用层次分析法评选优秀学生进行数学建模

合集下载

最新用层次分析法评选优秀学生进行数学建模

最新用层次分析法评选优秀学生进行数学建模

用层次分析法评选优秀学生一.实验目的运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。

二.实验内容4.用层次分析法解决一两个实际问题;(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。

可分为相对评价和绝对评价两种情况讨论。

解:层次分析发法基本步骤:建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。

在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。

大学生各项素质的指标体系。

如下表所示:符号说明设评价指标共有n 个,为1x ,2x ..... nx 。

它们对最高层的权系数分别为1w ,2w , ...nw ,于是建立综合评价模型为:=y ∑=ni ii x w 1解决此类问题关键就是确定权系数,层次分析法给出了确定它们的量化过程,其步骤具体如下:确定评价指标集P=(1P,2P ,3P )1P =(11P ,12P ) 2P =(21P ,22P ) 2P=(31P ,32P )11P =(1x ,2x ) 12P =(3x ,4x ) 21P =(5x ,6x ,7x )22P =(8x ,9x ,10x ) 31P =(11x ,12x ) 31P =(13x ,14x )建立两两比较的逆对称判断矩阵 从1x ,2x .....n x 中任取ix 与jx ,令=ij a i x /jx ,比较它们对上一层某个因素的重要性时。

若=ij a 1,认为ix 与jx 对上一层因素的重要性相同; 若=ij a =3,认为ix 比jx 对上一层因素的重要性略大;若=ij a 5,认为i x 比j x 对上一层因素的重要性大; 若=ij a 7,认为i x 比jx 对上一层因素的重要性大很多;若=ij a 9,认为ix 对上一层因素的重要性远远大于jx ;若=ij a 2n ,n=1,2,3,4,元素ix 与jx 的重要性介于=ij a 2n − 1与=ij a 2n + 1之间;用已知所有的i x /jx ,i ,j =1,2 ... n ,建立n 阶方阵P=n m j i x x ⨯)/(,矩阵P 的第i 行与第j 列元素为i x /j x,而矩阵P 的第j 行与第i 列元素为j x /i x ,它们是互为倒数的,而对角线元素是1。

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法

数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。

本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。

本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。

问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。

问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。

为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。

如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。

而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。

问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。

关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。

为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。

层次分析法-数学建模

层次分析法-数学建模

层次分析法一、分析模型和一般步骤二、建立层次结构模型三、构造成对比较矩阵四、作一致性检验五、层次总排序及决策一. 层次分析模型和一般步骤层次分析法是一种定性与定量分析相结合的多因素决策分析方法。

这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。

层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类,建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。

二. 建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

〔例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:例2〕选拔干部模型对三个干部候选人、、,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人、、,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型例3〕评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。

主要考虑以下几个因素:(1)教师队伍(包括平均学历和年龄结构)(2)教学设施(3)教学工作(包括课堂教学,课外活动,统考成绩和教学管理)(4)文体活动三、构造成对比较矩阵比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重来描述。

层次分析法数学建模

层次分析法数学建模
权重分配不合理
在某些情况下,层次分析法可能无法合理地分配权重,导致决策结果 与实际情况存在较大偏差。
无法处理动态变化
层次分析法主要用于静态决策问题,对于动态变化的决策问题处理能 力较弱。
05 结论与展望
结论
层次分析法是一种有效的决策分析方法,能够将复杂问题 分解为多个层次和因素,通过比较和判断各因素之间的相 对重要性,为决策提供依据。
实例三:风险评估问题
总结词
层次分析法在风险评估问题中,能够综合考虑风险的多种来源和影响因素,确定各因素之间的权重关 系,为风险的有效控制提供科学的依据。
详细描述
风险评估问题涉及到如何识别、评估和控制各种潜在的风险。层次分析法可以将风险的多种来源和影 响因素进行比较和判断,确定各因素之间的权重关系,为风险的有效控制提供科学的依据。同时,层 次分析法还可以用于制定风险应对策略和预案,提高组织的抗风险能力。
层次单排序与一致性检验
层次单排序
根据判断矩阵的性质和计算方法,计 算出各组成元素的权重值,并按照权 重值的大小进行排序。
一致性检验
对判断矩阵的一致性进行检验,以确 保各组成元素之间的相对重要性关系 符合逻辑和实际情况。
层次总排序与一致性检验
层次总排序
根据各层次的权重值和组成元素的权重值,计算出整个层次结构模型的权重值, 并进行总排序。
确定层次
根据问题的复杂程度和组 成元素的性质,将层次结 构划分为不同的层次,以 便于分析和计算。
判断矩阵的建立
确定判断标准
根据问题的特点和要求,确定判 断各组成元素之间相对重要性的 标准和方法。
构造判断矩阵
根据判断标准,构造出一个判断 矩阵,用于表示各组成元素之间 的相对重要性关系。

