所有权值和阈值所形成的向 X(K)为由网络所有权值和阈值所形成的向 量; µ为学习速率; ∆F( X(K) )为目标函数的梯度; )为目标函数的梯度;

BP网络算法的问题及改进

BP网络算法的问题及改进

经验选取的。
4.对于新加入的样本, 要影响到已经学完的样本。
5.描 述 每 个 输 入 特 征 样 本 的 数 目 要 求 必 须 相 同 。
( 二) 改进 BP 算法
1.改进算法描述 为了克服传统 BP 算法收敛速度慢且容易陷入
局部极小的问题, 我们对标准 BP 算法进行了改进。改进主要有两点:
(1) 自适应学习率 学习速率 & 的选择很重要, & 大则收敛快, 但
果当前的误差梯度修正方向正确, 就增大学习率, 加入动量项; 否则减
小学习率, 甩掉动量项, 从而使学习速度加快, 效率有较大提高。
3.改进算法流程图 改进 BP 算法的流程图如图 1 所示。
图 3 改进学习率 BP 算法误差曲线图 Figure 4- 3 Improve d le a rn ra te a rithme tic e rror curve
当△E<0; &=&
(5- 5)
当△E<0; &=0
(5- 6)
其中△E=E(t)- E(t- 1)
(5- 7)
2.改进之处 与 BP 算法相比, 本算法有两点改进:
(1)降低权值修改频率, 使权 值 沿 总 体 误 差 最 小 的 方 向 调 整 , 使 总
误差收敛的速度加快。
(2)根据情况确定学习速率, 即让学习速率 ! 和 动 量 项 & 可 变 , 如
类, 在实际应用中也取得了较好的效果, 但它仍存在着以下问题:
1.学 习 算 法 的 收 敛 速 度 很 慢 。
2.局部极小: 从数学角度看, BP 网络的学习 过 程 使 用 的 是 最 速 下
降梯度法, 所以不可避免的会遇到优化过程中最常见的局部极小问

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究优化算法是神经网络中的关键技术之一,它可以帮助神经网络快速收敛,有效地优化模型参数。

