2012全国大学生数学建模机器人避障问题优秀论文模型

合集下载

2012高教社杯全国大学生数学建模竞赛D题全国一等奖论文设计

2012高教社杯全国大学生数学建模竞赛D题全国一等奖论文设计

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规如此.我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规如此的, 如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们重承诺,严格遵守竞赛规如此,以保证竞赛的公正、公平性。

如有违反竞赛规如此的行为,我们将受到严肃处理。

我们参赛选择的题号是〔从A/B/C/D中选择一项填写〕:D我们的参赛报名号为〔如果赛区设置报名号的话〕:所属学校〔请填写完整的全名〕:参赛队员(打印并签名) :1.〔此局部容不便公开,见谅〕2.3.指导教师或指导教师组负责人(打印并签名):日期:2012年9月10日赛区评阅编号〔由赛区组委会评阅前进展编号〕:编号专用页赛区评阅编号〔由赛区组委会评阅前进展编号〕:全国统一编号〔由赛区组委会送交全国前编号〕:全国评阅编号〔由全国组委会评阅前进展编号〕:机器人避障问题摘要针对机器人避障问题,本文分别建立了机器人从区域中一点到达另一点的避障的最短路径、最短时间路径的非线性0-1整数规划模型。

同时,本文为求带有NP属性的非线性0-1整数规划模型,构建了有效启发式算法,利用MATLAB软件编程,求得了O→A、O→B、O→C、O→A→B→A→C的最短路径,同时得到了O→A的最短时间路径,求得的各类最短路径均是全局最优。

针对区域中一点到达另一点的避障的最短路径问题,首先,本文证明了圆弧位置设定在需要绕过障碍物的顶角上,且圆弧半径为10个单位时,能够使得机器人从区域中一点到达另一点的行进路径最短;其次,本文将最短路径选择问题转化成了最短路径的优选问题,根据避障条件,建立了具有较高普适性的避障最短路径的优化模型。

为便于求解,本文巧妙地将此优化模型转化成了以可行路径不与障碍物边界相交、不与圆弧相交为约束条件,以机器人从区域中一点达到另一点避障路径最短为目标的0-1规划模型;再次,本文构建了两种有效的启发式算法,利用MATLAB软件编程求得了O→A、O→B、O →C、O→A→B→A→C的最短路径,最短路径长分别为、、、,其中O-->A的最短路径为(0,0)→(70.5063,213.1405)→(75.975,219.1542)→〔300,300),对应圆弧的圆心坐标为(80,210),O→B的最短路径,对应圆弧的圆心坐标:(60,300)、(150,435)、〔220、470〕、(220,530)、(150,600),O→C经过的圆心:(410,100)、(230,60)、(720,520),〔720,600〕,(500,200), O→A→B→C→O经过的圆心:(410,100),(230,60), (80,210),(220,530),(150,600),(270,680),(370,680), (430,680),(670,730),(540,730),(720,520),(720,600),(500,200)。

机器人避障问题的解题分析(建模集训)

机器人避障问题的解题分析(建模集训)

v1.0 可编辑可修改机器人避障问题的解题分析摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。

关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型1 引言随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作范围内为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。

本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。

本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。

假设机器人的工作范围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1):图1 800×800平面场景图表1在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v (ρ是转弯半径)。

如果超过该速度,机器人将发生侧翻,无法完成行走。

场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A的最短时间路径问题。

机器人避障问题数学建模论文

机器人避障问题数学建模论文

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2011 年 9 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题摘要本文通过在给定的平面场景范围内对机器人就如何躲避12个不同形状障碍物区域的避障行走问题进行探究,在出发点到目的点的多种情形中进行选择,并根据要求,保证所走的路线为直线段和圆弧。

继而探究避障的最短路径及最短时间路径的数学模型,在此探究过程中,运用穷举法,进行各种行走路线的CAD绘图,利用平面几何的点、线、圆的关系求解行走路径所经过点的坐标、线段长度、和弧长,在各总长度中进行比较,找出最短路径。

最终,根据机器人速度的数据,建立最短时间路径的数学模型,运用LINGO软件最终求出最短时间的路径。

针对问题一,根据题意,为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,可分别以障碍物的边界处绘制以10为半径的圆,从而确定安全的可行走的活动范围。

