滑块—木板模型专题(附详细答案)
《牛顿运动定律》专题--滑块-木板模型
《牛顿运动定律》专题--滑块-木板模型一、单选题1.如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m .现施水平力F 拉B (如图甲),A 、B 刚好不发生相对滑动,一起沿水平面运动.若改用水平力F ′拉A (如图乙),使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过 ( )A . F B. 2FC. 3F D . F 2 2.如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的左端放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若物体之间的滑动摩擦力(f )的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图中可以定性地描述长木板B 运动的v -t 图象的是 ( ) A. B. C.D.3.如图所示,绷紧的长为6m 的水平传送带,沿顺时针方向以恒定速率v 1=2m/s 运行。
一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v 2=5m/s 。
若小物块与传送带间动摩擦因数μ=0.2,重力加速度g =10m/s 。
下列说法中正确的是( )A. 小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动B. 若传送带的速度为1m/s ,小物块将从传送带左端滑出C. 若传送带的速度为5m/s ,小物块将以5m/s 的速度从传送带右端滑出D. 若小物块的速度为4m/s ,小物块将以4m/s 的速度从传送带右端滑出4.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板(足够长)乙,静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28N B. F >38NC. F ≥38ND. F >42N5.如图所示,在光滑的水平面上,叠放着两个质量分别为m 、M 的物体(m <M ),用一水平恒力作用在m 物体上,两物体相对静止地向右运动,现把此水平力作用在M 物体上,则以下说法正确的是( )A. 两物体间的摩擦力大小不变B. m 受到的合外力与第一次相同C. M 受到的摩擦力增大D. 两物体间可能有相对运动6.如图,质量m =10kg 的物块甲与质量为M =4kg 长木板乙(足够长),静止于水平地面上,已知甲、乙之间动摩擦因数μ1=0.1,地面和长木板之间动摩擦因数μ2=0.2,若将木板乙从物块甲下面抽出,则力F 应满足条件( ) A. F >28NB. F >38NC. F ≥38ND. F >42N二、多选题 7.如图所示,水平传送带左右两端相距L =3.5m ,物体A 以水平速度v =4m /s 滑上传送带左端,物体与传送带之间的动摩擦因数μ=0.1。
高考物理《滑块—木板模型》真题练习含答案
高考物理《滑块—木板模型》真题练习含答案1.如图所示,货车车厢中央放置一装有货物的木箱,该木箱可视为质点.已知木箱与车厢之间的动摩擦因数μ=0.4.下列说法正确的是()A.若货车向前加速时,木箱对车厢的摩擦力方向向左B.为防止木箱发生滑动,则货车加速时的最大加速度不能超过4 m/s2C.若货车行驶过程中突然刹车,木箱一定与车厢前端相撞D.若货车的加速度为5 m/s2时,木箱受到的摩擦力为静摩擦力答案:B解析:若货车向前加速时,车厢对木箱的摩擦力方向向左,根据牛顿第三定律得木箱对车厢的摩擦力方向向右,A错误;当摩擦力达到最大静摩擦力时刚好不发生相对滑动,最大加速度a=μg=4 m/s2,B正确;若货车行驶过程突然刹车,加速度小于等于4 m/s时木箱不会相对车厢滑动,发生相对滑动时也不一定与车的前端相撞,C错误;货车的加速度5 m/s2>4 m/s2,木箱已经发生相对滑动,木箱受到的摩擦力为滑动摩擦力,D错误.2.[2024·广东省中山市第一次模拟](多选)如图甲所示,物块A与木板B静止地叠放在水平地面上,A、B间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,地面光滑.现对A施加水平向右的大小不同的拉力F,测得B的加速度a与力F的关系如图乙所示,取g =10 m/s2,则()A.当F<24 N时,A、B间的摩擦力保持不变B.当F>24 N时,A、B间的摩擦力保持不变C.A的质量为4 kgD.B的质量为2 kg答案:BCD解析:由图乙可知,当F<24 N时,A、B保持相对静止,B的加速度逐渐增大,则A、B间的摩擦力逐渐增大;当F>24 N时,A、B发生相对滑动,A、B间滑动摩擦力保持不变,A错误,B正确;设A、B的质量分别为m1、m2,当F=24 N时,根据牛顿第二定律,对A,有F-μm1g=m1a,对B,有μm1g=m2a,解得A、B的质量分别为m1=4 kg,m2=2 kg,C、D正确.3.[2024·广西南宁市开学考试]如图所示,质量m A=2 kg的小物块A可以看作质点,以初速度v0=3 m/s滑上静止的木板B左端,木板B足够长,当A、B的速度达到相同后,A、B又一起在水平面上滑行直至停下.已知m B=1 kg,A、B间的动摩擦因数μ1=0.2,木板B 与水平面间的动摩擦因数μ2=0.1,g取10 m/s2.求:(1)小物块A刚滑上木板B时,A、B的加速度大小a A和a B;(2)A、B速度达到相同所经过的时间t;(3)A、B一起在水平面上滑行至停下的距离x.答案:(1)a A=2 m/s2,a B=1 m/s2(2)t=1 s(3)x=0.5 m解析:(1)根据题意可知,A与B之间的滑动摩擦力大小f1=μ1m A g=4 NB与水平面之间的滑动摩擦力大小f2=μ2(m A+m B)g=3 N当A刚滑上B时,由牛顿第二定律,对A有f1=m A a A对B有f1-f2=m B a B解得a A=2 m/s2,a B=1 m/s2(2)设A、B达到相同的速度为v,对A、B相对滑动的过程,由公式v=v0+at对A有v=v0-a A t对B有v=a B t解得t=1 s,v=1 m/s(3)以A、B整体为研究对象,由牛顿第二定律得f2=(m A+m B)a一起在水平面上滑行至停下过程0-v2=-2ax解得x=0.5 m4.[2024·辽宁省阜新市月考]如图所示,水平桌面上质量m1为0.01 kg的薄纸板上,放有一质量m2为0.04 kg的小水杯(可视为质点),小水杯距纸板左端距离x1为0.5 m,距桌子右端距离x2为1 m,现给纸板一个水平向右的恒力F,欲将纸板从小水杯下抽出.