目前,常用的优化算法包括梯度下降法、动量法、Adagrad、Adam等。

本文将比较这些优化算法的优缺点。

1. 梯度下降法(Gradient Descent)梯度下降法是最基本的优化算法。

它通过计算损失函数对参数的梯度,不断地朝着梯度的相反方向更新参数。

优点是实现简单,容易理解。

缺点是容易陷入局部最优,并且收敛速度较慢。

2. 动量法(Momentum)动量法在梯度下降法的基础上增加了动量项。

它通过累积之前的梯度信息,使得参数更新时具有一定的惯性,可以加快收敛速度。

优点是减少了陷入局部最优的可能性,并且对于存在波动的梯度能够平滑更新。

缺点是在平坦区域容易产生过大的动量,导致无法快速收敛。

3. AdagradAdagrad算法基于学习率的自适应调整。

它通过累积梯度平方的倒数来调整学习率,使得对于稀疏梯度的参数每次更新较大,对于频繁出现的梯度每次更新较小。

优点是适应性强,能够自动调整学习率。

缺点是由于学习率的不断减小,当训练时间较长时容易陷入局部最优。

4. AdamAdam算法结合了动量法和Adagrad算法的优点。

它维护了一种动态的学习率,通过计算梯度的一阶矩估计和二阶矩估计来自适应地调整学习率。

优点是适应性强,并且能够自适应学习率的大小和方向。

缺点是对于不同的问题,参数的敏感性差异较大。

在一些问题上可能不适用。

综上所述,每个优化算法都有自己的优点和缺点。

梯度下降法是最基本的算法,容易理解,但是收敛速度较慢。

动量法通过增加动量项加快了收敛速度,但是容易陷入局部最优。

Adagrad和Adam算法具有自适应性,能够自动调整学习率,但是在一些问题上可能效果不佳。

因此,在实际应用中应根据具体问题选择适合的优化算法或采取集成的方式来提高模型的性能。

BP算法及BP改进算法

BP算法及BP改进算法

BP算法及BP改进算法BP算法通过不断调整网络的权重和偏置,以最小化网络输出与实际输出之间的误差。

算法包含两个主要步骤:前向传播和反向传播。

在前向传播阶段,输入信号通过神经网络的各个层,直至到达输出层。

每一层都对输入信号进行加权求和,并通过激活函数进行非线性映射,然后传递给下一层。

最终,网络将产生一个预测输出。

在反向传播阶段,算法计算输出误差,并根据该误差调整网络权重和偏置。

误差通过比较网络预测输出与实际输出之间的差异得到。

然后,误差从输出层向输入层反向传播,根据权重的贡献程度进行分配,并相应地更新权重和偏置。

尽管BP算法在训练神经网络方面非常成功,但也存在一些问题。

其中之一是局部极小值问题,即算法可能在梯度下降的过程中陷入一个局部最小值,并无法找到全局最小值。

为了解决这个问题,已经提出了一些BP的改进算法。

其中一种改进算法是Momentum算法。

Momentum算法在误差梯度的基础上引入了一个动量项,该项记录了前一次权重更新所带来的动量。

它可以帮助算法跳出局部最小值,并在梯度下降的过程中加速更新。

该算法通过在权重更新中添加当前梯度和上一次更新的动量的乘积,实现对网络优化的加速。

另一种改进算法是Adaptive Learning Rate算法。

传统的BP算法在每次权重更新中使用固定的学习率。

然而,不同的权重可能具有不同的学习速度要求。

Adaptive Learning Rate算法通过根据权重梯度的大小动态地调整学习率,以使网络能够更快地收敛。

还有一种改进算法是正则化算法,其中最常用的是L1和L2正则化。

正则化通过在误差函数中添加一个惩罚项,以限制权重的大小。

这有助于防止过拟合现象的发生,并提高网络的泛化能力。

除了这些改进算法,还有许多其他的技术被用于改进BP算法。

例如,一些算法结合了遗传算法和BP算法,以从初始权重的随机样本中找到最佳的。

还有一些算法,如RPROP和QuickProp,通过引入自适应的权重更新规则来加速训练过程。

BP算法及其优缺点

BP算法及其优缺点
▪ 作用:
▪ 动量项反映了以前积累的调整经验,对于t时刻的调整 起阻尼作用。
▪ 当误差曲面出现骤然起伏时,可减小振荡趋势,提高 训练速度。
改进2:自适应调节学习率
▪ 提出的原因:
▪ 标准BP算法中,学习率η也称为步长,确定一个从始 至终都合适的最佳学习率很难。
▪ 平坦区域内,η太小会使训练次数增加; ▪ 在误差变化剧烈的区域,η太大会因调整量过大而跨
p< P? N
E < E m in Y
结束
BP算法的程序实现
另一种方法是在所有样本输 入之后,计算网络的总误差:
Pl
E总
1 2
(dkp okp)2
p1k1
然后根据总误差计算各层的误差 信号并调整权值。
初 始 化 V、 W 计 数 器 q= 1, p= 1
输入第一对样本
计算各层输出
计算误差:
E
有效,且=θ (θ>1 )。
改进3: 引入陡度因子
▪ 提出的原因:
▪ 误差曲面上存在着平坦区域。 ▪ 权值调整进入平坦区的原因是神经元输出进入了转移
函数的饱和区。
▪ 基本思想:
▪ 如果在调整进入平坦区后,设法压缩神经元的净输入, 使其输出退出转移函数的不饱和区,就可以改变误差 函数的形状,从而使调整脱离平坦区。
XC=(111100111)T XI=(111100111)T XT=(111100111)T
(2)曲线输入

、 训
x(t)

xn






x1
012345
t n
Xp(x1 p,x2 p,.x .ip .,,.x .n p .)T , p=1,2,…,P

最新 BP神经网络算法及其改进的几个方法-精品

最新 BP神经网络算法及其改进的几个方法-精品

BP神经网络算法及其改进的几个方法1 概述人工神经网络(Artificial Neural Networks,ANN),是基于人类大脑的生物活动所提出的,是一个模型。