用层次分析法评选优秀学生进行数学建模

用层次分析法评选优秀学生进行数学建模

用层次分析法评选优秀学生进行数学建模
用层次分析法评选优秀学生进行数学建模
一.实验目的
运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。

二.实验内容
1. 用层次分析法解决一两个实际问题;
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。

可分为相对评价和绝对评价两种情况讨论。

解:层次分析发法基本步骤:
建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。

在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。

大学生各项素质的指标体系。

用层次分析法评选学生进行数学建模

用层次分析法评选学生进行数学建模

用层次分析法评选学生进行数学建模层次分析法(Analytic Hierarchy Process,AHP)是一种多准则决策方法,常用于评估和排序复杂的决策问题。

在评选学生的数学建模能力时,可以使用层次分析法来确定评选标准,并对学生在各个标准下的表现进行评估。

首先,确定评选标准。

评选学生的数学建模能力可以从多个方面进行考量,如数学基础知识、问题理解能力、建模方法的合理性、解决问题的能力等。

这些可以作为评选标准的一级层次。

其次,建立层次结构。

在数学基础知识的一级层次下,可以进一步划分为代数、几何、概率统计等二级层次。

问题理解能力可以细分为问题分析、问题归纳、问题解决等二级层次。

建模方法的合理性可以考虑模型的准确性、适用范围、计算复杂度等因素。

解决问题的能力可以着重考察学生的创新思维、分析能力和团队合作能力等。

然后,建立判断矩阵。

判断矩阵用于描述各个层次下标准之间的相对重要性。

通过多次两两比较,使用1-9的尺度对每个标准进行评估。

一般来说,对于相邻层次下的标准,通过比较它们的相对重要程度来填写判断矩阵。

例如,对于一级层次下的数学基础知识和问题理解能力,可以通过比较它们的重要性来填写对应的判断矩阵。

同样地,对于二级层次下的标准,也可以通过比较它们的重要性来填写对应的判断矩阵。

接下来,进行层次单排序。

通过计算判断矩阵的特征向量,可以对每个层次下的标准进行排序,得到各个标准的权重。

最后,评估学生的数学建模能力。

根据确定的评选标准和各个标准的权重,对学生在各个标准下的表现进行评估。

可以使用定量化的评分方法,例如对学生的数学基础知识进行考察,并给予相应的分数。

对于问题理解能力和建模方法的合理性,可以通过评阅学生的论文和报告来判断。

同时,还可以考虑学生在竞赛中的表现以及个人陈述和推荐信等因素。

层次分析法能够将主观因素与客观数据进行综合考量,从而比较全面地评估学生的数学建模能力。

在评选学生进行数学建模时,可以灵活运用层次分析法,使评选更加科学公正,提高评选的准确性和可靠性。

数学建模第三讲层次分析法

数学建模第三讲层次分析法

数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。

它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。

那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。

比如说,我们要选择一个旅游目的地。

这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。

这些因素就构成了不同的层次。

然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。

为了更清楚地理解层次分析法,我们来看看它的具体步骤。

第一步,建立层次结构模型。

这是层次分析法的基础。

我们需要把问题分解成目标层、准则层和方案层。

目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。

准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。

方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。

第二步,构造判断矩阵。