若纸板与桌面、水杯与桌面间的动摩擦因数μ1均为0.4,水杯与纸板间的动摩擦因数μ2为0.2,重力加速度g取10 m/s2,设水杯在运动过程中始终不会翻倒,则:(1)求F多大时,抽动纸板过程水杯相对纸板不滑动;(2)当F为0.4 N时,纸板的加速度是多大?(3)当F满足什么条件,纸板能从水杯下抽出,且水杯不会从桌面滑落?答案:(1)0.3 N(2)12 m/s2(3)F≥0.315 N解析:(1)当抽动纸板且水杯相对纸板滑动时,对水杯进行受力分析,根据牛顿第二定律得μ2m2g=m2a1,解得a1=2 m/s2对整体分析,根据牛顿第二定律得F1-μ1(m1+m2)g=(m1+m2)a1解得F1=0.3 N故当F1≤0.3 N抽动纸板过程水杯相对纸板不滑动;(2)当F2=0.4 N时,纸杯和纸板已经发生相对滑动,则有F2-μ2m2g-μ1(m1+m2)g=m1a解得a=12 m/s2(3)纸板抽出的过程,对纸板有F-μ2m2g-μ1(m1+m2)g=m1a纸板抽出的过程,二者位移关系满足x1=12at2-12a1t2纸板抽出后,水杯在桌面上做匀减速直线运动,设经历时间t′恰好到桌面右边缘静止,有μ1m2g=m2a′1由速度关系有a1t=a′1t′纸杯的位移关系有x2-12a1t2=a1t2×t′联立解得F=0.315 N所以,当F≥0.315 N时,纸板能从水杯下抽出,且水杯不会从桌面滑落.。
(完整版)高中物理滑块-板块模型(解析版)
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
滑块木板模型(解析版)-高考物理5种类碰撞问题
滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。
【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。
薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。
已知物块与薄板的质量相等。
它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。
求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。
(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。
微专题16 牛顿运动定律应用之“滑块—木板模型”问题
微专题16 牛顿运动定律应用之“滑块—木板模型”问题【核心要点提示】1.问题的特点滑块—木板类问题涉及两个物体,并且物体间存在相对滑动.2.常见的两种位移关系(1)滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.【核心方法点拨】此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【微专题训练】类型一:滑块-木板间有摩擦,木板与地面间无摩擦【例题1】(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A =6 kg,m B=2 kg.A、B间动摩擦因数μ=0.2.A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【解析】假设细线不断裂,则当细线拉力增大到某一值A物体会相对于B物体开始滑动,此时A、B之间达到最大静摩擦力.以B为研究对象,最大静摩擦力产生加速度,由牛顿第二定律得:μm A g=m B a,解得a=6 m/s2以整体为研究对象,由牛顿第二定律得:F m=(m A+m B)a=48 N即当绳子拉力达到48 N时两物体才开始相对滑动,所以A、B错,D正确.当拉力F=16 N时,由F=(m A+m B)a解得a=2 m/s2,再由F f=m B a得F f=4 N,故C正确.【答案】CD【变式1-1】如图所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,最大静摩擦力等于滑动摩擦力,下列选项可能正确的是()A.a m=2 m/s2,a M=1 m/s2B.a m=1 m/s2,a M=2 m/s2C.a m=2 m/s2,a M=4 m/s2D.a m=3 m/s2,a M=5 m/s2【解析】若物块与小车保持相对静止一起运动,设加速度为a,对系统受力分析,由牛顿第二定律可得:F=(M+m)a,隔离小物块受力分析,二者间的摩擦力F f为静摩擦力,且F f≤μmg,由牛顿第二定律可得:F f=ma,联立可得:a m=a M=a≤μg=2 m/s2.若物块与小车间发生了相对运动,二者间的摩擦力F f为滑动摩擦力,且a m<a M,隔离小物块受力分析,如图所示,由牛顿第二定律可得:F f=μmg=ma m,可得:a m=2 m/s2,选项C正确,选项A、B、D错误.【答案】C【变式1-2】如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端静止放着小物块A.某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F =kt,其中k为已知常数.设物体A、B之间的滑动摩擦力大小等于最大静摩擦力F f,且A、B的质量相等,则下列可以定性描述长木板B运动的v-t图象是()【解析】A、B相对滑动之前加速度相同,由整体法可得:F=2ma,当A、B间刚好发生相对滑动时,对木板有F f=ma,故此时F=2F f=kt,t=2F fk,之后木板做匀加速直线运动,故只有B项正确.【答案】B【例题2】如图所示,在光滑的水平面上有一长为0.64 m、质量为4 kg的木板A,在木板的左端有一质量为2 kg的小物体B,A、B之间的动摩擦因数为μ=0.2。
高考物理专题23“滑块_木板”模型的动力学问题练习含解析
