人教版六年级数学下册第六单元

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的容积。(√ )
7、圆柱底面直径扩大2倍,高不变,它的体积也扩
大2倍。(× )
8、圆柱的底面周长和高相等时,它的侧面展开图一
定是正方形。( √ )
9、求做一个圆柱形的通风管需要多少铁皮,就是求
圆柱的表面积。(× )
2019-6-26
谢谢观赏
29
判断:
10、正方体6个面的形状相同、大小相等。( √ )

1 3
Sh
22
长方体、正方体、圆柱体、圆锥体的相关计算:
Fra Baidu bibliotek图形 名称
图例
棱长总和
表面积
体积
长方体
4a+4b+4h 或4(a+b+c)
S长=2ab+2ah+2bh =(ab+ah+bh)×2
V长=abh
正方体
圆柱体
圆锥体
2019-6-26
12a
S正=a2×6
V正=a3
V=Sh
S表=2S底+S侧 S侧=Ch S表=C(r+h)
15、长方体和正方体都有6个面,12条棱,8个顶点。 (√)
16、正方体的六个面面积一定相等。( √ ) 17、一个长方体(非正方体)最多有四个面面积相等。 (√ )
18、一个木箱的体积就是它的容积。( × )
19、长方体是特殊的正方体。( × )
20、棱长6分米的正方体,它的表面积和体积相等。
(×)
8×4.5×2 =36×2 =72(m2) 答:这个鱼塘的容积是72m2。
2019-6-26
谢谢观赏
40
基本练习:
6、新建的篮球馆要铺设3cm厚的木质地板,已知该 馆的长36m,宽20m,铺设它至少需要用多少方木 材?
3mm=0.003m 36×20×0.003 =720×0.003 =2.16(m3) 答:铺设它至少需要用2.16m3木材。
3.14×102 (3)做这样一个水桶用多少铁皮,是求什么?
3.14×102+2×3.14×10×20 (4)这个水桶能装多少水,是求什么?
3.14×102×20
2019-6-26
谢谢观赏
38
基本练习:
2、做一个圆柱形的油箱,底面半径3分米,高4分米。 至少需要铁皮多少平方分米?
3.14 ×32×2 + 2×3.14×3×4
人教版六年级数学下册第六单元
小学数学总复习
图形的认识与测量
2019-6-26
谢谢观赏
1
2019-6-26
谢谢观赏
2
长方体、正方体、圆柱体、圆锥体的特征:
图形 名称
长方体
图例
特征
①有6个面,每个面一般是长方形,特殊情况有两个面是正 方形,相对的两个面面积相等。
②有12条棱,相对的四条棱互相平行且相等。 ③有8个顶点,相交于同一顶点的三条棱分别叫长、宽、高。
对于同一个容器,它的体积一定比容积大,因为它 有厚度。
容器的容积计算方法同体积的计算方法一样, 但是要从容器的里面量数据。
2019-6-26
谢谢观赏
25
表面积、体积、容积的对比:
表面积
体积
意义
物体表面面积的总 和(所有面面积的 总和)
物体所占空间的 大小
容积
容器所能容 纳物体体积 的大小
常用计 量单位 m² dm² cm²
3、做一个圆柱形的水桶,底面直径6分米,高4分米。 至少需要铁皮多少平方分米?
3.14×(6÷2)2 + 3.14×6×4
4、做一节圆柱形的通风管,底面周长18.84分米, 长4分米。至少需要铁皮多少平方分米?
2019-6-26
18.84 × 4
谢谢观赏
39
基本练习:
5、一个鱼塘长8m,宽4.5m,深2m,这个鱼塘 的容积是多少立方米?
乘以高来计算。(√ )
2、圆锥的体积是圆柱体积的
1 3
。( ×)
3、一个圆柱形杯子的体积等于它的容积。( ×)
4、一个圆柱的高缩小2倍,底面半径扩大2 倍,它的
体积不变。( ×)
5、圆柱的底面直径和高相等,那么它的侧面展开是
一个正方形。(× )
2019-6-26
谢谢观赏
28
判断:
6、计算圆柱形油桶能装多少升油就是求这个油桶
3、一个底面是正方形的长方体,把它的侧面展开后 得到一个边长是12厘米的正方形。求这个长方体的体 积是多少?
12
12
33
12
12÷4=3(厘米)
3×3×12=108(立方厘米)
2019-6答-26 :这个长方体的体谢积谢观是赏 108立方厘米。
46
拓展练习:
4、一个圆柱形木材,沿着一条底面直径纵向剖开,量 得一个纵剖面面积是6平方分米,那么,圆柱的侧面积是 多少平方分米?
谢谢观赏
9
上 后 下 前
2019-6-26
谢谢观赏
10
上上
后后
左 下下