2012年数学建模机器人避障问题

2012年数学建模机器人避障问题

机器人避障问题摘要本文主要运用直线逼近法等规律来解决机器人避障问题.对于问题一:要求最短路径运用直线逼近法证得圆弧角三角形定理,得出结论:若一大圆弧角三角形完全包括另一小圆弧角三角形,则该三角形曲线周长必大于小的三角形周长.那么可知机器人在曲线过弯时,选择最小半径可满足路径最短,即为10个单位半径,通过观察可得可能的所有曲线,通过仅考虑直线段的大致筛选选出总长较小、长度相近(之差小于100)的曲线,然后利用平面几何知识对相关切点,进而求出各直线、曲线的长度,求和可得最段路线.对于问题二:通过对机器人过弯规律21.0100e 1)(ρρ-+==v v v 的分析可知,当过弯半径13ρ=时,机器人速度达最大速度为50=v 个单位/秒,再大就无变化了,那么可分两种情况考虑:1)当13ρ>时,过弯速度无变化,但由圆弧角三角形定理可知,此时随着ρ的不断变大,其路线总长不断变大,这时ρ越小O A →所用时间最短;2)当13ρ≤时,统计计算ρ分别为10、11、12、13时,过弯速度v 也不断变化,计算所用时间发现随ρ不断变大,O A →所用时间越短,此时当13ρ=时,时间最短.综合上述可知:当13ρ=时,时间最短.关键词:质点机器人 安全范围 直线逼近法 圆弧角三角形定理 10单位半径1 问题重述在一个800×800的平面场景中,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动,其中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,物的距离至少超过10个单位).规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径.机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位.为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位.机器人直线行走的最大速度为50=v 个单位/秒.机器人转弯时,最大转弯速度为2100.110()(1e)v v v ρρ--==+,其中ρ是转弯半径.如果超过该速度,机器人将发生侧翻,无法完成行走.下面建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型.对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算:(1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径. (2) 机器人从O (0, 0)出发,到达A 的最短时间路径.2 问题分析2.1问题一:该问题要求路径最短,即不要求速度与时间,则可认为以最小半径10的圆过弯.如图2.1所示:由圆弧角三角形定理(简单证明见模型准备5.3)可知过弯时,只有采用10单位半径过弯时,才会使得过弯路径最短,因此解决问题一的过弯拐角问题均采用10单位半径过弯路径. 2.2问题二:由于O→A 过程中,机器人至少要经过一次转弯;因为转弯时的速度一般小于直线行走的最大速度,又由分析指出转弯次数越多,转弯路径越远,转弯所花费的时间也越长.所以可以确定有且只有一次转弯时才存在最短时间路径.就仅考虑只经过一次转弯的情形.3 模型假设1)假设机器人可准确执行运动轨道,无任何偏差;2)假设机器人为一可运动的质点,即质点机器人不考虑其外形尺寸; 3)假设机器人的行进速度可瞬时加减变化,不受条件限制;4)假设机器人可到达边界线而不会发生碰撞,即对边界线不再加10个单位.4 符号说明hij D : 机器人的行走路径上各切点,h 表示路径目的地(A 、B 、C ),i 表示到达h 机器人行走路线的第(1,2,3,)i i = 种方案,j 表示机器人在该路线上所经过的第(1,2,3,)i i = 个点;hij L : 机器人的行走路径上的线段长或弧长,h 、i 、j 同上定义;ij D :机器人的行走路径上的障碍物的顶点,i 、j 同上定义;`hj D :机器人在O A B C O →→→→环道中的各线切点h 、j 同上定义5 模型准备5.1建立机器人运动坐标系:以O 为原点,两对应坐标轴,水平方向为X 轴,垂直方向为Y 轴5.2建立机器人可安全运动到达的区域图:由于保持安全距离10个单位,则机器人的实际可到达到区域应由各障碍物的外延10个单位的区域组成如图所示图5.2.1实线外的空白部分.5.3圆弧角三角形定理:定义1:平面内若两不平行直线所夹的角被一同时与这两条直线相切的圆弧段取代而形成的角,叫做圆弧角.如图5.3.2,称为凸圆弧角(本文主要讨论);如图 5.3.3,称为凹圆弧角.定义2:由有一内角为凸圆弧角的三角形为圆弧角三角形.圆弧角三角形定理:圆弧角`DHD ∠在直线`DD 及上方范围完全包含圆弧角`DGD ∠(即圆弧角DGD ’各边均在圆弧角`DHD ∠的边与线段DD ’所构成的封闭区间内,如图5.3.1所示)时,则有曲线段`DGD 的长度恒小于曲线段`DHD 成立.证明:如图 5.3.1,过圆弧 'EGE的一个端点E 作该圆弧在该点的切线的垂线交曲线DH 于点F ,同样过圆弧 'EGE的另一个端点'E 也作相应的垂线交曲线'D H 于点'F ,两条直线的交点O 显然为圆弧 'EGE 所在圆的圆心. (1),EF DE ⊥ 90DEF ∴∠=︒ ;,DF DE ∴> 曲线段DF DF ≥, ∴曲线段DF DE >.(2)'''',E F D E ⊥ '''90D E F ∴∠=︒;'''',D F D E ∴> 曲线段''''D F D F ≥;∴曲线段''''D F D E >.(3)将''EFF E 分成n 等份(如图5.3.5),每部分(见图5.3.4)中,,(1,,)i i M N i n = 是 MN 与边界的交点.令i i M N 为i M ,i N 两点间直线长度,''i i M N 为`i A ,`i E 两点间直线长度,则圆弧 MN 长度=1lim ni i n i M N →∞=∑,曲线`AE 长度=''1lim ni in i M N →∞=∑又容易证明,''(1,,)i i i i M N M N i n ≤= ,故有''11lim lim n ni i i i n n i i M N M N →∞→∞==≤∑∑ .因此,圆弧 MN长度≤曲线 ''M N 长度. 综合(1)(2)(3)的证明,得曲线段DF +曲线段''D F +曲线 ''M N 长度 > DE +''D E +圆弧 MN长度.结论得证. 6 模型建立与求解该问题要求路径最短,即不要求速度与时间,则可认为过弯半径允许以最小半径10,如图6.1所示.由圆弧角三角形定理可得:本论文问题一求路径最短可采用10单位过弯半径,即以半径为10个单位的圆弧过弯可满足两点避障过弯最短问题.6.1问题一的模型建立与求解:6.1.1:机器人从O(0, 0)出发,O A →的最短路径. 由圆弧角三角形定理可得:采用10单位半径过弯路径最短,解决过弯避障拐角问题采用10单位半径过弯路径.已知机器人所走路线为直线或圆弧,那么通过实际规划可得如下四种避障行进方案:如图6.1.1首先对上述四条路线进行筛选:1)当机器人以一个连续圆弧过弯,即选择路 线二或路线四时,其中路线二:分别过点O A ,和障碍物5的切点23a D (72.74,216.88),则可得过该三点的圆的方程:225406140x y x y ++-=显然当0x =时,y 有不等的两个根,则该路线超出规定场地. 同理路线四的圆方程:22(73.98)(226.02)56558.350x y -+--= (Matlab 求解程序见程序01) 当0y =时,x 有不等的两个根,则该路线也超出规定场地.2)当机器人以直线—圆弧—直线的方式过弯,即有以10单位半径过弯模式的线路一和三:比较线路一与线路三:显然路线一的总长1111213a a a a L L L L =++,线路三的总长3313233a a a a L L L L =++. 解得13471.04498.44a a L L =>=则可知O→A 的最短路径为路线一总长为1471.04a L =,下表5.1.1为线路一的各点的详细参数,表6.1.2为各线的参数.