专题23 “滑块—木板”模型的动力学问题1.“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m =F fmm.假设两物体同时由静止运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力.2.滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;若反向运动,位移大小之和等于板长.1.(2020·山东济南历城二中一轮复习验收)如图1所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块的加速度大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是( )图1答案 A解析 当F 比较小时,两个物体相对静止,加速度相同,根据牛顿第二定律可得a =Fm 1+m 2=kt m 1+m 2,a ∝t ;当F 比较大时,木块相对于木板运动,根据牛顿第二定律可得,a 1=μm 2gm 1,μ、m 1、m 2一定,则a 1一定,a 2=F -μm 2g m 2=k m 2t -μg ,a 2是t 的线性函数,t 增大,a 2增大.由于km 1+m 2<km 2,则木块相对于木板运动后,a 2-t 图线的斜率大于两者相对静止时图线的斜率.综上所述,A 正确.2.(2020·安徽六安市质量检测)如图2所示,静止在水平地面上的木板(厚度不计)质量为m 1=1 kg ,与地面的动摩擦因数μ1=0.2,质量为m 2=2 kg 可看作质点的小物块与木板、地面间的动摩擦因数均为μ2=0.4,以v 0=4 m/s 的水平速度从左端滑上木板,经过t =0.6 s 滑离木板,g 取10 m/s 2,以下说法正确的是( )图2A .木板的长度为1.68 mB .小物块离开木板时,木板的速度为1.6 m/sC .小物块离开木板后,木板的加速度为2 m/s 2,方向水平向右 D .小物块离开木板后,木板与小物块将发生碰撞 答案 D解析 由于μ2m 2g >μ1(m 1+m 2)g ,得物块在木板上以a 1=μ2g =4 m/s 2减速滑行时木板以a 2=μ2m 2g -μ1m 1+m 2g m 1=2 m/s 2向右加速运动,在0.6 s 时,物块的速度v 1=v 0-a 1t =1.6m/s ,木板的速度v 2=a 2t =1.2 m/s ,B 错误.0.6 s 内物块位移为x 1=v 0+v 12t =1.68 m ,木板位移x 2=0+v 22t =0.36 m ,相对位移为Δx =x 1-x 2=1.32 m ,即木板长度为1.32 m ,A 错.物块离开木板后,木板做减速运动,加速度大小为a 4=μ2g =2 m/s 2,方向向左,C 错.在地面上物块会滑行x 4=v 122a 4=v 122μ2g =0.32 m ,木板会滑行x 3=v 222a 3=v 222μ1g=0.36 m ,所以两者会相碰,D 正确.3.(多选)(2020·江苏南京师大苏州实验学校一模)如图3所示,质量为m 1的木块和质量为m 2的长木板叠放在水平地面上.现对木块施加一水平向右的拉力F ,木块在长木板上滑行,长木板始终静止.已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,且最大静摩擦力与滑动摩擦力相等.重力加速度为g ,则( )图3A .μ1一定小于μ2B .μ1可能大于μ2C .改变F 的大小,F >μ2(m 1+m 2)g 时,长木板将开始运动D .改F 作用于长木板,F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动 答案 BD解析 对木块,根据牛顿运动定律有:F -μ1m 1g =m 1a ;对长木板,由于保持静止,有:μ1m 1g -F f =0,F f <μ2(m 1+m 2)g ,m 1、m 2的大小关系不确定,所以μ1、μ2的大小关系无法确定,故A 错误,B 正确.改变F 的大小,只要木块在木板上滑动,木块对木板的滑动摩擦力不变,长木板仍然保持静止,故C 错误.若将F 作用于长木板,当木块与木板恰好开始相对滑动时,对木块,μ1m 1g =m 1a ,解得a =μ1g ,对整体分析,有F -μ2(m 1+m 2)g =(m 1+m 2)a ,解得F =(μ1+μ2)(m 1+m 2)g ,所以当F >(μ1+μ2)(m 1+m 2)g 时,长木板与木块将开始相对滑动,故D 正确.4.(多选)(2019·全国卷Ⅲ·20)如图4(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )图4A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2 答案 AB解析 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2 m/s 2=0.2 m/s 2,对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4 m/s 2=0.2 m/s 2,F f =ma 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =0.2 N ,解得m =1 kg 、F =0.4 N ,选项A 、B 正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.5.(多选)(2020·山东邹城一中测试)如图5甲所示,质量为m =1 kg 可视为质点的物块A放置在长木板B 上,A 、B 静止在水平地面上,已知长木板B 的质量M =4 kg ,A 与B 及B 与地面间的动摩擦因数均为μ=0.1,用水平外力F 作用在长木板B 上,外力F 随时间变化关系如图乙所示,设最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2,则下列说法正确的是( )图5A .t =0时刻,A 的加速度为零B .t =5 s 时刻,B 的加速度为3.5 m/s 2C .在整个运动过程中,物块A 的加速度始终不变D .如果长木板B 足够长,最终A 、B 将共速 答案 BC解析 由滑动摩擦力公式可知,A 、B 间的滑动摩擦力:F f A =μmg =1 N ,B 与地面间的滑动摩擦力:F f B =μ(M +m )g =5 N ,A 、B 间发生相对滑动后,A 的加速度将保持不变,其大小为:a A =F f Am=1 m/s 2.若A 、B 间刚好发生相对滑动时的外力为F 1,由牛顿第二定律得F 1-μ(M +m )g =(M +m )a A ,得F 1=10 N ,所以t =0时刻A 的加速度a A =1 m/s 2,故A 项错误,C 项正确;在t =5 s 时,F =20 N ,对长木板B 由牛顿第二定律有:F -F f A -F f B =Ma B ,得a B =3.5 m/s 2,故B 项正确;只要F 始终作用在长木板B 上,B 的加速度始终大于A 的加速度,无论长木板B 多长,A 、B 都不会共速,故D 项错误.6.