等体积法求线面角(人教A版)(含答案)

合集下载

等体积法求线面角测试题(含答案)

等体积法求线面角测试题(含答案)

等体积法求线面角
一、单选题(共6道,每道16分)
1.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则直线PA与平面ABC所成角的大小为( )
A.60°
B.75°
C.45°
D.30°
答案:A
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
2.如图,在正四棱锥P-ABCD中,已知PA=AB=,若M为PA的中点,则直线BM与平面PAD所成角的正弦值是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
3.如图,在三棱锥中,已知平面,,,则
与平面所成角的正弦值是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
4.如图,在三棱锥S-ABC中,底面ABC是边长为2的等边三角形,SA⊥底面ABC,SA=3,则直线AB与平面SBC所成角的正弦值为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
5.如图,已知PA=PB=PC,且PA,PB,PC两两垂直,则PA与平面ABC所成角的正弦值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
6.如图,已知P是正四面体ABCD的棱AC的中点,则直线PD与平面BCD所成角的正弦值为( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:直线与平面所成的角。

(word版)高中数学必修2立体几何专题线面角典型例题求法总结,文档

(word版)高中数学必修2立体几何专题线面角典型例题求法总结,文档

线面角的求法1.直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。

通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。

例1〔如图1〕四面体ABCS中,SA,SB,SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求〔1〕BC与平面SAB所成的角。

〔2〕SC与平面ABC所成的角。

CHBSMA解:〔1〕∵SC⊥SB,SC⊥SA,图1SC⊥平面SAB故SB是斜线BC在平面SAB上的射影,∴∠SBC是直线BC与平面SAB所成的角为60°。

2〕连结SM,CM,那么SM⊥AB,又∵SC⊥AB,∴AB⊥平面SCM,∴面ABC⊥面SCM过S作SH⊥CM于H, 那么SH⊥平面ABCCH即为SC在面ABC内的射影。

∠SCH为SC与平面ABC所成的角。

sin∠SCH=SH/SC∴SC与平面ABC所成的角的正弦值为√7/7〔“垂线〞是相对的,SC是面SAB的垂线,又是面ABC 的斜线.作面的垂线常根据面面垂直的性质定理,其思路是:先找出与平面垂直的平面,然后一面内找出或作出交线的垂线,那么得面的垂线。

〕利用公式sinθ=h/ι其中θ是斜线与平面所成的角,h是垂线段的长,ι是斜线段的长,其中求出垂线段的长〔即斜线上的点到面的距离〕既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。

例2〔如图2〕长方体ABCD-A1B1C1D1,AB=3,BC=2,A1A=4,求AB与面AB1C1D所成的角。

D C32A B4HD1C1A1B11解:设点B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3S △AB 1C 1·h=1/3S △BB 1C 1·AB ,易得h=12/5,设AB 与面AB 1C 1D 所成的角为θ,那么sin θ=h /AB=4/5,∴AB 与面AB 1C 1D 所成的角为 3. 利用公式 cos θ=cos θ1·cos θ2〔如图3〕假设OA 为平面的一条斜线, O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,A其中θ为OA 与OC 所成的角, αθ为OA 与OB 所成的角,即线面角,θ1OBC图32为OB 与OC 所成的角,那么 cos θ=cos θ1·cos θ2,它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角〔常称为最小角定理〕1.平面的斜线和平面所成的角:,如图,AO 是平面 的斜线,A 是斜足,OB 垂直于平面 ,B 为垂足,那么直线AB 是斜线在平面 内的射影。

新课标高考立体几何线面角的计算归类分析

新课标高考立体几何线面角的计算归类分析

新课标高考立体几何——线面角的计算归类分析深圳市第二实验学校 李平作者简介李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。