表6.1.26.1.2机器人从O(0, 0)出发,O B →的最短路径由圆弧角三角形定理可得:采用10单位半径过弯路径最短: 通过观察可得如下四种较短的避障行进方案,如图6.1.2:由于方案较多,可预先进行粗略筛选:如图所示:大致统计长度仅包括直线段长度如下表6.1.2线的精确长度:设:11b OD 、1111b D D分别表示O 点到点11b D ,点11b D 到点11D 之间的向量;1111b D D 为11b D 、11D 两点之间的向量的模;()()(),hij hij x y 表示切点hij D 坐标;()()(),ij ij x y 记为障碍物顶点ij D 的坐标;b11L2220(b12)(b11)(b12)(b11)00b12-((x -x )+(y -y ))22=arccos()L ρρρ⨯b13L11(11)(00)(11)(00)(,)b b b OD x x y y =-- ()1 61(61)(00)(61)(00)(,)OD x x y y =--1111(11)(11)(11)(11)(,)b b b D D x x y y =--()2 1111110b b D D OD =()3 1111b D D r =()4联立方程()1()2()3()4解得11b D (50.14,30.64)由于点12b D ,13b D 分别是以点61D ,61D 为圆心r 为半径圆的外公切线切点,所以 由点到直线的距离公式得0ρ= ()50ρ=()6并且线段13126163b b D D D D =()7由于直线13126163b b D D D D 平行直线由斜率相等得(13)(13)(61)(63)(13)(13)(61)(63)b b b b x x x x y y y y --=-- ()8联立方程()5()6()7()8解得点12b D 的坐标(51.6795,305.547)13b D 的坐标(141.68,440.55)线路一和线路二的各段路线及总长分别如下表6.1.2,6.1.3同理可解得各点坐标如下表6.2.4→的最短路径为:O B6.1.3机器人从O(0, 0)出发,O C→的最短路径由圆弧角三角形定理可得:采用10单位半径过弯路径最短:通过观察可得如下避障行进方案,如图6.1.3由于该线路同样较复杂,可通过大致筛选,仅考虑其中的直线段长度.将通过障碍物1上边沿的线路称为上线路,通过下边沿的线路称为下线路1)考虑上线路中最短路径:上线路中如图6.1.3.1分两大段,上半段:线路A、B、C,下半段:线路D、E对上半段的线路进行只计算线段的粗筛选:计算统计可得三线路的粗选长度:如对下半段的线路进行只计算线段的粗筛选: 计算统计可得三线路的粗选长度:如表6.1.62)考虑下线路中最短路径: 如图图6.1.3.2对下线路的线路进行只计算线段的筛选:计算统计可得线路的长度:下表6.1.7为路线一的各段线路总长对于同一条路径上的两个相邻点(),i i x y 、()11,i i x y ++来说,如果这两点之间的路径为直线段时,用通式1L 计算;如果这两点之间的路径为弧线段时,可用通式2L 计算:1L 222011002-((-)(-))22=arccos()i i i i x x y y L ρρρ+++⨯下表6.2.8为路线二的各段线路总长下线路的两段线路对比得:线路一最短为:950.84综合上线段、下线段可得:线路一最短.各切点坐标如下表6.1.9表6.1.96.1.4机器人从O(0, 0)出发,O A B C O →→→→的最短路径 由圆弧角三角形定理可得:采用10单位半径过弯路径最短:6.1.4.1A B →的最短路径求解: 通过实际规划可得如下A B →的避障行进最短方案:如图6.1.4.16.1.4.2B C →的最短路径求解:通过实际规划可得如下A B →的避障行进最短方案:如图6.1.4.1对线路一、二进行大致选可得下表表6.1.10则可知路线一距离最近对于同一条路径上的两个相邻点(),iix y 、()11,i i x y ++来说,如果这两点之间的路径为直线段时,用通式1L 计算;如果这两点之间的路径为弧线段时,可用通式2L 计算:1L 222011002-((-)(-))22=arccos()i i i i x x y y L ρρρ+++⨯6.1.4.3线路经过A 、B 、C 的圆弧处理问题为使经过A 、B 、C 的圆弧路线最短,在A 与相邻切点的连线形成的夹角的平分线,以该角的平分线为基础,在该线上做与点A 相切的半径为10个单位的圆,则此时通过该构造圆与相邻圆弧的切线连接就产生了,进而保证了机器人的圆弧过弯和线路最短. 点A 的圆弧处理结果如图6.1.4.3则综上所述:求得各线短的最短路径,则可计算并统计出线段总长及各切点坐标如下表表6.1.116.2问题二的模型建立与求解:由于O→A 过程中,机器人至少要经过一次转弯;因为转弯时的速度一般小于直线行走的最大速度,又由分析指出转弯次数越多,转弯路径越远,转弯所花费的时间也越长.所以可以确定有且只有一次转弯时才存在最短时间路径.故以下就仅考虑只经过一次转弯的情形.机器人由起点到终点所用时间121255O AOQ Q AQ Q t v →=++,对于每种固定的转弯半径来说,转弯路径所在的圆的圆心与点(80,210)连线垂直平分该转弯路径所在的圆弧时,所得的总路径长度最短.如图6.2.1所示.对于已知条件中的最大转弯速度为21.0100e1)(ρρ-+==v v v ,其中ρ是转弯半径通过matlab 画出其图像,见程序02 如图6.2.2根据图6.1中所示,当1013R ≤<时,v 随R 增加而增加;当13R ≥时,v 已非常趋近于5单位/秒,此时可以看做v 不随R 增加而变化了.于是可以分两种情况解决本问题:1)当13R ≥时,由于O→A 整个过程的平均速度可以达到最大05v =单位/秒,以这样的速度沿最小的路径就可以使到达A 的时间最短.通过问题一中对机器人O→A 最短路径的分析,可知其最小时间路径应在OA 连线左上方区域;同时根据所建立并证明的圆弧角三角形定理可以知道,所得路径的转弯半径应为13个单位(如图6.2.3)1236.1392OQ =, 120.9077Q Q =,2223.1903Q A =,总长度: 1122++471.1296L OQ Q Q Q A == 总时间:1212471.135594.225595O AOQ Q A Q Q L t v →=++===(秒)2)当1013R ≤<时,图6.2取自原题目图中的一部分,其中(0,0)O ,2(80,210)O ,(300,300)A 点的坐标均已给出.1Q 、2Q 分别为OQ1和OQ2与1O 的切点,其中1O 又与2O 相切于3Q 点.假设半径R 已知,1O 、1Q 、2Q 、3Q 的坐标分别为00(,)x y 、11(,)x y 、22(,)x y 、33(,)x y ,则可列出如下方程组:2221010()()x x y y R -+-= 2222020()()x x y y R -+-= 2223030()()x x y y R -+-= 22233(80)(210)10x y -+-=21302130()()()()0x x x x y y y y --+--=310302108080y y y x x --=-- 110110()()0x x x y y y ⨯-+⨯-=202202()(300)()(300)0x x x y y y --+--=分别取R =10,11,12,13并解方程组可以得到总时间t 随转弯半径R 变化的数据,根据弧长公式得12Q Q AR =, A = 最终计算数据如下表:6.2.1最终会趋于94.22秒.因此,可以确定出最短时间路径.经过以上两种情况的讨论,可得最短时间路径, 具体坐标信息见表6.2.27 模型的评价与推广7.1优点:1)该模型采用较准确的及计算方法,数据精度高,可信度高. 2)该模型定义了新的几何名词与定理.具有一定的创新性. 3)利用估算法减少了计算量. 7.2缺点:程序利用率和执行率较低,计算量较大. 7.3应用与推广:自动控制技术 智能机器人技术 避障快速救援项目8参考文献[1]姜启源谢金星,数学建模,北京:高等教育出版社,2003[2]薛毅,数学建模基础,北京:北京工业大学出版社,2004[3]杨启帆方道元,数学建模,浙江,浙江大学出版社,19999附录程序01%三点确定圆方程%三点坐标x1=input('请输入x1=');y1=input('请输入y1=');x2=input('请输入x2=');y2=input('请输入y2=');x3=input('请输入x3=');y3=input('请输入y3=');if((y1==y2)&(y2==y3))disp('三点不构成圆!');elseif((y1~=y2)&(y2~=y3))k1=(x2-x1)/(y2-y1);k2=(x3-x2)/(y3-y2);endif(k1==k2)disp('三点不构成圆!');enda=2*(x2-x1);b=2*(y2-y1);c=x2*x2+y2*y2-x1*x1-y1*y1;d=2*(x3-x2);e=2*(y3-y2);f=x3*x3+y3*y3-x2*x2-y2*y2;disp('圆心为::');x=(b*f-e*c)/(b*d-e*a)y=(d*c-a*f)/(b*d-e*a)disp('半径为::');r=sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1))利用参考文献:/thread-790618-1-1.html/求助已知3点怎么用MATLAB编程求圆的方程/参考程序程序02function plot_v_rr=0:0.5:20;v=5./(1+exp(10-0.1*r.^2));plot(r,v)grid on。