它由众多节点通过一定的方式互联组成,是一个规模巨大、自适应的系统。

其中有一种学习算法是误差传递学习算法即BP 算法。

BP算法是人工智能最常用到的学习方法,从一定意义上来讲,BP算法的提出,终结了多层网络在学习训练算法上的空白史,是在实际应用中最有效的网络训练方法,对ANN的应用和发展起到了决定性的作用。

BP算法是使用从输出层得到的误差来估算前一层的误差,再利用该误差估算更前一层的误差。

依次进行,就会获得其他所有各层的估算误差。

这样就实现了将从输出层的得到误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程[1]。

但是,BP算法也存在着不可忽视的缺陷。

基于此,该文总结介绍了BP的改进方法。

2 BP算法的基本思想2.1 BP算法的基本原理BP算法是有监督指导的算法,它的学习训练过程一般分为两步:首先是输入样本的正向传递;第二步误差的反向传递;其中信号正向传递,基本思想是样本值从输入层输入,经输入层传入隐藏层,最后通过输出层输出,中间层对样本数据进行处理操作,利用各层的权值和激活函数对数据进行操作然后在输出层获得输出[2];接下来就是反向传递,算法得到的实际输出值与期望目标输出之间必然会有误差,根据误差的大小来决定下一步的工作。

如果误差值较小满足训练的精度要求,则认为在输出层得到的值满足要求,停止训练;反之,则将该误差传递给隐藏层进行训练,按照梯度下降的方式,对权值和阈值进行调整,接着进行循环,直到误差值满足精度要求停止训练[3]。

3 BP算法的缺陷尽管BP算法有着显著的优点,但是在实际应用过程中,BP算法会出现很多问题。

尤其是下面的问题,对BP神经网络更好的发展有很大影响。

有的甚至会导致算法崩溃。

3.1 收敛速度的问题BP算法在进行训练学习时,收敛速度慢,特别是在网络训练达到一定的精度时,BP算法就会出现一个长时间的误差“平原”,算法的收敛速度会下降到极慢[4]。

BP算法及其优缺点

BP算法及其优缺点

BP算法及其优缺点BP算法,即反向传播算法(Backpropagation algorithm),是一种在人工神经网络中被广泛应用的训练算法。

它通过将误差从网络的输出层反向传播到输入层,来调整网络中的连接权值,以达到学习和逼近目标函数的目的。

BP算法的步骤如下:1.初始化网络的连接权值2.将输入样本送入网络,通过前向传播计算得到输出结果3.计算输出层的误差,并将误差反向传播到隐藏层和输入层4.根据误差调整连接权值5.重复步骤2-4,直到达到停止条件(如误差小于一些阈值或达到最大迭代次数)BP算法的优点包括:1.强大的拟合能力:BP算法适用于解决非线性问题,能够学习和逼近各种复杂的函数关系。

2.广泛适用性:BP算法可以应用于多种不同的学习任务,包括分类、回归、聚类等。

3.支持并行计算:BP算法可以通过多个节点同时计算数据的梯度,从而加速训练过程。

然而,BP算法也存在一些缺点:1.容易陷入局部最优解:BP算法的目标是最小化误差函数,但是由于其基于梯度下降的策略,容易陷入局部最优解而无法收敛到全局最优解。

2.训练速度慢:BP算法通常需要大量的训练样本和迭代次数才能达到较好的学习效果,造成了训练速度较慢。

3.对初始权值敏感:BP算法的性能受到初始权值的影响,不同的初始权值可能导致不同的训练结果。

4.容易出现过拟合问题:BP算法在训练样本数量较少或网络结构过于复杂的情况下,容易出现过拟合现象。

针对这些缺点,研究者们提出了一些改进和优化的方法,如使用正则化技术来减小过拟合的风险、采用随机梯度下降来加速训练速度、引入动量项来增加学习的稳定性等。

综上所述,BP算法是一种经典的人工神经网络训练算法,具有强大的拟合能力和广泛的适用性。

但是它也存在一些缺点,如容易陷入局部最优解、训练速度慢、对初始权值敏感等。

在实际应用中,我们需要根据具体问题的特点和需求,综合考虑优缺点,在算法的改进和优化上进行进一步的研究和探索。

BP网络优缺点

BP网络优缺点

神经网络BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。

输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。

当实际输出与期望输出不符时,进入误差的反向传播阶段。

误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。

周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

BP神经网络的优缺点BP神经网络具有以下优点:1) 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数。