2019-6-26
谢谢观赏
11






2019-6-26
谢谢观赏
12
2厘米(高) 10厘米(长)
长方体的表面积=长×宽×2﹢长×高×2﹢宽×高×2
上 和下
前 和后
右 和左
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2
谢谢观赏
20
圆柱的体积:
长方体的底面积等于圆柱的 底面积 ,高等于圆柱的 高 。
长方体体积=底面积×高
=
圆柱体积
2019-6-26
V=谢S谢h观赏
21
圆锥的体积:
圆锥的体积正好等于
与它等底等高的圆柱体积 的三分之一。

V圆 锥

1 3
V圆

因为 V圆柱=Sh
2019-6-26
所以
谢谢观赏
V圆 锥
11、有6个面,12条棱、8个顶点的形体一定是长方体。 (× )
12、如果一个长方体的12条棱都相等,这个长方体 就是正方体。 ( √ )
13、一个长方体的所有面都是长方形的。( × )
14、两个大小相等的正方体合在一起,成了一个长方
体,那么它就有12个面。( × )
2019-6-26
谢谢观赏
30
判断:
2019-6-26
谢谢观赏
41
基本练习:
7、把两个棱长是4厘米的正方体木块粘合成一个长方 体,这个长方体的表面积是多少平方厘米?
方法一、(8×4+8×4+4×4)×2=160(平方厘米)
方法二、8×4×4 + 4×4×2=160(平方厘米)
方法三、4×4×10=160(平方厘米)
方法四、4×4×12- 4×4×2=160(平方厘米)
2019-6-26
谢谢观赏
42
基本练习:
8、用铁丝做一个长10厘米,宽5厘米,高4厘米的长 方体框架,至少需要多长的铁丝?在这个长方体框 架外面糊一层纸,至少需要多少平方厘米的纸?
4
5 10
(1)求至少需要多长的铁丝? (10+5+4)×4=76 (厘米)
(2)求至少需要多少立方厘米的纸? 2019-6-26 (10×5+10×4+谢5谢×观赏4)×2=220(平方厘米) 43
米,那么圆柱的高是( D )厘米。
A、54
B、18 C 、0.6
D、6
2019-6-26
谢谢观赏
35
选择:
3、等高等体积的圆柱和圆锥,圆柱的底面积是6平
方厘米,那么圆锥的底面积是( B )平方厘米。
A、6 C、2
B、18 D、36
2019-6-26
谢谢观赏
36
选择:
4、把一个底面半径是2分米、高是3分米的圆柱形 容器中注满水,现垂直轻轻插入一根底面积是5平方分
m³ dm³ cm³
m³ dm³ cm³ L ml
单位间 1m² =100dm² 进率 1dm² =100cm²
2019-6-26
1m³ =1000dm³ 1dm³ =1000cm³
谢谢观赏
1L=1000ml 1dm³ =1L 1cm³ =1ml
26
2019-6-26
谢谢观赏
27
判断:
1、长方体、正方体、圆柱体的体积都可以用底面积
2019-6-26
谢谢观赏
44
拓展练习:
2、把一根长30厘米的长方体木料锯成3段(如图),表面 积比原来增加了20平方厘米,这根木料原来的体积是多 少立方厘米?
20÷4=5(平方厘米) 30×5=150(平方厘米) 答:这根木材原来的体积是150平方厘米。
2019-6-26
谢谢观赏
45
拓展练习:
②有一个侧面,是个曲面,展开是个扇形。
③有一个顶点,
④有一条高。 谢谢观赏
3
长方体的表面积:
2019-6-26
谢谢观赏
4

2019-6-26
谢谢观赏
5


下 前
2019-6-26
谢谢观赏
6


下 前
2019-6-26
谢谢观赏
7


下 前
2019-6-26
谢谢观赏
8


下 前
2019-6-26
3.14×6=18.84(平方分米)
2019-6-26
谢谢观赏
47
拓展练习:
2、将一个圆柱体沿着底面直径切成两个半圆柱,表 面积增加了40平方厘米,圆柱的底面直径为4厘米, 这个圆柱的体积是多少立方厘米?
2019-6-26
谢谢观赏
48
练习 十 九
2019-6-26
正方体
①有6个面,每个面都是正方形,每个面面积都相等。 ②有12条棱,每条棱长度都相等。 ③有8 个顶点。
圆柱体
圆锥体
2019-6-26
①有两个底面,是相等的两个圆。
②有一个侧面,是个曲面,沿高展开一般是个长方形。 (当底面周长和高相等时是正方形。) ③有无数条高,每条高长度都相等。
①有一个底面,是个圆形。
高 厘 米
3
长5厘米
长方体的体积=长×宽×高 V=abh
长方体的体积=底面积×高
2019-6-26
谢谢观赏
19
正方体的体积:
因为正方体是长、宽、