在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。

比较的结果通常用 1 9 标度法来表示。

比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。

反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。

第三步,计算权重向量并进行一致性检验。

通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。

这个特征向量就是我们所需要的权重向量。

但是,为了确保我们的判断是合理的,还需要进行一致性检验。

如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。

层次分析法数学建模范例

层次分析法数学建模范例

对学生建模论文的综合评价分析摘要本文研究的是五篇建模论文的评价和比较问题。

首先,研读分析了五篇论文,并写出评语。

其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判.最后,依据所得权重大小对论文排序。

针对问题一,我们对论文进行了横向比较和纵向分析。

依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。

其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。

最后,结合横向比较和纵向分析对论文综合评价。

针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。

在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。

最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。

并在模型结束时付上了对五篇论文的评语。

关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价一、问题重述数学建模是利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。

在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见下图。

数学建模竞赛---奖学金评定模型

数学建模竞赛---奖学金评定模型

第七届大学生数学建模竞赛主办:东南大学教务处承办:东南大学数学系东南大学数学建模竞赛组委会论文选题及题目: A 奖学金评定问题参赛队员信息:奖学金评定问题模型摘要现行的奖学金评定制度多种多样,但并不是每一种都很科学合理;题目要求用至少三种模型解决问题,因此本文基于不同的计算权重的算法,建立了四种模型:简单加权平均值模型、标准化模型、层次分析模型以及模糊层次分析模型。

逐步提高了权重算法的准确性以及考虑因素的完备性,并借助C++、matlab 、excel 等软件解决了问题。

首先,我们对数据进行了预处理。

将除任选课以及人文课之外的科目有低于60分的同学淘汰,留下了40名同学。

然后我们采用偏大型柯西分布和和对数函数构造了一个隶属函数:21[1()],13()ln ,35x x f x a x b x αβ--⎧+-≤≤=⎨+≤≤⎩将任选课与人文课的等级评价转化为百分制。

在用AHP 和FAHP 建模的时候,由于每个同学的任选课与人文课的科目不尽相同,这对计算权重造成了很大的麻烦,为了简化计算,我们采用了补偿的方法:将每位同学已修的任选课和人文课的平均分作为这位同学未修课程的得分,因为平均分在一定程度上可以表示此学生的学习能力。

模型一(简单加权平均值模型):此模型将基础课、专业课、必选课以及选修课的 权重看作是一样的,以学分比重作为权值来计算平均分,然后借助C++计算平均成绩,借助EXCEL 软件排序得到前10%的学生。

模型二(标准化模型):此模型考虑到了课程的难易程度对课程权值的影响,用标准化的方法将百分制的分值转化为0~1,使得分数域相同,这有效增强了其可比性,然后借助EXCEL 软件计算排序得到前10%的学生。

模型三(层次分析模型):此模型将课程性质、学时和学分都看做方案层,课程权值视为目标层,建立判断矩阵,将课程性质、学时、学分这些因素对目标层的影响量化,运用MATLAB 分析计算出权值向量,进而得到前10%的学生。