机器人论文数学建模大赛2012年浙江省一等奖

机器人论文数学建模大赛2012年浙江省一等奖

机器人避障模型摘要:本文主要考虑在固定的场景范围内,当机器人需躲开障碍物从区域的一点到达另外一个固定点时,如何设计行走路线,使得机器人所走的路径最短或者所需的时间最少。

首先建立一个以O 为原点的直角坐标系,对问题一和问题二利用可视图中的几何逼近法设计机器人的行走路线,建立方程组,并利用matlab 软件求出最优路径。

问题一,考虑机器人从O(0, 0)出发到达一个固定点的最短路径。

利用可视图中的几何逼近法分析得出最短路径转弯处圆弧的半径为10个单位,通过比较建立各路径长度的函数关系式,利用matlab 求解得知O→A 的最短路径长度约为471个单位,行走线路如图二;O→B 的最短路径长度约为853个单位,行走线路如图四;O→C 的最短路径长度约为1093个单位,行走线路如图六;O→A→B→C→O 的最短路径长度约为2714个单位,行走线路如图七。

问题二,考虑机器人从O (0, 0)出发,到达A 的最短时间路径。

通过对平面可视图的分析可知从O (0, 0)出发到达A 点只经过一段圆弧时时间最省,且所有的圆弧所在圆的圆心在同一直线上并且内切于某一点。

圆弧所在圆的半径大小决定机器人从O→A所需要的时间,由此求出圆的内切点,建立圆弧所在圆的半径,圆心坐标和最短路径所需时间的函数关系,利用matlab 求带约束的非线性方程的最小值求得,最短时间路径中机器人从O 点出发通过第一段直线所需的时间1t =41.4463秒,通过圆弧所需的时间2t =8.5576秒,通过第二段直线到达A 点所需的时间3t =44.2570秒,所求最短时间路径所需总时间为94.2509秒。