深圳市“技术创新能手”称号、深圳市高考先进个人。

在教材教法、高考研究、教材编写等方面成效显著。

主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。

摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力.关键词 线面角 空间角 平移法 等体积法 空间向量方法线面角——直线和平面所成的角1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角.若直线l ⊥平面α, 则l 与α所成角为90︒;若直线l //平面α或直线l ⊂平面α, 则l 与α所成角为0︒.2.线面角的范围: [0]2π,. 3.线面角的求法:(1)定义法(垂线法).(2)虚拟法(等体积法).(3)平移法.(4)向量法.线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中.求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法.总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力.本作者试就这一热点作一比较系统的归类与分析.希望对同学们进行有针对性的训练和复习有一定的帮助.例题分析(1) 定义法(垂线法): 斜线与它在平面内的射影所成的角, 即为线面角;解决该类问题的关键是找出斜线在平面上的射影,然后将直线与平面所成的角转化为直线与直线所成的角,在某一直角三角形内求解.例1[2011·天津卷] 如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形, ∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明PB ∥平面ACM ;(2)证明AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值.证明:(1)连接BD ,MO.在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO.因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM.(2)因为∠ADC =45°,且AD =AC =1,所以∠DAC =90°,即AD ⊥AC.又PO ⊥平面ABCD ,AD ⊂平面ABCD ,所以PO ⊥AD.而AC∩PO=O ,所以AD ⊥平面PAC.(3)取DO 中点N ,连接MN ,AN.因为M 为PD 的中点,所以MN ∥PO ,且MN =PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,∴∠MAN 是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO =,所以DO =.从而AN =DO =.在Rt △ANM 中,tan ∠MAN ===,即直线AM 与平面ABCD 所成角的正切值为.【点评】 求线面角, 解题时要明确线面角的范围, 利用转化思想, 将其转化为一个平面内的角, 通过解三角形来解决. 求解的关键是作出垂线,即从斜线上选取异于斜足的一点作平面的垂线. 有时也可采用间接法和空间向量法, 借助公式直接求解.(2)虚拟法(等体积法):线面角的求法还可以不用做出平面角.可求出线上某点到平面的距离d ,利用sin d ABα=可求. 即先运用等积法求点到平面的距离,后虚拟直角三角形求解.例2.[2011·全国卷] 如图,四棱锥S ABCD -中, //AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(I ) 证明:SD ⊥平面SAB ;(II )求AB 与平面SBC 所成的角的大小.(I )证明:取AB 的中点E ,连接DE ,DB ,//AB CD ,2AB =,1CD =,BC CD ⊥.∴//BE CD ,1BE CD ==,90BCD ∠=︒.∴ 四边形BCDE 是矩形.∴DE AB ⊥,2DE BC ==.又∵1SD AE ==,2DE SA ==,AD AD =.∴ SAD ADE ∆≅∆.∵ 90AED ∠=︒, ∴ 90DSA ∠=︒,即SD SA ⊥.同理可证: SD SB ⊥, 又∵SA SB S =, ∴SD ⊥平面SAB .(II )解: 线面角的求法还可以不用作出平面角,可求出线上某点到平面的距离d ,利用sin d ABα=可求,故只需求点A 到面SBC 的距离d 即可. 由等积转化思想可知,A SBC S ABC V V --= ① , D SAB S ABD V V --= ② .设点A 到面SBC 的距离为d ,点S 到面ABCD 的距离为h .由(I )问可知, SD ⊥平面SAB , ∴13D SAB SAB V SD S -∆=⋅⋅ .又∵1sin 602SAB S SA SB ∆=⋅⋅⋅︒=1122222ABD S DE AB ∆=⋅⋅=⋅⋅=. 由②式可知, 1133SAB ABD SD S h S ∆∆⋅⋅=⋅⋅ ,即111233h ⋅=⋅⋅, h = . 又∵SD ⊥平面SAB , ∴SD AB ⊥, 又∵//AB CD , ∴SD CD ⊥.∴ 22222112SC SD DC =+=+=, 又知2SB BC ==,∴ 222222223cos 22224SB BC SC SBC SB BC +-+-∠===⋅⋅⋅⋅, ∴sin SBC ∠=.∴ 11sin 2222SBC S SB BC SBC ∆=⋅⋅⋅∠=⋅⋅=又∵ 1122222ABC S BC AB ∆=⋅⋅=⋅⋅=. 由①式可知, 1133SBC ABC d S h S ∆∆⋅⋅=⋅⋅ ,即1123232d ⋅⋅=⋅, 7d = . 由sin d AB α=可得, 7sin 27d AB α===. 【点评】 以上解法主要运用三角形全等和等积转化的思想,思路自然,属常规通法,是高三学生应熟练掌握的基本思想和方法.(3)平移法:通过三角形的中位线或平行四边形的对边平移,计算其平行线与平面所成的角,也可平移平面.例3.[2010·山东卷] 如图,在五棱锥P-ABCDE 中,⊥PA 平面ABCDE ,AB∥CD,AC∥ED,AE∥BC,4524ABC AB BC AE ∠====,,三角形PAB 是等腰三角形.(Ⅰ)求证:平面PCD ⊥平面PAC ;(Ⅱ)求直线PB 与平面PCD 所成角的大小.解:(Ⅰ)证明:因为∠ABC=45°,AB=2,BC=4,所以在ABC ∆中,由余弦定理得: 222AC +4-24cos45=8⨯, 解得222AB +AC =8+8=16=BC ,即AB AC ⊥,又PA⊥平面ABCDE ,所以PA⊥AB ,又PA AC A ⋂=,所以AB AC ⊥平面P ,又AB∥CD,所以AC CD ⊥平面P ,又因为CD CD ⊂平面P ,所以平面PCD⊥平面D CBAEP。