层次分析法及其应用数学建模

层次分析法及其应用数学建模
01
层次单排序
根据判断矩阵求解各因素对于上一层次因素的相 对重要性权重,得到层次单排序结果。
02
一致性检验
对判断矩阵进行一致性检验,检查各因素之间的 相对重要性是否合理。
层次总排序与一致性检验
层次总排序
根据各层次的权重和下一层因素相对于上一层因素的权重,计算出最底层因素相对于总目标的 权重。
一致性检验
判断矩阵的构造
确定比较标度
比较同一层次中各因素对于上一 层次因素的相对重要性,通常采 用1-9的标度法进行比较。
构造判断矩阵
根据比较标度,构造出判断矩阵, 矩阵中的元素表示对应因素的比 较结果。
求解判断矩阵
通过计算判断矩阵的特征向量, 得到各因素对于上一层次因素分析法可以根据问题 的实际情况调整层次结构 和判断矩阵,具有较高的 灵活性。
局限性
主观性
层次分析法在构造判断矩阵时依赖于专 家的主观判断,因此结果可能受到专家
主观因素的影响。
计算复杂度较高
对于大规模问题,层次分析法的计算 复杂度较高,需要借助计算机进行辅
助计算。
一致性检验困难
对于构造的判断矩阵,一致性检验是 一个难题,需要找到合适的检验方法。
层次分析法在数学建模中的应用
01 在数学建模中,层次分析法常用于解决多目标决 策问题,例如在资源分配、方案选择、风险评估 等方面。
02 通过构建层次结构模型,可以将复杂的决策问题 分解为多个层次,使得决策过程更加清晰和有条 理。
02 在应用层次分析法时,需要构建判断矩阵,并进 行一致性检验,以确保决策的合理性和准确性。
02
层次分析法的基本原理
层次结构模型的建立
01 明确问题
首先需要明确问题的目标,并确定相关的因素, 将因素按照属性不同分为不同的层次,形成层次 结构。

层次分析法建立评选优秀大学生数学建模

层次分析法建立评选优秀大学生数学建模

数学建模作业姓名:廖秋波任课老师:郑小洋班级: 11301002学号: 1301040211学院:数学与统计学院评选优秀学生的建模摘要:运用层次分析法,建立指标评价体系,得到大学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。

关键词:层次分析法判断矩阵大学生评价权重一、问题重述随着我国高校教育规模的扩大,教育改革的不断深入,原有的优秀大学生评价方法显现出诸多弊端,比如:评价标准缺乏科学性和针对性;评价方法和形式过于简单;评价结果与奖惩联系不紧密等。

因此,探索更加公平合理的大学生评价方法,对于促进优良班风、学风建设,提高高校教育质量,具有重要意义。

请用层次分析法 (AHP)建立评选你所在班级的优秀大学生的数学模型 .二、问题假设1、假设调查的数据是合理的。

2、假设建模的创造性结果的合理性,除了以上已经考虑的因素之外的其他因素对评价模型造成的影响小,我们可以不予考虑。

3.假设方案层的成员对大学生的评判是公正的。

三、问题分析建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。

在此我们运用层次分析法 (AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。

大学生各项素质的指标体系。

如下表所示:目标层对大学生的评价第一准则层德育智育体育第二准则层道德身体素质知识思想能力体育技能第三准则层爱集健体公选专价人社有各体体国体康检共修业值生会关种育育守观状成课课课观观实证竞成竞法念况绩践书赛绩赛方案层班主任考评班级考评学生自评四、符号说明P i对大学生的一级评价指标P ij对大学生的二级评价指标x i对大学生的三级评价指标w i x i对最高层的权系数c j(j=1、2、3)班主任考评,班级考评,学生自评的打分max矩阵的最大特征值CI一致性指标CR一致性比例RI平均随机一次性指标五、模型的建立与求解设评价指标共有n 个,为 x1 , x2 .....x n。

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。

本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。

层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。

例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。

2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。

3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。

4.个人素质:如责任感、进取心、合作精神、团队协作精神等。

层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。

接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。

比较矩阵是层次分析法中的核心概念。

比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。

比较矩阵的各行数值之和为1。

以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。

| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。

层次分析法-数学建模

层次分析法-数学建模
此外还有根法、最小二乘法等。
步骤5 层次总排序即求各方案的综合得分
前面我们求的都是在一层中各因素的权重,这个过程称为单
层次排序。不妨设准则层权向量W (w1, w2,L , wn ),T 而方案层有 l
个方案可供选择,且每个方案的权向量分别为 1, 2,L , l 。那么 每个方案对最终目标的影响程度(C1,C2,L ,Cl )T 就可以通过下面的 式子算出来了。
合理分配企业利润
准则层 调动积极性 提高企业质量 改善生活条件
方案层 发奖金 扩展福利设施 引进人才和设备
在层次划分及因素选取时,我们要注意三点:
(1)上层对下层有支配作用;
(2)同一层因素不存在支配关系(相互独立);
(3)每层因素一般不要超过9个。 (心理学家通过实验认为,人对许多东西优劣及优劣 程度判断能力,最多大致在9个以内,超过这个范围就 会判断失真。例如,人们在面对琳琅满目的商品常常会 眼花缭乱,难以抉择。)
23
9
重要性
xi比 x j 相同 稍重要 重要
绝对 很重要 重要
aij
1
3
5
7
9
在每两个等级之间有一个中间状态, aij 可分别 取值 2 , 4 ,L , 8 。
例如:评价电影的好坏
目标层
评价
准则层 娱乐性 x1 艺术性 x2 教育性 x3
方案层 电影1
电影2
……