这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力。

2) 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。

即BP神经网络具有高度自学习和自适应的能力。

3) 泛化能力:所谓泛化能力是指在设计模式分类器时,即要考虑网络在保证对所需分类对象进行正确分类,还要关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式,进行正确的分类。

也即BP神经网络具有将学习成果应用于新知识的能力。

4) 容错能力:BP神经网络在其局部的或者部分的神经元受到破坏后对全局的训练结果不会造成很大的影响,也就是说即使系统在受到局部损伤时还是可以正常工作的。

即BP神经网络具有一定的容错能力。

BP神经网络也暴露出了越来越多的缺点和不足,比如:1) 局部极小化问题:从数学角度看,传统的BP神经网络为一种局部搜索的优化方法,它要解决的是一个复杂非线性化问题,网络的权值是通过沿局部改善的方向逐渐进行调整的,这样会使算法陷入局部极值,权值收敛到局部极小点,从而导致网络训练失败。

BP神经网络优缺点的讨论

BP神经网络优缺点的讨论

BP神经网络优缺点的讨论BP神经网络是一种常见的人工神经网络,因其具有训练速度快、分类精度高等优点而被广泛应用在各种领域。

然而,BP神经网络也存在着一些缺点。

优点:1. 易于训练:BP神经网络采用误差反向传递算法,可以较快地完成模型的训练过程,同时能够对训练数据进行自适应调整,从而提高分类精度。

2. 适用性广泛:BP神经网络可以用于各种分类、回归等问题,包括图像处理、语音识别、自然语言处理等领域,同时可以适用于多种数据类型,如数值型、文本型等。

3. 鲁棒性强:BP神经网络能够自适应地处理噪声和错误信息,并且能够较好地处理数据中的缺失值。

4. 结构简单易实现:BP神经网络的结构相对简单,易于理解和实现,同时也便于对模型的拓展和改进。

1. 容易陷入局部最优解:BP神经网络的优化目标为最小化误差,但是其参数优化过程可能会出现陷入局部最优解的情况,而无法达到全局最优解。

2. 学习速度较慢:BP神经网络的训练过程需要大量的数据和时间来完成,而且需要通过多次迭代来优化网络参数,因此其学习速度相对较慢。

3. 对初始值敏感:BP神经网络的初始权重和偏置值会影响到模型最终的精度,因此需要进行较为精细的调整,而且有时需要多次随机初始化来选择较好的参数。

4. 难以解释:BP神经网络的内部结构过于复杂,难以解释为什么模型能够取得一定的分类精度,这会使得BP神经网络的应用和推广受到一定的限制。

总之,BP神经网络具有许多优点,如易于训练、适用性广泛、鲁棒性强和结构简单易实现等,但是它也存在着一些缺点,如容易陷入局部最优解、学习速度较慢、对初始值敏感和难以解释等。