(多选)如图6甲所示,质量为2m 的足够长的木板B 放在粗糙水平面上,质量为m 的物块A 放在木板B 的右端且A 与B 、B 与水平面间的动摩擦因数均为μ,现对木板B 施加一水平变力F ,F 随t 变化的关系如图乙所示,最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图6A .前3 s 内,A 受到的摩擦力方向水平向右B .t =4 s 时,A 的加速度大小为13μgC .t =5 s 时,A 受到的摩擦力大小为0.5μmgD .第6 s 以后,A 受到的摩擦力大小为μmg 答案 BD解析 A 相对B 刚要滑动时,A 的加速度为a A =μg ,B 的加速度a B =F -4μmg2m,且a A =a B ,解得F =6μmg ,由图乙可知,第6 s 以后,F >6μmg ,A 相对B 滑动,A 受到的摩擦力大小为μmg ,故D 正确;A 和B 一起滑动时,a AB =F -3μmg 3m ≥0,解得F ≥3μmg ,所以在前3 s 内,A 、B 静止不动,A 受到的摩擦力为0,故A 错误;当t =4 s 时,A 和B 一起滑动,A 的加速度大小为a AB =F -3μmg 3m =4μmg -3μmg 3m =13μg ,故B 正确;当t =5 s 时,A 和B 一起滑动,A 受到的摩擦力大小F f =ma AB =m ·5μmg -3μmg 3m =23μmg ,故C 错误.7.(多选)如图7所示,质量相等的物块A 和木板B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先水平敲击A ,A 立即获得水平向右的初速度v A ,在B 上滑动距离L 后停下.接着水平敲击B ,B 立即获得水平向右的初速度v B ,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,相对静止前B 的加速度大小为a 1,相对静止后B 的加速度大小为a 2,此后两者一起运动至停下.已知最大静摩擦力等于滑动摩擦力,重力加速度为g .下列说法正确的是( )图7A .a 1=3a 2B .v A =2μgLC .v B =22μgLD .从左边缘再次对齐到A 、B 停止运动的过程中,A 和B 之间没有摩擦力 答案 ABC解析 分析可知,敲击A 时,B 始终静止,由牛顿第二定律知,A 加速度的大小a A =μg ,由匀变速直线运动规律有2a A L =v A 2,解得v A =2μgL ,选项B 正确;设A 、B 的质量均为m ,敲击B 时,在A 、B 相对滑动的过程中,B 所受合外力大小为3μmg ,由牛顿第二定律有3μmg =ma 1,解得a 1=3μg ,当A 、B 相对静止后,对A 、B 整体由牛顿第二定律有2μmg =2ma 2,解得a 2=μg ,故a 1=3a 2,选项A 正确;经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a 2,则v =a 2t ,v =v B -a 1t ,x A =12a 2t 2,x B =v B t -12a 1t 2且x B -x A =L ,解得v B =22μgL ,选项C 正确;对齐后,A 、B 整体以加速度大小a 2=μg 一起做匀减速运动,对A 分析有F f =ma 2=μmg ,故A 、B 之间有摩擦力且达到最大静摩擦力,选项D 错误. 8.(多选)(2020·云南大理、丽江等校第二次统考)如图8(a),质量m 1=0.2 kg 的足够长平板小车静置在光滑水平地面上,质量m 2=0.1 kg 的小物块静止于小车上,t =0时刻小物块以速度v 0=11 m/s 向右滑动,同时对小物块施加一水平向左、大小恒定的外力F ,图(b)显示物块与小车第1 s 内运动的v -t 图象.设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.则下列说法正确的是( )图8A .小物块与平板小车间的动摩擦因数μ=0.4B .恒力F =0.5 NC .小物块与小车间的相对位移x 相对=6.5 mD .小物块向右滑动的最大位移是x max =7.7 m 答案 ABD解析 由题图(b)知,小车和小物块的加速度分别为a 1=Δv 1Δt =2-01 m/s 2=2 m/s 2a 2=Δv 2Δt =2-111m/s 2=-9 m/s 2对小车:μm 2g =m 1a 1,对小物块:-(F +μm 2g )=m 2a 2, 解得μ=0.4,F =0.5 N ,故A 、B 正确;根据题图(b)可知,在t =1 s 时小车和小物块的速度相同,两者不再发生相对运动,相对位移等于图中三角形的面积,x 相对=112 m =5.5 m ,C 错误;在0~1 s 内小物块向右滑动的位移x 1=2+112m =6.5 m当小车与小物块的速度相等后,在外力的作用下一起向右匀减速运动,其加速度大小为a 3=Fm 1+m 2=53m/s 2, 当速度减小到0时,整体向右发生的位移为x 2=222×53m =1.2 m所以小物块向右滑动的最大位移是x max =x 1+x 2=7.7 m ,故D 正确.9.(多选)(2020·山东济南市期末)如图9所示,倾角为37°的足够长斜面,上面有一质量为2 kg 、长8 m 的长木板Q ,木板上下表面与斜面平行.木板Q 最上端放置一质量为1 kg 的小滑块P .P 、Q 间光滑,Q 与斜面间的动摩擦因数为13.若P 、Q 同时从静止释放,以下关于P 、Q两个物体运动情况的描述正确的是(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)( )图9A .P 、Q 两个物体加速度分别为6 m/s 2、4 m/s 2B .P 、Q 两个物体加速度分别为6 m/s 2、2 m/s 2C .P 滑块在Q 上运动时间为1 sD .P 滑块在Q 上运动时间为2 s 答案 BD解析 对P 受力分析,受重力和Q 对P 的支持力作用,根据牛顿第二定律有:m P g sin 37°=m P a P解得:a P =g sin 37°=6 m/s 2对Q 受力分析,受重力、斜面对Q 的支持力、摩擦力和P 对Q 的压力作用,根据牛顿第二定律有:m Q g sin 37°-μ(m P +m Q )g cos 37°=m Q a Q ,解得:a Q =2 m/s 2,故A 错误,B 正确;设P 在Q 上面滑动的时间为t ,因a P =6 m/s 2>a Q =2 m/s 2,故P 比Q 运动更快,根据位移关系有:L =12(a P -a Q )t 2,代入数据解得t =2 s ,故C 错误,D正确.10.