个人认为:
x1 : x2 3
层次分析法是将定性问题定量化处理的一种有效手 段。
面临各种各样的方案,要进行比较、判断、评价、 最后作出决策。这个过程主观因素占有相当的比重给用 数学方法解决问题带来不便。T.L.saaty等人20世纪在七 十年代提出了一种能有效处理这类问题的实用方法。

数学建模中的评价方法

数学建模中的评价方法

数学建模中的评价方法综合评价有许多不同的方法,如综合指数法、TOPSIS法、层次分析法、RSR法、模糊综合评价法、灰色系统法等,这些方法各具特色,各有利弊。

依据评价目的选择恰当的评价指标,这些指标具有很好的代表性、区别性强,而且往往可以测量,筛选评价指标主要依据专业知识,即依据有关的专业理论和施行,来分析各评价指标对结果的影响,挑选那些代表性、确定性好,有一定区别能力又互相独立的指标组成评价指标体系。

2方法一:提升分析、理解、阅读能力阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。

如1999年高考题第22题给出冷轧钢带的过程表达,给出了"减薄率'这一专门术语,并给出了即时定义,能否深入理解,反映了自身综合素养,这种理解能力直接影响数学建模质量。

3方法二:层次分析法在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下分解假设干层次。

同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或收到下层因素的作用,而同一层的各因素之间尽量互相独立。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常为准则或标准层。

当准则过多时(比如多于9个)应进一步分解出自准则层。

4方法三:综合评价法FCE借助于模糊数学,运用模糊关系合成原理将模糊概念定量化,以此对评判对象的优劣等级进行综合评价。

基本思想是:把模糊因素集U对应的模糊权向量集W,依据单因素评判矩阵R采用合适的合成算子o进行模糊变幻,得到一个模糊综合评判结果B,并对结果进行比较分析来评价事物的优劣。

简化图形为:输入 W模糊变幻器 R输出 B=WоR。

模糊评价法常用于不能准确度量的事物的评价,如质量评估、风险决策等。

在对结果向量进行比较分析时可采纳两种方法,即最大隶属度法和加权平均法。

以上就是一些数学建模中的评价方法的相关建议了,希望对大家有所帮助!。

数学建模的层次分析法

数学建模的层次分析法

1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。

学生的综合成绩排名问题数学建模

学生的综合成绩排名问题数学建模

三、问题的分析3.1问题一我们考察班级学生的综合成绩(包括考试课和考查课)排名问题,只需要对学生的平均绩点进行比较,其中考虑到每个学校计算平均绩点的方法不统一,为了认证我们的结果,我们利用Excel层次分析法对排名的公平性进行认证。

(是否有不考虑因素)3.2问题二3.3问题三3.4问题四对于奖学金的评定各院系或班级评定标准都或多或少的遇到了一些问题,造成学生参评热情不高,高校奖学金的评定一般存在以下问题四、模型的建立及求解4.1问题一模型的建立及求解4.1.1基本方法-绩点法绩点成绩与绩点对应表(表1)名称内容百分制90-100 80-89 70-79 60-69 60以下等级评价优秀良好中等及格不及格绩点 4 3 2 1 0每名同学的平均绩点的计算(公式1):每名同学平均绩点分 =()定的总学分数每学期专业教学计划规课程绩分数课程学分课程系数∑⨯⨯符号化公式:J平均=()MGXK∑••4.1.2问题一的改进优化-Excel 层次分析法问题简化:我们只计算班级前5排名情况,这样可以利用在平均绩点中前9名得成绩进行比较,足以保证前5名得公平性。