这些缺点一方面会导致BP神经网络在某些情境下表现不佳,另一方面也为BP神经网络的拓展和改进提供了一定的思路和方向。

BP神经网络的优缺点

BP神经网络的优缺点

BP神经网络的优缺点BP神经网络,也称为“反向传播神经网络”,是一种常见的人工神经网络模型。

它是基于误差反向传播算法的一种机器学习方法,广泛应用于分类、回归、预测等场景中。

优点1. 非线性逼近能力强BP神经网络的非线性逼近能力优秀,可以逼近任何非线性的函数。

它的输入层、隐层和输出层之间的结构可以实现对高维非线性数据的拟合。

2. 适用 range 广泛BP神经网络可以应用于许多不同领域,如医药、自然语言处理、图像识别等。

它可以对各种形式的数据进行分类、回归、预测等。

3. 学习能力强BP神经网络可以通过大量的样本数据进行训练,并能够自动学习和自我适应。

可以对训练数据进行高效的学习和泛化,从而适应未知数据。

4. 适应动态环境BP神经网络可以适应不断变化的环境。

当模型和所需输出之间的关系发生变化时,网络可以自适应,自动调整权重和阈值,以适应新的情况。

缺点1. 学习速度慢BP神经网络的学习速度相对较慢。

它需要大量的时间和数据来调整权重和阈值,以达到稳定的状态。

2. 容易陷入局部极小值BP神经网络很容易陷入局部极小值,而无法达到全局最优解。

这可能会导致网络的准确度降低,并影响到后续的预测、分类和回归任务。

3. 需要大量的数据BP神经网络需要大量的数据进行训练,以使网络达到优秀的效果。

如果训练数据不充分,可能会导致网络过度拟合或欠拟合。

4. 对初始参数敏感BP神经网络对初始参数非常敏感。

如果初始参数不好,那么网络可能会无法进行训练,或者陷入局部最小值。

综合来看,BP神经网络具有良好的非线性逼近能力和学习能力,但也存在一些缺点,比如学习速度慢、容易陷入局部极小值等。

因此,在具体应用场景中,我们需要权衡BP神经网络的优点和缺点,选择合适的机器学习模型进行训练和预测。

BP方法的效率和可靠性分析

BP方法的效率和可靠性分析

BP方法的效率和可靠性分析一、BP算法简介BP算法是一种神经网络训练算法,将输入数据传送至所有神经元,逐层进行计算,最终得到输出结果。

二、BP算法效率分析BP算法的运算量是非常大的,在大规模数据集上训练时,BP 算法的耗时远高于其他算法。

主要原因在于BP算法需要进行反向传播,这个过程需要逐层计算所有神经元的误差,然后再逐层反向传播,更新各层的连接权值。

当神经网络的层数增加时,这个复杂度会成指数级增加,导致算法的计算量非常大。

三、BP算法可靠性分析BP算法的可靠性非常高。

BP算法收敛性证明非常完备,发现数据集大小或者服务于隐藏层数和神经元数都不会对算法的收敛性产生影响。

BP算法可以处理非线性问题,并且通过选择正确的预处理器和激活函数,可以高度优化BP算法的性能。

四、BP算法的改进方法BP算法的效率和可靠性问题使得科学家们一直在探索BP算法的改进方法,以下是一些常见的BP算法改进方法:1. 随机梯度下降算法(SGD)SGD是一种随机最速下降法。

将数据集分为若干个子集,然后用每个子集的数据更新权重。

由于每个子集数据量较小,从而大大降低了算法的计算复杂度。

2. 稀疏性正则化算法(L1正则化)L1正则化是一种基于权重的正则化方法。

它通过在损失函数中增加L1约束,约束权重的大小,使得网络中的大部分权重是0。

从而降低了算法的计算复杂度。

3. 自适应学习率算法(Adaptive Learning Rate)Adaptive Learning Rate是一种自适应学习率方法。

它根据每个权重的梯度大小自适应地调整学习率,从而提高算法的收敛速度和精度。

4. Dropout算法Dropout是一种随机失活算法。

它随机地关闭一些神经元,从而减少了网络中的冗余连接,提高了算法的泛化性能。

五、结论BP算法是一种高效和可靠的神经网络训练算法,但由于它的计算复杂度很高,所以需要采用改进方法或者并行计算来提高算法的效率。

未来的研究方向可以探索更高效的BP算法,以应对大规模数据集的训练需求。

标准BP算法及改进的BP算法课件

标准BP算法及改进的BP算法课件
流程 1. 初始化网络权重和偏置。
2. 计算网络的输出和误差。
动量项BP算法的流程和公式
01
3. 更新权重和偏置,同时考虑动 量项。
02
4. 重复执行步骤2和3,直到达到 预设的迭代次数或满足收敛条件 。
动量项BP算法的流程和公式
公式 1. 计算输出:`y = sigmoid(Wx + b)`
2. 计算误差:`E = d - y`
标准BP算法的优缺点
优点 适用于多类问题:标准BP算法可以解决回归和分类问题。
灵活性强:可以自由设计神经网络的架构和激活函数等元素。
标准BP算法的优缺点
• 自适应能力强:能够自适应地学习和调整权重和 偏置等参数。
标准BP算法的优缺点
01 02 03 04
缺点
易陷入局部最小值:标准BP算法使用梯度下降算法优化权重和偏置 ,可能会陷入局部最小值,导致无法获得全局最优解。
神经网络的基本元素
神经元是神经网络的基本元素,每个神经元接收输入信号,通过激 活函数进行非线性转换,并输出到其他神经元。
神经网络的结构
神经网络由输入层、隐藏层和输出层组成,每一层都包含若干个神 经元。
BP算法简介
BP算法的定义
BP算法是一种通过反向传播误差 来不断调整神经网络权重的训练
算法。
BP算法的原理
动量项BP算法的流程和公式
3. 更新权重:`W = W - α * E * x - β * ΔW`
ቤተ መጻሕፍቲ ባይዱ
4. 更新偏置:`b = b - α * E - β * Δb`
其中,α和β分别是学习率和动 量项系数,ΔW和Δb是上一次更
新的权重和偏置。
动量项BP算法的实例