新人教版高中数学选修一第一单元《空间向量与立体几何》测试(含答案解析)

新人教版高中数学选修一第一单元《空间向量与立体几何》测试(含答案解析)

一、选择题1.平面α过正方体1111ABCD A B C D -的顶点A ,1BC α⊥,点E 、F 分别为1AA 、1CC 的中点,112C G GD =,若α平面ABCD m =,α平面EFG n =,则直线m 与直线n 所成角的正切值为( ) A .227B .32C .427D .6272.如图,在正方形中,点,E F 分别是线段,AD BC 上的动点,且,AE BF AC =与EF 交于G ,EF 在AB 与CD 之间滑动,但与AB 和CD 均不重合.在EF 任一确定位置,将四边形EFCD 沿直线EF 折起,使平面EFCD ⊥平面ABFE ,则下列选项中错误的是( )A .AGC ∠的角度不会发生变化B .AC 与EF 所成的角先变小后变大 C .AC 与平面ABFG 所成的角变小D .二面角G AC B --先变大后变小3.直三棱柱111ABC A B C -中,1AC BC AA ==,90ACB ∠=,则直线1A C 与平面11A BC 所成的角的大小为( )A .30B .60C .90D .1204.正方体1111ABCD A B C D -中,动点M 在线段1A C 上,E ,F 分别为1DD ,AD 的中点.若异面直线EF 与BM 所成的角为θ,则θ的取值范围为( ) A .[,]63ππB .[,]43ππC .[,]62ππD .[,]42ππ5.如图,正四棱锥P ABCD -中,已知PA a =,PB b =,PC c =,12PE PD =,则BE =( )A .131222a b c -+ B .111222a b c --- C .131222a b c --+ D .113222a b c --+ 6.若直线l 的方向向量,1)2(,m x -=,平面α的法向量2,2(),4n -=-,且直线l ⊥平面α,则实数x 的值是( )A .1B .5C .﹣1D .﹣57.已知向量{},,a b c 是空间的一组基底,则下列可以构成基底的一组向量是( ) A .a b +,a ,a b - B .a b +,b ,a b - C .a b +,c ,a b -D .a b +,2a b -,a b -8.如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别为棱AD ,1CC ,11A D 的中点,则1B P 与MN 所成角的余弦值为( )A .3010B .15-C .7010D .159.在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( ) A .52B .2C .32D .11610.如图,在三棱柱11ABC A B C -中,底面ABC 为正三角形,侧棱垂直于底面,14,6AB AA ==.若E 是棱1BB 的中点,则异面直线1A E 与1AC 所成角的余弦值为( )A .13 B .213C .313D .13 11.在正方体1111ABCD A B C D -中,E 为棱11A B 的中点,则异面直线AE 与1BD 所成角的余弦值为( ) A .1515B .155C .53D .5 12.如图,在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,则OG 等于( )A .111333OA OB OC ++ B .111234OA OB OC ++C .111244OA OB OC ++D .111446OA OB OC ++13.如图,在棱长均相等的四面体O ABC -中,点D 为AB 的中点,12CE ED =,设OA a =,OB b =,OC c =,则OE =( )A .111663a b c ++ B .111333a b b ++C .111663a b c +- D .112663a b c ++ 二、填空题14.若面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,两面夹角的正弦值为346,则λ=________. 15.在三棱锥P -ABC 中,PA ,AB ,AC 两两垂直,D 为棱PC 上一动点,2PA AC ==,3AB =.当BD 与平面PAC 所成角最大时,AD 与平面PBC 所成角的正弦值为________.16.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为___17.