1-15阶正互反矩阵计算1000次得到的平均随机一致性指标(表二)层次分析图求出目标层的权数估计 用和积法计算判断矩阵将判断矩阵的每一列元素作归一化处理,其元素的一般项为∑=nijijij bb b 1()n j i ,2,1,=将每一列经归一化处理后的判断矩阵按行相加为:()n i ,2,1=求得Wi={1.2,0.8}t对向量W=( W 1, W 2…… W n )t 归一化处理:∑=niji b w 1∑=njii ww w 1()n i ,2,1=()tn w w w w ,,21=即为所求的特征向量的近似解。

W={0.6,0.4} tN<3不用考察判断矩阵一致性标准求出方案层对准则层的最大特征向量(同上),求得考试课之间绩点的层次表bij={18.5,5.285,7.4,3.363,5.285,7.4}Wi={0.324,1.135,0.810,1.783,1.135,0.810} W={0.054,0.189,0.135,0.297,0.189,0.135} 考察判断矩阵层次单排列的一致性标准 计算判断矩阵最大特征根λmax()∑=niinW BW 1max λBW={0.075,0.927,0.472,2.289,0.927,0.472}λmax =(0.138)/(6*0.054)+(1.691)/(6*0.189)+(0.863)/(6*0.135)+(4.175*0.297) /(6*0.297)+(1.691) /(6*0.189)+(0.863) /(6*0.135)=6.234判断矩阵一致性指标C.I.(Consistency Index)1..max --=n nI C λC.I.=(6.234-6)/(6-1)=0.0468随机一致性比率C.R.(Consistency Ratio)......I R I C R C =C.R.=0.0468/1.24=0.038<0.1考察判断矩阵层次单排列的一致性标准考查课之间绩点的层次表 bij={20,5,5,10,10,2.857}Wi={0.3,1.2,1.2,0.6,0.5,0.5}W={0.069,0.279,0.279,0.139,0.116,0.116} 考察判断矩阵一致性标准BW=max=(20*0.069)/(6*0.069)+(5*0.279)/(6*0.279)+(5*0.279)/(6*0.279)+(10*0.139)/(6*0. 139)+(10*0.116)/(6*0.116)+(2.857*0.116)/(6*0.116)求出方案层对指标层的最大特征向量(同上),求得每名同学考试课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课6的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课6的绩点层次表Wi=W=考察判断矩阵一致性标准利用层次单排序的计算结果,进一步综合出对更上一层次的优劣顺序,就是层次总排序的任务。

数学建模实验报告1,层次分析法

数学建模实验报告1,层次分析法

数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。

二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。

2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。

3、初步拟定三个方案,每个方案中各个治理方法的权重不同。

三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。

2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。

当然矩阵要通过一致性检验,得到的权重才足够可靠。

3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。

得到组合权向量(方案层对目标层)即可确定适用方案。

四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。

(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过[n,n]=size(A)来算得阶数。

)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。

将此脚本存为judge.m,在另一脚本ahp.m中调用。

代码如下:调试通过后,下面便用此函数进行一致性检验及权向量计算:(1)准则层对目标层(A矩阵)(2)方案层对准则层(BB矩阵)代码:结果:注:实际实验时,一开始构造的五个矩阵中有两个没有通过一致性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用层次分析法评选优秀学生
一.实验目的
运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。