此时,圆弧的半径为46个单位,圆心坐标为(106.2,183.8),路经如图九所示。

关键词: 几何逼近法 matlab 最短路径 最短时间路径一、问题重述在一个800×800的平面场景图中,有12个形状各异的障碍物。

原点(0,0)点处有一个机器人通过行走且需躲开障碍物到达指定目标点。

机器人避障路径问题 数学建模

机器人避障路径问题 数学建模

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题摘要本文研究了机器人避障最短路径及最短时间的问题。

主要解决在一个区域中存在12个不同形状障碍物,机器人由出发点到达目标点、由出发点经过途中的若干目标点到达原点以及到某目标点最短时间路径的三种情形。

首先,我们通过证明具有圆形限定区域的最短路径是由两部分组成的:一部分是平面上的自然最短路径(即直线段),另一部分是限定区域的部分边界。

这两部分是相切的、互相连接的。

我们依据这个结果,可以认为最短路径一定是由线和圆弧组成,因此我们建立了线圆结构,这样无论路径多么复杂,我们都可以将路径划分为若干个这种线圆结构来求解。

其次,我们对于途中经过节点的再到达目标点的状况,我们采用了两种方案,一种是在拐点和节点都采用最小转弯半径的形式,另一种是适当扩大拐点处的转弯半径,使得机器人能够沿直线通过途中的目标点。

2012高教社杯数模竞赛D题——机器人避障问题

2012高教社杯数模竞赛D题——机器人避障问题

机器人避障问题摘要本文研究了在已知区域障碍物分布的情况下,机器人从起点到目标点避障最短路径或最短时间路径的问题,路径必须是由圆弧和与之相切的直线段组成的线圆结构。

一开始先对模型预处理,将所有障碍物外扩10个单位长度,划定危险区域,得到障碍扩展图。

针对问题一,经过分析论证,无论起点到目标点间危险区域有多少,最短路径都应该是紧绕危险点的切线圆路径,且可根据需依次绕过的危险点情况划分为N条子路径(见图5.1.2)求解,圆弧段取允许最小转弯半径。

模型求解分两步走:一、将实际障碍图转化为加权可视图,利用Dijstra算法搜索出在可视图下的最短路径,主要是找到必须绕过的若干危险点。

二、根据障碍扩展图将可视图中的路径修正为实际情况下的切线圆路径,求出最终结果。

在求解过程中运用MATLAB数学软件给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心连接两条切线,使机器人总的行走时间最短。

而圆弧可以有圆心坐标和半径唯一确定。

由此构建机器人行走总时间的目标函数,将机器人不与障碍物碰撞作为约束条件,将该问题转变为一个非线性规划问题,借助matlab求得最优解为:T=94.3314s。

关键词:路径规划最优化模型切线圆路径 Dijstra算法非线性规划matlab求解一、问题重述图1是一个800×800的平面场景图,在原点O(0,0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰标点与障碍物的距离至少超过10个单位)。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人避障问题的研究论文

机器人避障问题的研究论文

机器人避障问题摘要本文主要研究两个方面的问题,问题一提出在一个固定的区域内有不同形状的障碍物12个,让机器人至少与障碍物保持10个单位的距离情况下,同时机器人还不能走折线,求最短路程问题,这个问题我们首先考虑了两个理论,在起点和终点之间有一障碍物,我们在障碍物的顶点做一个圆弧作为机器人的转弯路径,那么通过证明可知最短路径为起点到终点拉一绳子,当绳子处于最紧绷状态的路径。

这时路径即为起点,终点分别到圆弧的两段切线与中间弧度之和。

其次考虑所做圆弧的半径为最小转弯半径时这时所形成的路径最短。

结合以上理论,易得到最短路径分别为:A O → 471.05,B O →811.54,C O →1017.25,→O O C B A →→→2534.86。

问题二中,题目要求从A O →的最短时间路径,由于机器人走直线的速度为5=v ,而走转弯路径的速度是与转弯半径的长度有关,根据这些要求,我们过障碍物的右下顶点往左上顶点做对角线,并向左上顶点做10单位的距离,那么我们就在这条线上取一点作为圆弧的中心,然后构造一个目标函数求出最短时间路径,5)10(15)10(lim 22)10(1.010222R b er R a t R +-++++-=+-θ,得到02.96min =T 。

关键词:最短路径 线圆结构 解析几何 最短时间一、问题重述在800800⨯的平面场景图中,在原点O 有一机器人,它只能在平面场景中活 动,且不能碰撞场景图中不同形状的障碍物,且机器人所行走的路径与障碍物的距离至少超过10单位。

规定机器人的行走路径由直线和圆弧组成,其中圆弧是机器人的转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由多个相切的圆弧路径组成,但每个圆弧的最小半径为10个单位。

为了能到达目的地,机器人的行走路径与障碍物的最近距离为10个单位,否则发生碰撞则不能完成行走。

机器人直线行走的最大速度为秒。

个单位/50=V 机器人转弯时,最大转弯路径为21.01001)(ρρ-+==V V V ,其中。

2012年全国数学建模大赛论文

2012年全国数学建模大赛论文

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2012 年 9月9日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于品酒师鉴定下的葡萄酒品质评估摘要葡萄酒是经大自然发酵酿造出来的果酒,其含有营养丰富维生素,乃是饱受世界喜爱的葡萄优质果品。

问题一,本文以经典方差分析模型为基础,并参考BA无标度模型,结合食品贮藏实际,我们创新性地提出了风味口感衰减函数PE、酿酒葡萄成熟度有效因式α、精神免疫率修正因式β等概念,对传统模型进行内容和形式的丰富,得到改进的葡萄酒差方分析模型,能够广泛地运用于食品感官鉴评中,结果表示:两组评酒员的评价结果是无显著性差异。

问题二,拟采用多层次模糊聚类对酿酒葡萄进行分级,多层次模糊综合评判对相应的评判指标做综合评价,从而确定标准综合评价,求解到标准综合评价值0.52;结合误V=无影响(0~0.47)有影响[0.47~0.53),差分析确定评价集及各评价的取值范围:{影响大[0.53~1)葡萄单样综合评价值与之比较,发现评定的葡萄酒的理化指标,各单}样的综合评价值介于区间[0.47~1),表明葡萄和葡萄酒的理化指标可以来评价葡萄酒的质量影响。