(2020·广东广州市一模)如图10所示,质量M =8 kg 的小车放在水平光滑的平面上,在小车右端加一F =8 N 的水平拉力,当小车向右运动的速度达到v 0=1.5 m/s 时,在小车前端轻轻地放上一个大小不计、质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,小车足够长,g 取10 m/s 2.求:图10(1)放小物块后,小物块及小车的加速度各为多大; (2)经多长时间两者达到相同的速度;(3)从小物块放上小车开始,经过t =1.5 s 小物块通过的位移大小为多少? 答案 (1)2 m/s 20.5 m/s 2 (2)1 s (3)2.1 m解析 (1)对小车和物块受力分析,由牛顿第二定律可得,物块的加速度:a m =μg =2 m/s 2小车的加速度:a M =F -μmg M=0.5 m/s 2(2)由:a m t =v 0+a M t 得:t =1 s ,所以速度相同时用的时间为1 s. (3)在开始1 s 内小物块的位移:x 1=12a m t 2=1 m最大速度:v =a m t =2 m/s在接下来的0.5 s 物块与小车相对静止,一起做加速运动,加速度:a =FM +m=0.8 m/s 2这0.5 s 内的位移:x 2=vt ′+12at ′2=1.1 m所以通过的总位移x =x 1+x 2=2.1 m.11.如图11所示,两个完全相同的长木板放置于水平地面上,木板间紧密接触,每个木板质量M =0.6 kg ,长度l =0.5 m .现有一质量m =0.4 kg 的小木块,以初速度v 0=2 m/s 从木板的左端滑上木板,已知木块与木板间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1,重力加速度g 取10 m/s 2.求:图11(1)小木块滑上第二个木板的瞬间的速度大小; (2)小木块最终滑动的位移(保留3 位有效数字). 答案 (1)1 m/s (2)0.670 m解析 (1)木板受到木块的摩擦力为F f1=μ1mg 木板受到地面的摩擦力为F f2=μ2(2M +m )g 因为F f2>F f1,所以木块运动时,木板静止不动设木块在左边第一个木板上的加速度大小为a 1,μ1mg =ma 1 小木块滑上第二个木板的瞬间的速度为v ,则v 2-v 02=-2a 1l代入数据解得:v =1 m/s(2)木块滑上第二个木板后,设木板的加速度大小为a 2,则μ1mg -μ2(M +m )g =Ma 2设木块与木板达到相同速度v 1时,用时为t ,则有: 对木块:v 1=v -a 1t 对木板有:v 1=a 2t解得:v 1=0.1 m/s ,t =0.3 s此时木块运动的位移x 1=v +v 12t =0.165 m木板的位移x 1′=v 122a 2=0.015 m木块在木板上滑动的长度为x 1-x 1′<l达到共速后,木块和木板一起继续运动,设木块、木板一起运动的加速度大小为a 3,位移为x 2,μ2(M +m )g =(M +m )a 3 v 12=2a 3x 2解得x 2=0.005 m小木块滑动的总位移x =l +x 1+x 2=0.670 m.。
滑块与木板问题
方法指导
3、判断滑块与木板间是否存在相对运动。滑块与木板存在相对运动的临界条 件是什么? ⑴ 运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵ 动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用 隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力fm的关 系,若f > fm,则发生相对滑动;否则不会发生相对滑动。
fm F
m
小结:解此类题考察拉力作用 在哪个物体上,先隔离没有拉 力作用的另一物体,由临界条 件求岀临界的加速度,再对受 拉力作用的物体进行受力分析, 根据牛顿第二定律求岀结果
chenzhs
M
fm
同步练习
1.如图所示,长方体物块A叠放在长方体物块B上,B置于光滑水平面上.A 、B质量分别为mA=6kg,mB=2kg,A、B之间动摩擦因数μ=0.2,开始时 F=10N,此后逐渐增加,在增大到45N的过程中,则( )
对滑块有F0-μ mg=mam
所以 F0=μ mg+mam=2N
(2)将滑块从木板上拉出时,木板受滑动摩擦力f=μ mg,此时木板的加速度a2为
a2=f/M=μmg/M =1m/s2. 由匀变速直线运动的规律,有(m与M均为匀加速直线运动)木 板位移 x2= ½ a2t2 ① 滑块位移 x1= ½ a1t2 ③ ②
chenzhs
解析:(1)对木板M,水平方向受静摩擦力f向右,当f=fm=μ mg时,M有最大加速度, 此时对应的F0即为使m与M一起以共同速度滑动的最大值。 对M,最大加速度aM,由牛顿第二定律得:aM= fm/M=μmg/M =1m/s2 要使滑块与木板共同运动,m的最大加速度am=aM, f f 即力F0不能超过2N
m
深圳高中物理滑块及木板模型专题及答案
例1、一质量为M的长木板静止在光滑水平桌面上.一质量为m的小滑块以水平速度v0从长木板的一端开始在 木板上滑动,直到离开木板.滑块刚离开木板时的速度为v0/3.若把该木板固定在水平桌面上,其它条件相 同,求滑块离开木板时的速度v.
例 2、一块质量为 M 长为 L 的长木板,静止在光滑水平桌面上,一个质量为 m 的小滑块以水平速度 v0 从长 v 木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为 0.若把此木板固定在水平桌面 5 上,其他条件相同.求: (1)求滑块离开木板时的速度 v; (2)若已知滑块和木板之间
碰撞+弹簧模型专题
例 1、如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视作质点,质量相等.Q 与轻质弹簧相连.设 Q 静止, P 以某一初速度向 Q 运动并与弹簧发生碰撞. 在整个碰撞过程中, 弹簧具有的最大弹性势能等于 ( ) A.P 的初动能 B.P 的初动能的 1/2 Q P C.P 的初动能的 1/3 D.P 的初动能的 1/4
例 2、如图所示,质量为 1.0kg 的物体 m1,以 5m/s 的速度在水平桌面上 AB 部分的左侧向右运动,桌面 AB 部分与 m1 间的动摩擦因数μ=0.2, AB 间的距离 s=2.25m, 桌面其他部分光滑。 m1 滑到桌边处与质量为 2.5kg 的静止物体 m2 发生正碰,碰撞后 m2 在坚直方向上落下 0.6m 时速度大小为 4m/s,若 g 取 10m/s2,问 m1 碰 撞后静止在什么位置?