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)18.在一直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角,则折叠后A ,B 两点间的距离为__________.19.平行六面体1111ABCD A B C D -中,1160A AB A AD BAD ∠=∠=∠=︒,且1AB =,2AD =,13AA =,则1AC 等于______.20.设a =(1,1,0),b =(﹣1,1,0),c =(1,0,1),d =(0,0,1),,,,a b c d 存在正交基底,则四个向量中除正交基底外的向量用正交基底表示出来并写在填空处;否则在填空处写上“无正交基底”.你的答案是_____.21.平行六面体ABCD ﹣A 1B 1C 1D 1中,棱AB 、AD 、AA 1的长均为1,∠A 1AD =∠A 1AB =∠DAB 3π=,则对角线AC 1的长为_____.22.如图所示,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2OM MA =,N 为BC 中点,若=MN xa yb zc ++,则x y z ++=_____________23.正四面体ABCD 的棱长为22的球O 过点D ,MN 为球O 的一条直径,则AM AN ⋅的最小值是__________.24.正三棱柱ABC A B C '''-,2,22AB AA ='=M 是直线BC 上的动点,则异面直线AB '与C M '所成角的范围为_____________.25.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.26.已知(2,1,3),(1,4,2),(3,5,)a b c λ=-=-=-,若,,a b c 三向量共面,则实数λ=_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以1D 为原点,11D A 为x 轴,11DC 为y 轴,1D D 为z 轴建立空间直角坐标系,用向量法计算即可. 【详解】不妨设AB =2, 以1D 为原点,11D A 为x 轴,11DC 为y 轴,1D D 为z 轴建立空间直角坐标系,则()()()()()()()1110,0,02,0,02,0,22,0,10,2,00,2,20,2,1D A A E C C F ,,,,,,, ()()()12,2,22,2,0,2,0,2,B EF C B =-=-,112420,,00,,133C G GD G GF ⎛⎫⎛⎫=∴∴= ⎪ ⎪⎝⎭⎝⎭设平面EFG 的一个法向量()1,,n x y z =,则11·2204·03n EF x y n GF y z ⎧=-+=⎪⎨=+=⎪⎩,不妨令x =1,则141,1,3n ⎛⎫= ⎪⎝⎭ 易知平面ABCD 的一个法向量为()20,0,1n =,设直线m ,n 的方向向量分别为()0000,,m x y z =,()0222,,n x y z = 因为α平面ABCD m =,1BC α⊥,所以0100020·220·0m C B x z m n z ⎧=+=⎪⎨==⎪⎩不妨令0y =1,则()00,1,0m =同理可求071,,13n ⎛⎫=-- ⎪⎝⎭设直线m 与直线n 所成角为θ,则0000007||||7673cos |cos ,|||||491114m n m n m n θ-====⨯⨯++所以227673134sin 1cos 16767θθ⎛⎫=-=-= ⎪ ⎪⎝⎭3134sin3267tan cos 7767θθθ===故选:B 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.2.D解析:D 【分析】以E 为原点,EA ,EF ,ED 所在的直线为,,x y z 轴,建立空间直角坐标系,设正方形的边长为1,AE a =,利用空间向量的数量积可判断A ,B ;求出平面ABFG 的一个法向量,设AC 与平面ABFG 所成的角为θ,利用向量的数量积可求线面角,进而判断C ;求出平面AGC 的法向量以及平面AGC 的法向量,利用空间向量数量积即可求解. 