2012高教社杯全国大学生数学建模竞赛题目

2012高教社杯全国大学生数学建模竞赛题目

2012高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
D 题 机器人避障问题
图1是一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰
标点与障碍物的距离至少超过10个单位)。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e
1)(ρρ-+==v v v ,其中ρ是转弯半径。

如果超过该速度,机器人将发生侧 翻,无法完成行走。

请建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型。

对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算:
(1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。

(2) 机器人从O (0, 0)出发,到达A 的最短时间路径。

注:要给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标以及机器人行走的总距离和总时间。

图1 800×800平面场景图。

2012全国大学生数学建模机器人避障问题优秀论文模型

2012全国大学生数学建模机器人避障问题优秀论文模型

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):2418所属学校(请填写完整的全名):参赛队员(打印并签名):1。

黎仕东2.李兆海3。

赵甜森指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:年 8 月25 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题模型摘要本文主要论述的是在一定区域里,在12种障碍物的情况下,机器人通过直线行走和圆弧转弯,绕过障碍物,到达各目标点的最短路径距离,以及到达A点最短时间的问题。

本文将路径划分为若干个直线与圆弧结构来求解.而对于途中绕过障碍物到达目标点,我们分成了两种情况,一种是在所有转弯处均采用最小转弯半径,另一种是在个别转弯处适当扩大转弯半径,使得机器人能够顺利的通过拐弯处,到达目标点。

机器人避障问题的解题分析建模集训资料全

机器人避障问题的解题分析建模集训资料全

机器人避障问题的解题分析摘要:本文对2012年全国大学生数学建模竞赛D题机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题。

关键词:机器人避障;最短路径;Dijkstra算法;几何模型;非线性规划模型1 引言随着科学技术的进步和计算机技术的发展,机器人的应用越来越广泛,在机器人的应用中如何使机器人在其工作围为完成一项特定的任务寻找一条安全高效的行走路径,是人工智能领域的一个重要问题。

本文主要针对在一个场景中的各种静态障碍物,研究机器人绕过障碍物到达指定目的地的最短路径问题和最短时间问题。

本文以2012年“高教社”杯全国大学生数学建模竞赛D题“机器人避障问题”为例进行研究。

假设机器人的工作围为800×800的平面正方形区域(如图1),其中有12个不同形状的静态障碍物,障碍物的数学描述(如表1):图1 800×800平面场景图表1在原点O(0, 0)点处有一个机器人,它只能在该平面场景围活动,机器人不能与障碍物发生碰撞,障碍物外指定一点为机器人要到达的目标点。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v (ρ是转弯半径)。

如果超过该速度,机器人将发生侧翻,无法完成行走。

场景图中有4个目标点O(0, 0),A(300, 300),B(100, 700),C(700, 640),下面我们将研究机器人从O(0, 0)出发,求O→A、O→B、O→C和O→A→B→C→O的最短路径,以及机器人从O(0, 0)出发,到达A 的最短时间路径问题。

2012年数学建模C题,机器人避障

2012年数学建模C题,机器人避障

机器人障碍问题摘要本文研究了有若干障碍物的平面场景中,机器人避障行走的最短路径以及最短时间路径的问题。

针对问题一,首先给出简单证明了两个对称点绕过圆形障碍物的最短路径为两条与圆形障碍物相切的直线,加上两切点间的劣弧。

然后分了四种情况,分别给出了不同直线与圆相切时,根据各已知点坐标,求相应切点、直行路径及劣弧长度的方法。

然后在满足机器人从定点(0,0)O出发绕过障碍物,距离障碍物至少超过10个单位,不能折线转弯绕过障碍物的条件下,以前面的证明为依据,将机器人行走路径设计为由直线和圆弧组成。

针对不同的起点和终点,将总路径分解为上述四种情况,利用MATLAB6.5.1,分别求出相应的切点及各转弯圆的劣弧长,最后比较得到相对较短的行走路径。

并根据机器人在不同路径上的速度的不同,求出避障前进的最短路径时所需要的行走时间。

具体如下:→的最短路径为471.0375个单位,所需的时间为96.0177秒O A→的最短路径为812.7029个单位,所需的时间为170.5132秒O B→的最短路径为:1090.8个单位,所需的时间为222.9373秒O C→→→→的最短路径为:3137.8个单位,所需的时间为652秒。

O A B C O针对问题二,要求求出机器人从(0,0)O出发,到达A的最短时间路径。

因为机器人行走路径为直线时的速度为定值,弧线行走的速度与弧所在的圆半径有关,由此得到行走时间与圆弧半径ρ的关系式,利用高等数学的极值定理条件,估算出ρ=11.5052个单位时从O A→所需时间最短,为95.1328秒。

该模型简单、便于理解,理论性较强。

另外图形的使用,使问题更加清晰。

该模型还可用于求解设计最优路线问题。

关键词最短路径圆弧半径最短时间切点一 问题重述在一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

平面场景中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物。

2012全国大学生数学建模竞赛D题全国一等奖论文

2012全国大学生数学建模竞赛D题全国一等奖论文

2012全国大学生数学建模竞赛D 题全国一等奖论文承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):一、问题重述在一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障编号障碍物名称左下顶点坐标其它特性描述1 正方形(300,400)边长2002 圆形圆心坐标(550, 450),半径703 平行四边形(360,240)底边长140,左上顶点坐标(400, 330)4 三角形(280, 上顶点坐标(345, 210),5 正方形(80,60)边长1506 三角形(60, 上顶点坐标(150, 435),7 长方形(0,470)长220,宽608 平行四边形(150,600)底边长90,左上顶点坐标(180, 680)9 长方形(370,680)长60,宽120 10 正方形(540, 边长130600)11 正方形 (640,520)边长80 12 长方形 (500,140)长300,宽60障碍物的距离至少超过10个单位)。