与它碰后以原速率反弹(碰后立即撤去该障碍物) .求 B 与 A 的粗糙面之间的动摩擦因数 和滑块 B 最终 2 停在木板 A 上的位置. (g 取 10m/s ) (深圳晏老师 150-0206-5320)
专题滑块与木板模型
专题常见滑块—木板模型分析类型一地面光滑,木板受外力1.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;2.如图所示,光滑水平面上静止放着长L=1 m,质量为M=3 kg的木板厚度不计,一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=,今对木板施加一水平向右的拉力F;g取10 m/s21为使小物体与木板恰好不相对滑动,F不能超过多少2如果拉力F=10 N恒定不变,求小物体所能获得的最大速率;类型二地面光滑,滑块受外力3.如图所示,木块A的质量为m,木块B的质量为M,叠放在光滑的水平面上,A、B 之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,重力加速度为g;现用水平力F 作用于A,则保持A、B相对静止的条件是F不超过A. μmgB. μMgC. μmg1+错误!D. μMg1+错误!4.如图所示,质量M=1 kg的木块A静止在水平地面上,在木块的左端放置一个质量m=1 kg的铁块B大小可忽略,铁块与木块间的动摩擦因数μ1=,木块长L=1 m,用F=5 N的水平恒力作用在铁块上,g取10 m/s2;1若水平地面光滑,计算说明两物块间是否发生相对滑动;2若木块与水平地面间的动摩擦因数μ2=,求铁块运动到木块右端的时间;类型三地面粗糙,木板受外力5.如图,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间动摩擦因数为μ,B与水平面间的动摩擦因数为认为最大静摩擦力等于滑动摩擦力,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值;6.如图所示,小木块质量m=1kg,长木桉质量M =10kg,木板与地面以及木块间的动摩擦因数均为μ=4 m/s向=.当木板从静止开始受水平向右的恒力F=90 N作用时,木块以初速v左滑上木板的右端.则为使木块不滑离木板,木板的长度l至少要多长类型四地面粗糙,滑块受外力7.如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上;A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为2μ;最大静摩擦力等于滑动摩擦力,重力加速度为g ;现对A 施加一水平拉力F ,则A .当F <2μmg 时,A 、B 都相对地面静止B .当F =mg μ25时,A 的加速度为g μ31 C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过g μ21 类型五 地面粗糙,滑块与木板具有初速度8. 一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示;己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上;取重力加速度的大小g =10m /S 2求:1物块与木板间;木板与地面间的动摩擦因数:2从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.知识要求:运动学公式、相对位移的计算、牛顿运动定律、摩擦力的特点、动能定理、能量守恒定律方法要求:一、动力学的观点:运动学公式、牛顿第二定律运动分析、受力分析 整体法、隔离法 图像法二、能量的观点:动能定理、能量守恒定律不需分析具体的过程,只需抓住初、末状态注意两点:1、滑块与木板发生相对滑动的条件:二者加速度不相等;2、滑块与木板发生分离的条件: 滑块由木板一端运动到另一端过程中若1滑块与木板同向运动,二者对地位移之差等于板长;2滑块与木板反向运动,二者对地位移之和等于板长;。
滑块—木板模型专题(附详细答案)(1)
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动. 2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A =1 kg ,m B =2 kg ,A 、B 间动摩擦因数是0.5,水平面光滑. 用10 N 水平力F 拉B 时,A 、B 间的摩擦力是 用20N 水平力F 拉B 时,A 、B 间的摩擦力是例2、如图所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加, 若使AB 不发生相对运动,则F 的最大值为针对练习1、如图5所示,物体A 叠放在物体B 上,B 置于光滑水平面上,A 、B 质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数μ=0.2,开始时F =10 N ,此后逐渐增加,在增大到45 N 的过程中,则 ( )A .当拉力F <12 N 时,物体均保持静止状态B .两物体开始没有相对运动,当拉力超过12 N 时,开始相对运动C .两物体从受力开始就有相对运动D .两物体始终没有相对运动例3、如图所示,质量M =8 kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2 kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10 m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?1、动力学问题【例1】如图,A是小木块,B是木板,A和B都静止在地面上。
高考物理计算题训练——滑块与木板模型(答案版)
1、木板 M 静止在圆滑水平面上,木板上放着一个小滑m,与木板之的摩擦因数μ,了使得m 能从 M 上滑落下来,求以下各样状况下力 F 的大小范。
( 1)m 与 M 要生相滑的界条件:①要滑:m 与 M的静摩擦力达到最大静摩擦力;②未滑:此m 与 M 加快度仍同样。
受力分析如,先隔绝 m,由牛第二定律可得:a=μ mg/m= μ g再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) g因此, F 的大小范:F>μ (M+m)g( 2)受力剖析如,先隔绝M ,由牛第二定律可得:a=μ mg/M再整体,由牛第二定律可得:F0=(M+m)a解得: F0= μ (M+m) mg/M因此, F 的大小范:F>μ (M+m)mg/M2、如所示,有一木板静止在圆滑水平面上,木板量M=4kg , L=1.4m. 木板右端放着一个小滑,小滑量m=1kg ,其尺寸小于 L ,它与木板之的摩擦因数μ =0.4, g=10m/s 2,( 1)用水平向右的恒力 F 作用在木板 M 上,了使得 m 能从 M 上滑落下来,求 F 的大小范 .( 2)若其余条件不,恒力F=22.8N ,且始作用在M 上,求 m 在 M 上滑的 .( 1)小滑与木板的滑摩擦力f= μFN= μ mg=4N⋯⋯⋯⋯①滑摩擦力 f 是使滑生加快度的最大合外力,其最大加快度a1=f/m= μ g=4m/s 2⋯②当木板的加快度a2 > a1,滑将相于木板向左滑,直至离开木板F-f=m a 2>m a1F> f +m a 1=20N⋯⋯⋯⋯③即当 F>20N ,且保持作用一般后,小滑将从木板上滑落下来。