BP算法介绍范文

BP算法介绍范文

BP算法介绍范文BP算法,即反向传播算法(Back propagation algorithm),是一种经典的人工神经网络(Artificial Neural Network,ANN)训练算法。

它通过反向传播误差信号,根据目标函数的梯度调整网络的参数,以降低网络的输出误差,从而实现学习和逼近任意复杂函数的目的。

BP算法是一种监督式学习算法,需要训练数据集作为输入,即输入-输出样本集。

BP算法的基本原理是利用链式法则对网络的每一层参数进行更新。

首先,通过正向传播计算神经网络的输出值。

然后,通过反向传播计算输出误差,并根据误差对网络的权值和偏置项进行调整。

具体来说,BP算法可以分为三个主要的步骤:正向传播、误差计算和反向传播。

正向传播:在正向传播中,输入样本通过神经网络的前向运算,逐层传递,并计算每一层的输出值。

首先将输入样本传递到输入层,然后通过各层的神经元激活函数计算每一层的输出值。

每一层的输出值都作为下一层的输入,直到最后一层输出层。

误差计算:经过正向传播,神经网络得到了输出层的输出值。

然后,通过计算输出值与目标值之间的误差,确定网络的预测结果与真实结果之间的差别。

误差通常使用均方误差(Mean Square Error,MSE)或交叉熵(Cross Entropy)来进行计算。

反向传播:在反向传播中,误差信号从输出层向输入层进行传递,并根据误差信号对网络的参数进行调整。

首先,计算输出层的误差信号,并将误差信号向输入层逐层传递。

在每一层,根据误差信号和各层的输出值,计算该层的参数的梯度。

通过梯度下降法,根据梯度的方向和幅度,更新每一层的权值和偏置项。

在反向传播过程中,需要不断迭代调整参数,直到网络的输出误差满足一定的停止条件。

BP算法的优缺点:BP算法具有以下优点:1.神经网络具有非常强的逼近能力,可以逼近任意复杂的函数关系。

2.BP算法可以通过训练样本进行自适应学习,不需要人工设计特征和规则。

BP神经网络局限性及其改进的研究

BP神经网络局限性及其改进的研究

J1 S H ANX I AGR IC1 UN IV1 ( N at u r al S ci ence E d i t i o n)学报(自然科学版) 2009 ,29 (1) 002481B P 神经网络局限性及其改进的研究余本国( 中北大学理学院, 山西太原030051)摘要: 针对神经网络的发展状况, 利用概率及其它数学的方法, 对神经网络中B P 算法进行了分析, 对B P 算法的学习速度慢、容错能力差、算法不完备等缺点进行了讨论, 得出B P 神经网络的这些局限性均是B P 算法本身固有的。