二.实验内容
4.用层次分析法解决一两个实际问题;
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。

可分为相对评价和绝对评价两种情况讨论。

解:层次分析发法基本步骤:建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。

在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。

大学生各项素质的指标体系。

如下表所示:
符号说明
设评价指标共有n 个,为1x ,2x ..... n
x 。

它们对最高层的权系数分别为1w ,2w , ...
n
w ,
于是建立综合评价模型为:
=
y ∑=n
i i
i x w 1
解决此类问题关键就是确定权系数,层次分析法给出了确定它们的量化过程,其步骤具体如下:
确定评价指标集
P=(1P
,2P ,3
P )
1P =(11P ,12P ) 2P =(21P ,22P ) 2P =(31P ,32P )
11P =(1x ,2x ) 12P =(3x ,4x ) 21P =(5x ,6x ,7x )
22P =(8x ,9x ,10x ) 31P =(11x ,12x ) 31P =(13x ,14x )
建立两两比较的逆对称判断矩阵 从1x ,2x .....n x 中任取i
x 与
j
x ,令
=ij a i x /j
x ,比较它们对上一层某个因素的重要性时。

若=ij a 1,认为
i
x 与
j
x 对上一层因素的重要性相同; 若=ij a =3,认为i
x 比
j
x 对上一层因素的重要性略大;
若=ij a 5,认为i x 比j x 对上一层因素的重要性大; 若=ij a 7,认为i x 比
j
x 对上一层因素的重要性大很多;
若=ij a 9,认为
i
x 对上一层因素的重要性远远大于
j
x ;

=
ij a 2n ,n=1,2,3,4,元素
i
x 与
j
x 的重要性介于
=
ij a 2n − 1与
=
ij a 2n + 1之间;
用已知所有的
i x /j
x ,i ,j =1,2 ... n ,建立n 阶方阵P=n m j i x x ⨯)
/(,矩阵P 的第i 行与
第j 列元素为i x /j x
,而矩阵P 的第j 行与第i 列元素为j x /i x ,它们是互为倒数的,而对
角线元素是1。

判断矩阵
⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡
=11/51/4P 51341/31P P P 321
321P P P
0858.3max =λ 0740.0CI = 0359.6max =λ 0758.0=CI
max λ=6.2255 CI =0.0364 max λ=6.0359 CI =0.0758
max λ=15.1382 CI =0.0558 max λ=14.2080 CI =0.0102 max λ=14.3564 CI =0.0175 max λ=15.1972 CI =0.0758
max λ=14.1043 CI =0.0051 max λ=14.2017 CI =0.0099
利用加法迭代计算权重
即取判断矩阵ne 个列向量的归一化的算术平均值近似作为权重向量
具体为求向量迭代序列:
10/1...../1/1⨯⎥


⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n n e
1-'k k Pe e =
'
k
e 为1-P k e 分量之和 k
e =
'k
e
/'
k
e k=1、2、.....
可以证明,迭代的n 维列向量序列{ k e
}收效,记其极限为e,且
1
21.....a ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n a a e 则权系数可取:
i i a w =,i=1,2,...n
计算时,当 k e =1-k e ,就取
k e e = 针对本问题中爱国守法, 集体观念等各项指标对学生评价的影响大小, 我们得出一个14 x14 的成对比较矩阵, 最终求得权系数分别为:
各评价指标对学生的影响程度公式为:
=
y ∑=n
i i
i x w 1
方案层中班主任考评, 学生自评, 班级考评对各评价指标的决策权重比例如下:
则方案层中各方案对学生评价的决策权为:
=j y ∑=n
i j
j w x 1i =1,2,....,14 j =1,2,3 1y =0.3064 2y =0.3532 3y =0.2864
所以学生评价的公式为:
=
z ∑=n
j j
j y
c 1
j =1,2,3,
其中,
j
c 为方案层中班主任考评, 班级考评,学生自评对学生的打分情况, 例如对某学
生的评价中班主任考评为8 0 , 班级考评为90 , 学生自评为80 , 则该学生的综合得分为: 80⨯0.3064+90⨯0.3532+80⨯0.2864=79.212 对此模型进行一致性检验计算一致性指标CI :
CI =(n -max
λ)/(1-n )
利用Matlab 求解得到成对比较矩阵P 的最大特征值max λ=14.0037 ,CI =0.00285.
查找相应的平均随机一致性指标RI : 计算一致性比例CR :
CR = CI /RI
由此公式计算出CR =1.8129-310⨯<0.1
当CR <0.10时,认为判断矩阵的一致性是可以接受的。

相关文档
最新文档