( 2)当恒力 F=22.8N ,木板的加快度a2',由牛第二定律得F-f= M a2'解得: a2'= 4.7m/s2⋯⋯⋯④两者相滑t,在分别以前小滑: x 1=? a1t 2⋯⋯⋯⋯⑤木板: x 1=? a2 ' t2⋯⋯⋯⋯⑥又有 x2- x1=L ⋯⋯⋯⋯⑦根源于网解得: t=2s ⋯⋯⋯⋯⑧3、量 mA=3.0kg 、度L=0.70m 、量 q=+4.0 × 10-5C 的体板 A 在足大的水平面上,量 mB=1.0kg 可点的物 B 在体板 A 的左端,开始A、B 保持相静止一同向右滑,当它的速度减小到 v0=3.0m/s,立刻施加一个方向水平向左、大小板的距离S =2m ,今后 A 、 B 始在匀中,如所示E=1.0 × 105N/C 的匀 ,此 A 的右端到直.假设 A 与板碰撞极短且无机械能失, A 与B 之(摩擦因数 1 =0.25)及 A 与地面之(摩擦因数 2 =0.10)的最大静摩擦力均可等于其滑摩擦力,g 取 10m/s2(不空气的阻力)求:(1) 施加匀,物 B 的加快度的大小?(2) 体板 A 走开板, A 的速度大小?(3)B 可否走开A, 若能,求 B 走开 A , B 的速度求 B 与 A 的左端的最大距离?大小;若不可以,解:( 1) B 遇到的最大静摩擦力f1m,f1m1m B g 2.5N . ①(1分)A 遇到地面的滑摩擦力的 f 2, f2 2 ( mA mB ) g 4.0N . ②(1 分)施加后, A .B 以同样的加快度向右做匀减速运,加快度大小a,由牛第二定律qE f2(m A m B )a ③( 2分)解得:a 2.0m / s2(2 分)B 遇到的摩擦力f1,由牛第二定律得f1m B a ,④解得: f1 2.0N . 因 f1f1m,因此作用后, A .B 仍保持相静止以同样加快度 a 向右做匀减速运,因此加上匀, B 的加快度大小a 2.0m / s2(2 分)( 2) A 与板碰前瞬, A . B 向右的共同速度v1,v12v022as( 2 分)解得v11m / s(1 分)A 与板碰撞无机械能失,故 A 走开板速度大小v11m / s(1 分)( 3) A 与板碰后,以 A . B 系研究象,qE f2⑥故 A 、B 系量守恒,A 、B 向左共同速度,定向左正方向,得:m A v1m B v1 (m A m B )v⑦(3 分)程中, B 相于 A 向右的位移s1,由系功能关系得:1mBgs11(m A m B )v121(m A m B ) v2⑧( 4 分)解得s10.60 m (2分)22因 s1L ,因此B不可以走开A ,B 与 A 的左端的最大距离s10.60m(1 分)4、如所示,圆滑水平面MN 的左端 M 有一射装置P(P 左端固定,于状且定的簧,当 A 与 P 碰撞 P 立刻排除定),右端 N 与水平送恰平且很凑近,送沿逆方向以恒定速率υ =5m/s匀速,水平部分度L = 4m。
专题 滑块—木板模型(板块模型)(附精品解析)
专题 滑块—木板模型(板块模型) 专题训练一、单选题1.(2021·湖南·长郡中学高一期中)木板B 静止在水平面上,其左端放有物体A 。
现对A 施加水平恒力F 的作用,使两物体均从静止开始向右做匀加速直线运动,直至A 、B 分离,已知各接触面均粗糙,则( )A .A 和地面对B 的摩擦力是一对相互作用力B .A 和地面对B 的摩擦力是一对平衡力C .A 对B 的摩擦力水平向右D .B 对A 的摩擦力水平向右2.(2021·黑龙江·农垦佳木斯学校高三月考)如图所示,质量为M 的木板放在水平桌面上,一个质量为m 的物块置于木板上。
木板与物块间、木板与桌面间的动摩擦因数均为μ。
现用一水平恒力F 向右拉木板,使木板和物块共同向右做匀加速直线运动,物块与木板保持相对静止。
已知重力加速度为g 。
下列说法正确的是( )A .木板与物块间的摩擦力大小等于0B .木板对物块的摩擦力水平向左C .木板与桌面间的摩擦力大小等于μMgD .当拉力2()F M m g μ>+时,m 与M 发生相对滑动 3.(2021·山东师范大学附中高三月考)如图所示,质量为3kg 的长木板B 静置于光滑水平面上,其上放置质量为1kg 的物块A ,A 与B 之间的动摩擦因数为0.5设最大静摩擦力等于滑动摩擦力,且当地的重力加速度为210m/s 。
当木板A 和B 刚好要发生相对滑动时,拉力F 的大小为( )A .20NB .15NC .5ND .25N4.(2021·安徽·定远县民族中学高三月考)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A 。
木板B 受到随时间t 变化的水平拉力F 作用时,木板B 的加速度a 与拉力F 的关系图象如图乙所示,则小滑块A 的质量为( )A .4kgB .3kgC .2kgD .1kg二、多选题5.(2021·四川·眉山市彭山区第一中学高三月考)物体A 和物体B 叠放在光滑水平面上静止,如图所示。
滑块—木板模型专题附详细答案
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.用10 N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()A.当拉力F<12 N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间? 牛顿定律——滑块和木板模型专题答案例1、3.3 N 5 N例2、48 N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m解析 (1)以小物块为研究对象,由牛顿第二定律,得μmg =ma 1解得a 1=μg =2 m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2解得a 2=F -μmg M=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t解得:t =v 0a 1-a 2=1 s则物块运动的位移x 1=12a 1t 2=1 m小车运动的位移x 2=v 0t +12a 2t 2=1.75 mL =x 2-x 1=0.75 m针对练习2、解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N木板的加速度a =F -F f M =2.5 m/s 2.(2分) (2)设拉力F 作用时间t 后撤去F 撤去后,木板的加速度为a ′=-F f M =-2.5 m/s 2(2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故at 2=L解得t =1 s ,即F 作用的最短时间为1 s .(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2对木板:F 1-μ1mg -μ(M +m )g =Ma 木板 (2分)木板能从木块的下方抽出的条件为a 木板>a 木块解得F 1>25 N .(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2 (1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M =4.25 m/s 2(1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即12a 木板′t 2-12a 木块′t 2=L(2分)代入数据解得t=2 s.(2分) 答案(1)2.5 m/s2(2)1 s(3)大于25 N(4)2 s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
【圆派教育】高考物理专题(滑块—木板模型)
滑块—木板模型一、水平无外力型 水平面光滑时1.如图甲.质量为M 的木板静止在水平面上.一个质量为m 的小滑块以初速度v 0从木板的左端向右滑上木板.滑块和木板的水平速度随时间变化的图象如图乙所示.某同学根据图象作出如下一些判断,正确的是( ) A .滑块和木板始终存在相对运动 B .滑块始终未离开木板 C .滑块的质量小于木板的质量 D .木板的长度为v 0t 122.质量为M 木板置于光滑水平面上,一质量为m 的滑块以水平速度0v 从左端滑上木板,m 与M 之间的动摩擦因数为 ,求:①假如木板足够长,求共同速度和所用的时间 ②要使m 不掉下,M 至少要多长3.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1, g 取10m/s 2。
求两木板的最后速度。