在此基础上提出新的算法T F P , 并讨论了网络假吸引中心的问题, 在网络性能上, 对保持知识的稳定性也作了探讨。

关键词: B P网络; 局部极小点; 梯度下降法中图分类号: T P183 文献标识码: A 文章编号: 167128151 (2009) 0120089205Discussion on the L i mitation an d Improvem ent of BP N eural Net w orkY U B e n2guo( De p a r t m e n t o f A p p l i e d M at h e m at i cs , N o rt h U n i v e r si t y o f Chi n a , T a i y u a n S ha n x i 030051 , Chi n a)Abstract : U sing p ro babilit y and o t her mat hematical met ho d , t h e B P neural net wo r k al g o rit hm wa s a nalyzed. The d e2f ect s such a s slo w lear ning , wo r se f a ult2to lerant cap a bilit y a nd no np e rf ect of alg o rith m B P alg o rit h m were di s cussed.The se limit at io n s a re inherent of B P alg o rit hm it self . O n t he ba si s of t he di scussio n , new T F P alg o rit h m wa s sugg e s2 ted. The p ro bler m s of sp urio us at t ractive cent re in t he net wo r k a nd maint ina nce of t he k no wledge st a bilit y in t h e net2 wo r k p e rfo r m a n ce were al so di s cus sed.K ey words : B P Neural Net w o r k ; Pa r tial mi n imum point ; G radient drop law1982 年Hopf iel d 发表关于自反馈神经网络的文章[ 1 ] 以及Rumel ha r t 等人发表专著PD P 以来, 在世界范围内掀起了研究神经网络的热潮。

标准BP算法及改进的BP算法 标BP算法及改进的BP算法应用

标准BP算法及改进的BP算法  标BP算法及改进的BP算法应用
[R,Q] = size(P); [S2,Q] = size(T); S1 = 5; [W1,B1] = rands(S1,R); [W2,B2] = rands(S2,S1);
net = newcf( minmax(P), [5,1], {'tansig','purelin'},'traingd' ); net.trainParam.epochs = 7000; net.performFcn = 'sse'; net.trainParam.goal = 0.02; [net,tr] = train(net,P,T); Y = sim(net,P); plot(P,T,P,Y,’o’)
10
0
10
-1
10
-2
0
1000
2000
3000 4000 7366 Epochs
5000
6000
7000
训练结束后的网络误差记录
1.2 附加动量法
附加动量法使网络在修正权值时不仅考虑 误差在梯度上的作用,而且考虑在误差曲 面上变化趋势的影响; X( K+1 ) = Mc( X(K) – X(K – 1) ) – (1 Mc)µΔF(X(K)) 式中0 <= Mc <= 1 为动量因子; 附加动量法的实质是将最后一次权值变化 的影响通过一个动量因子来传递。
X(k + 1 ) = X(k) - µ(K)ΔF( X(K) ) 通过调整学习率µ(K),从而可得到比标准的 BP算法更快的收敛速度。 因此,将附加动量法和自适应学习率调整 法两种策略结合起来,既可有效地抑制网 络陷入局部极小,又有利于缩短学习时间。 但上述两种改进方法都是在标准梯度下降 法基础上发展起来的,它们只利用了目标 函数对网络权值和阈值的一阶导数信息。 因此,当用于较复杂的问题时,也还存在 收敛速度不够快的问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP算法的缺点与改进
目前,BP网络得到了越来越广泛的应用,但是BP算法在应用中也同时暴露出一定的缺陷: l)训练次数多,学习效率低,收敛速度慢;
2)易形成局部极小;’
3)隐层神经元的数目难以确定;
4)训练时有学习新样本而忘记旧样本的趋势。

针对这些缺陷,国内外研究者提出了许多有效的改进方法,如:
l)改进学习率参数的调节方法,如使学习率粉的大小随误差梯度变化;
2)改进神经网络的结构,如增加隐层神经元的数目;
3)改变激励函数,如把sigmoid函数改成分段函数;
4)权值修正方法,如增加动量项。

(1)BP神经网络的建立
神经网络工具箱含有许多专用函数用来建立神经网络,其中函数newff()来创建一个BP神经网络。

此函数的调用格式为:
net=newff(PR,【5152…S司,{TITZ…TN},BTF,BLF,PF)
net=newff:用于在对话框中创建BP神经网络;
PR:R*2维矩阵(共有R组输入),每行由每组输入的最大值和最小值组
si:第i层神经元数;
Ti:第i层的激励函数,“tansig”为默认时函数;
BTF:BP神经网络的训练函数,“traiulm”为默认时函数;
BLF:BP神经网络中权值和阂值的算法,“leamgdm”为默认函数;
PF:BP神经网络的性能函数,“mse”为默认函数。

相关文档
最新文档