数学建模机器人避障问题

数学建模机器人避障问题

机器人避障问题一、摘要本文讨论了机器人在平面场景中避障行走的问题,已知机器人的行走模式(直线与相切圆弧)以及场景障碍物的分布,计算出到平面各个给定点的最短路径,以及到A 点的最短时间。

文中,首先,考虑到机器人与障碍物之间有10个单位的碰撞距离,故用CAD 软件将平面场景图进行改进,再用CAD 设计可能的最短路径。

接着,对每条具体路径进行分解,得到三种基本线圆形模型(点圆模型,双圆异侧模型,双圆同侧模型),对这三种模型进行求解,得到各个模型直线长度以及转弯圆弧圆形角的表达公式。

之后,参照具体的行走路径,构造合适的行走矩阵,用以判断每段路径所属的基本模型。

路径总的长度可用如下公式表达:12,1,1,211N N i i i i i i i s m r θ--+++===+⨯∑∑最后,通过计算设计的集中可能的最短路径,我们得到每段的最短路径的长度分别为:O ——A 路段:471.0372(单位); O ——B 路段: 853.7001(单位); O ——C 路段:3100915.1⨯(单位);O ——A ——B ——C ——O 路段:32.677810⨯(单位)。

对于问题二,我们在问题一的基础上分别利用直线最大速度和转弯最大速度计算出时间的表达式。

为了方便计算,我们将转弯圆弧的圆心定在P (80,210)(场景中正方形5的左上角),这样得到时间T 与转弯半径ρ的函数关系式:2100.10(1)(2arccos arccos)e abT v ρρρπα-⨯+⨯---=通过MATLAB 编程,画出其图像,求解得出:当半径ρ=11.435时,时间T 最小,其大小为94.5649(秒)。

关键词:最短路径 线圆模型 行走矩阵 MATLAB二、问题重述在一个800×800的平面场景图(见附录一),在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,障碍物的数学描述如下表:在图中的平面场景中,障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):2418所属学校(请填写完整的全名):参赛队员(打印并签名) :1.黎仕东2.李兆海3.赵甜森指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:年 8 月25 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):机器人避障问题模型摘要本文主要论述的是在一定区域里,在12种障碍物的情况下,机器人通过直线行走和圆弧转弯,绕过障碍物,到达各目标点的最短路径距离,以及到达A点最短时间的问题。

本文将路径划分为若干个直线与圆弧结构来求解。

而对于途中绕过障碍物到达目标点,我们分成了两种情况,一种是在所有转弯处均采用最小转弯半径,另一种是在个别转弯处适当扩大转弯半径,使得机器人能够顺利的通过拐弯处,到达目标点。

然后再这两种情况下建立数学模型进行求解。

问题一,将各路径分成直线与圆弧的结构进行求解,利用MATLAB软件,同时结合 CAD 软件计算出两点之间存在的所有最短路径,然后进行整理,利用平面几何方法建立最短路程的模型,最后求得最短路径的最优解并表示出来,结果是:O→A 最短路径为:L=470.7314O→B 最短路径为:L=852.7121O→C 最短路径为:L=1135.0452O→A→B→C→O 最短路径为:L=1886.1493问题二,我们研究的情形是当绕过障碍物处的拐点为圆心,圆心固定,半径变化时,我们可以利用平面几何方法建立时间与半径之间的函数关系,得出最优解,当R=10.682 时,到A点最短时间路径T=97.1698关键词:最短路径;平面几何;MATLAB;AutoCAD;最优化模型1 问题重述图1是一个800×800的平面场景图,在原点O(0, 0)点处有一个机器人,它只能在该平面场景范围内活动。

图中有12个不同形状的区域是机器人不能与之发生碰撞的障碍物,在图1的平面场景中,障碍物外指定一点为机器人要到达的目标点(要求目标点与障碍物的距离至少超过10个单位)。

规定机器人的行走路径由直线段和圆弧组成,其中圆弧是机器人转弯路径。

机器人不能折线转弯,转弯路径由与直线路径相切的一段圆弧组成,也可以由两个或多个相切的圆弧路径组成,但每个圆弧的半径最小为10个单位。

为了不与障碍物发生碰撞,同时要求机器人行走线路与障碍物间的最近距离为10个单位,否则将发生碰撞,若碰撞发生,则机器人无法完成行走。

机器人直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为21.0100e1)(ρρ-+==v v v ,其中ρ是转弯半径。

如果超过该速度,机器人将发生侧 翻,无法完成行走。

请建立机器人从区域中一点到达另一点的避障最短路径和最短时间路径的数学模型。

对场景图中4个点O(0, 0),A(300, 300),B(100, 700),C(700, 640),具体计算:(1) 机器人从O(0, 0)出发,O→A 、O→B 、O→C 和O→A→B→C→O 的最短路径。

(2) 机器人从O (0, 0)出发,到达A 的最短时间路径。

注:要给出路径中每段直线段或圆弧的起点和终点坐标、圆弧的圆心坐标以及机器人行走的总距离和总时间。

图1 800×800平面场景图2 模型假设1. 假设机器人在该平面场景内为一点,不考虑机器人本身的体积大小;2. 假设机器人本身的控制系统灵敏、运行无故障;3. 忽略机器人转弯及直线行走的速度转换的缓冲时间;4. 假设机器人行走过程中不受外界因素干扰,为理想状态;5. 忽略机器人在节点处转弯所需的时间和转弯的路径距离;3 符号说明L 路程长度T 到A 点的最短时间路径 R 拐角转弯半径4 问题分析问题一,我们从O(0, 0)按照一定的行走方法并且绕过区域内的障碍物到达各个节点,并且标注出障碍物边机器人行走的危险区域,当机器人碰到危险区域时就以半径为10的圆弧转弯。