4.如图所示,质量为M 的木板长为L ,木板的两个端点分别为A 、B ,中点为O ,木板置于光滑的水平面上并以v 0的水平初速度向右运动。
若把质量为m 的小木块(可视为质点)置于木板的B 端,小木块的初速度为零,最终小木块随木板一起运动。
小木块与木板间的动摩擦因数为μ,重力加速度为g 。
求:(1)小木块与木板相对静止时,木板运动的速度; (2)从小木块放上木板到它与木板相对静止的过程中,根据动能定理求解木板运动的位移; (3)小木块与木板间的动摩擦因数μ的取值在什么范围内,才能使木块最终相对于木板静止时位于OA 之间。
水平面粗糙时1.质量为m0=20 kg、长为L=5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15。
将质量m=10 kg的小木块(可视为质点),以v0=4 m/s的速度从木板的左端被水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g=10 m/s2)。
专题05 滑块木板模型--2024届新课标高中物理模型与方法(解析版)
2024版新课标高中物理模型与方法专题05滑块木板模型目录【模型归纳】 (1)模型一光滑面上外力拉板 (1)模型二光滑面上外力拉块 (1)模型三粗糙面上外力拉板 (2)模型四粗糙面上外力拉块 (2)模型五粗糙面上刹车减速 (2)【常见问题分析】 (3)问题1.板块模型中的运动学单过程问题 (3)问题2.板块模型中的运动学多过程问题1——至少作用时间问题 (3)问题3.板块模型中的运动学多过程问题2——抽桌布问题 (4)问题4.板块模型中的运动学粗糙水平面减速问题 (4)【模型例析】 (5)【模型演练】 (13))g-μ抽桌布问题图(a)图(b)μ1及小物块与木板间的动摩擦因数μ2;木板右端离墙壁的最终距离。
第二步:分解过程模型。
(1)认为地面各点的粗糙程度相同,小物块和木板一起向右做匀变速运动,到速度大小为(2)木板与墙壁碰撞过程:小物块受到滑动摩擦力(设置的初始条件块速度不变,木板的速度方向突变(设置的初始条件),如图丙所示。
(3)然后小物块向右减速,木板向左减速,经1s小物块速度减小为零小,故小物块速度为零时,木板仍有速度。
然后小物块向左加速,图戊所示)。
(4)分析临界条件,包括时间关系和空间关系,如图戊所示。
(5)在小物块和木板具有共同速度后,两者向左做匀变速直线运动直至停止【答案】(1)0.10.4(2)6m(3)6.5m【解析】(1)根据图象可以判定碰撞前小物块与木板共同速度为-0【例2】(2023·全国·高三专题练习)如图,两个滑块A 和B 的质量分别为A 1kg m =和B 5kg m =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4kg m =,与地面间的动摩擦因数为20.1μ=。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为0=3m/s v 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小2=10m /s g 。
滑块—木板模型专题(附详细参考答案)
精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿定律——滑块和木板模型专题
一.“滑块—木板模型”问题的分析思路
1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导
解此类题的基本思路:
(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度
(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,
建立方程.特别注意滑块和木板的位移都是相对地面的位移.
例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.
用10 N水平力F拉B时,A、B间的摩擦力是
用20N水平力F拉B时,A、B间的摩擦力是
例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为
针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()
A.当拉力F<12 N时,物体均保持静止状态
B.两物体开始没有相对运动,当拉力超过12 N
时,开始相对运动
C.两物体从受力开始就有相对运动
D.两物体始终没有相对运动
例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:
(1)小物块放上后,小物块及小车的加速度各为多大?
(2)小车的长度L是多少?
针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2
,求: (1)木板的加速度;
(2)要使木块能滑离木板,水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力. (4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?
牛顿定律——滑块和木板模型专题答案
例1、3.3 N 5 N 例2、48 N
针对练习1、答案 D
解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确. 例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m
解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1
解得a 1=μg =2 m/s 2
以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2=F -μmg
M
=0.5 m/s 2
(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t =
v 0
a 1-a 2
=1 s 则物块运动的位移x 1=1
2a 1t 2=1 m
小车运动的位移x 2=v 0t +1
2a 2t 2=1.75 m
L =x 2-x 1=0.75 m
针对练习2、
解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N 木板的加速度a =F -F f
M =2.5 m/s 2.
(2分)
(2)设拉力F 作用时间t 后撤去
F 撤去后,木板的加速度为a ′=-F f
M
=-2.5 m/s 2
(2分)
木板先做匀加速运动,后做匀减速运动,且a =-a ′,故 at 2=L
解得t =1 s ,即F 作用的最短时间为1 s .
(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分)
得a 木块=μ1g =3 m/s 2
对木板:F 1-μ1mg -μ(M +m )g =Ma 木板
(2分)
木板能从木块的下方抽出的条件为a 木板>a 木块 解得F 1>25 N .
(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2
(1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g
M =4.25 m/s 2
(1分)
木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即 12a 木板′t 2-1
2a 木块′t 2=L (2分) 代入数据解得t =2 s .
(2分)
答案 (1)2.5 m/s 2 (2)1 s (3)大于25 N (4)2 s
分析滑块—木板模型问题时应掌握的技巧
1.分析题中滑块、木板的受力情况,求出各自的加速度. 2.画好运动草图,找出位移、速度、时间等物理量间的关系. 3.知道每一过程的末速度是下一过程的初速度.
4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。