高都相等的长方体,所以
4
长 厘

棱长4厘米
正方体的体积=棱长×棱长×棱长
· · V= a a a 或 V= a3
正方体的体积=底面积×高
2019-6-26
62×6
2019-6-26
谢谢观赏
16
圆柱的表面积:
圆柱的表面积 =两个底面的面积+圆柱的侧面积
2019-6-26
S表=2S底谢+谢S观侧赏
17
圆柱的侧面积怎样计算呢?
圆柱的侧面积 = 底面周长 × 高
2019-6-26
S侧谢=谢观C赏h
18
长方体的体积:
长方体的体积正好等于它的长、宽、高的乘积。
谢谢观赏
V柱=Sh
V锥

1 3
Sh
23
长方体的长、宽、高都变为原来的2倍,它的表面积 和体积发生了什么变化?
22 6 88 48 352 384
我发现了:长方体的长、宽、高都变为原来的n倍,
它的表面积跟着变为原来的n2倍,体积也跟着变为
原来的n3倍。
2019-6-26
谢谢观赏
24
物体的容积:
仔细观察: 盒子的体积与盒子的 容积哪个大 ?
21、用4个棱长1厘米的小正方体可以拼成一个大正方
× 体。( ) 2019-6-26
谢谢观赏
31
判断:
22、相交于一个顶点的三条棱相等的长方体一定是正方
体。( √ )
23、 长方体有6个面,每个面有4条棱,共24条棱。( × ) 24、长方体是一种特殊的正方体。( × ) 25、相对的4条棱都相等的物体一定是长方体。( × )
长方体的表面积=(长×宽+长×高+高×宽)× 2
上(或下) 前(或后) 右(或左)
2019(-60-26.7×0.5+0.7×0.4谢+谢观0赏.5×0.4)×2
13
正方体的表面积:
2019-6-26
谢谢观赏
14
上 后 左 下右 前
2019-6-26
谢谢观赏
15
6分米
6分米
正方体的表面积=棱长×棱长×6 或=棱长2×6
26、圆柱的侧面展开一定是长方形。(× )
27、 这面小旗旋转一周产生的图形是圆锥体。( √ )
28、一根长24厘米的铁丝制作成一个正方体框架,棱长
是3厘米。( 2019-6-26
×

谢谢观赏
32
判断:
29、体积单位间的进率都是1000 。 ( × ) 30、把一个正方体的橡皮泥捏成一个长方体后虽然它的 形状变了,但是它所占的空间大小不变。( √ ) 31、正方体的棱长扩大2倍,它的体积就扩大6倍。 ( ×) 32、冰箱的容积就是冰箱的体积( × ) 33、一个薄塑料长方体(厚度不计),它的体积就是容 积。( √ ) 34、一个油桶能装多少升油,就是求它的容积。( √ )
2019-6-26
谢谢观赏
33
选择:
1、把一个圆柱的底面平均分成若干个扇形,然 后切开拼成一个近似的长方体。下面哪句话是正
确的?( C )
A、表面积和体积都没变化。 B、表面积和体积都发生了变化。 C、表面积变了,体积没变。 D、表面积没变,体积变了。
2019-6-26
谢谢观赏
34
选择:
2、等底等体积的圆柱和圆锥,圆锥的高是18厘
拓展练习:
1、圆柱长10厘米,接上4厘米的一段后,表面积增加了 25.12平方厘米,求原来圆柱的体积是多少立方厘米?
(1)求底面半径:
25.12÷4÷3.14÷2 =6.28÷3.14÷2 =1(cm)
(1)求原来的圆柱体积: 3.14×12×10
=31.4(cm2)
答:原来圆柱的体积是31.4cm3。
米,高是4分米的方钢,溢出水的体积是( D )毫升。
A、20
B、15
C、20000
D、15000
2019-6-26
谢谢观赏
37
基本练习:
回答下面的问题,并列出算式(不计算):
1、一个圆柱形无盖的水桶,底面半径10分米,高20 分米。
(1)给这个水桶加个箍,是求什么? 2×3.14×10
(2)求这个水桶的占地面积,是求什么?
相关文档
最新文档