我们根据CAD作图求出各个切点的坐标,然后利用Matlab软件计算出最短距离,最后对多个模型的距离进行比较,得出O点到各个目标点的最短距离。

问题二,该问题讨论机器人从出发点到A点的最短时间问题,此问我们讨论了较为简单的情况,将转弯圆弧的圆心设在障碍物5的顶点上面,建立圆弧半径与时间的函数关系,利用Matlab软件对函数进行作图分析求出最优解。

5 模型的建立与求解5.1问题一模型的建立与求解5.1.1建模过程本问题研究的是机器人从出发点到各个节点的最短路径,由于机器人是以直线行走和圆弧拐弯,根据平时经验可知两点之间直线最短,故机器人走的直线越多则路径最短,在拐弯处,当圆弧是以最短半径转弯时其转弯半径最短,因而以半径为10的圆弧转弯。

1.模型一我们假设机器人在行走过程中,从起点到目标点无论障碍物有多少,都是直线行走只在水平方向和竖直方向,转弯处均以半径为10的圆弧转弯。

O→A有两种走法:①从O点出发竖直向上走到点(0,280)处,然后以半径为10、圆心为(10,280)的圆弧转弯到点(10,290),再水平向又走到点(290,290),最后以圆心为(290,300),半径为10转弯走过四分之一到达A点,故机器人走过的路程L=591.4159;②从O点水平向右走到点(260,0)处,然后半径为10、圆心为(260,10)的圆弧转弯到点(270,10),再竖直向上走到点(270,290),然后以圆心为(280,290)半径为10的圆弧转弯到点(280,300),最后水平向右到达A点,故机器人走过的路程L=591.4159。

所以知两种走法的路程相同,均为591.4159。

如图1图12.模型二从起点到目标点无论中间都多少障碍物,机器人向目标点前进,如果碰见障碍物,则在障碍物顶点处以顶点为圆心,10为半径的圆弧转弯。

机器人O→A走法为:从O点直线行走到点(70.5060,213.1406),在以半径为10圆心为(80,210)的圆弧转弯到(76.6064,219.4060),最后在直线行走到目标点A出,其路程L=470.7314如图2图2综上,对比模型一和模型二,模型二的行走路程更近,故我们选用模型二的方法来让机器人到达各个目标点。

对问题一中,机器人从O(0, 0)出发,O→A、O→B、O→C和O→A→B→C→O的最短路径的路线情况如图3:图35.1.2建模的求解①由上面分析可知机器人从O点到A点的最短路程L=470.7314②机器人从O点到B点,可能短的路径有三条,我们分别算出三条路径的路程,最后进行比较得知,右边那一条路径最短,它是由三条直线和两个圆弧组成的路线,路程L=852.7121,即O→B的最短路程L=852.7121③从原点到达C点,有三条短路径,通过计算、比较路程大小得知下边这一条路径最短,这一条路径是由三个圆弧和四条直线组成,其路程L=1135.0452④O→A→B→C→O 可将其分解成四部分O→A、A →B、B →C、C →O,将其算出最短路程,5.2问题二模型的建立与求解本问题讨论的是机器人到达A 点的最短时间,由于从原点O (0,0)到A (300,300),在这两点之间有着障碍物5,因此机器人在向目标点A 行走过程中,不能直线到达,会有圆弧转弯,由题中可知机器人在直线行走的最大速度为50=v 个单位/秒。

机器人转弯时,最大转弯速度为:21.0100e1)(ρρ-+==v v v注:其中ρ是转弯半径。

我们知道在直线路段时行走速度越大所通过的路程所用时间越短。

已知50=v ;则有下面两种走法;1.直线路段以最大速度行走(即50=v ),转弯时以最小半径转弯(即10=ρ),所以 将50=v ,10=ρ代入21.0100e1)(ρρ-+==v v v ,运用Matlab 软件解得v=2.5即当转弯半径为10=ρ时,转弯速度为v=2.52.直线路段以最大速度行走(即50=v ),转弯时以最大转弯速度即最大行走速度0v 转弯(已知超过该速度,机器人将发生侧翻,无法完成行走,故取50=v 转弯)。

则有21.0100e1)(ρρ-+==v v v 5≤运用Matlab 软件解得半径P ≤10.682;所以机器人转弯速度最大时,算得转弯半径P=10.682根据21.0100e1)(ρρ-+==v v v 的函数图像可知:该函数为增函数,当转弯半径越大时,机器人的转弯速度越大。

而本问中所求的是机器人到达A 点的最短时间路径,即为机器人最短时间到达目标点的路径。

即当机器人直线行走速度和转弯速度都是最大时,时间最短,故走法1不做考虑,取走法2进行计算,由走法2我们知道转弯半径P=10.682,运用CAD 软件算得转弯的圆弧路程为h=10.249,直线路段路程为475.6,如图由路程公式vt s =得;当转弯半径P=10.682时,从O 点到A 点的最短时间路径为T=97.1698模型的优缺点分析模型优点:1.本模型思想通俗易懂,具有较强的操作性、广泛性的应用价值。

2.本模型中的线圆结构采用CAD作图,准确性强,不会出现人为性误差,会更加客观、清晰。

3.以最简单的例子,圆形在障碍物的顶点上,最小半径为10个单位,从问题一到问题二慢慢深入,建立机器人行走时间与最短路程的函数关系。

模型缺点:1.因为在实际情况下,机器人不可能速度发生瞬间变化,故上述模型建立在理想状态下,与实际有一定的偏差。

2.在考虑最短路径和最短时间路径两种情况中有所欠缺,在模型的改进上扩展性不是很强。

相关文档
最新文档