【详解】以E 为原点,EA ,EF ,ED 所在的直线为,,x y z 轴, 建立空间直角坐标系,设正方形的边长为1,AE a =,(),0,0A a ,()0,1,1C a -,()0,,0G a ,()0,1,0F ,(),1,0B a ,对于A ,(),,0AG a a =-,()0,1,1GC a a =--,()11cos 2221AG GC a a AGC a a AG GC⋅-∠===⋅-, 故AGC ∠的角度不会发生变化,所以A 正确; 对于B ,设AC 与EF 所成的角为θ,(),1,1AC a a =--,()0,1,0EF =,cos AC EF AC EFa θ⋅===,2222a a -+对称轴为12,且()0,1a ∈,所以2222a a -+先减小后增加, 所以cos θ先增加再减小,即AC 与EF 所成的角先变小后变大,故B 正确; 对于C ,平面ABFG 的一个法向量为()0,0,1m =, 设AC 与平面ABFG 所成的角为θ,sin cos ,ACm AC m ACma θ⋅======, ()0,1a ∈,则1a a+单调递减,sin θ单调递减, 所以AC 与平面ABFG 所成的角变小,故C 正确;对于D ,设平面AGC 的法向量为()111,,n x y z =,则00n AG n AC ⎧⋅=⎨⋅=⎩,即()11111010ax ay ax y a z -+=⎧⎨-++-=⎩,令11x =,11y =,11z =-, 不妨设1,1,1n,设平面ACB 的一个法向量为()222,,p x y z =,则00p AB P CB ⎧⋅=⎨⋅=⎩,()222010y ax a z =⎧⎨+-=⎩,令2z a =,21x a =-,即()1,0,p a a =-,cos ,3n pn p n p⋅==== 2221a a -+对称轴为12,在()0,1先减小后增大,所以212221a a --+在()0,1先减小后增大, 二面角G AC B --为钝角,231cos ,23221n p a a ∴=---+ 先增大后减小, 故二面角G AC B --先减小后增大,故D 错误. 故选:D 【点睛】 思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内; (2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错. (3)利用数量积验证垂直或求平面的法向量. (4)利用法向量求距离、线面角或二面角.3.A解析:A 【分析】以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1A C 与平面11A BC 所成的角. 【详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC , 又90ACB ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如下图所示:设11AC BC AA ===,则()11,0,1A 、()0,1,0B 、()0,0,0C 、()10,0,1C , ()111,0,0A C =-,()10,1,1=-BC ,()11,0,1=--AC , 设平面11A BC 的法向量为(),,n x y z =,由11100n AC x n BC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可得0x y z =⎧⎨=⎩,令1y =,可得0x =,1z =, 所以,平面11A BC 的一个法向量为()0,1,1n =,1111cos,222n A C n A C n A C⋅<>==-⨯⋅,所以,直线1A C 与平面11A BC 所成角的正弦值为12,则直线1A C 与平面11A BC 所成角为30.故选:A. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.4.A解析:A 【详解】以D 点为原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 如图设DA 2=,易得()1,0,1EF=-,设()()()12,2,20122,2,2CM CA BM λλλλλλλλ==-≤≤=--,,则cos θcos ,?BM EF =,即()()222201122321222823()33cos θλλλλλλ===≤≤-+-+-+.当13λ=时,cos θ取到最大值32,当1λ=时,cos θ取到最小值12,所以θ的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.故选:A.点睛:本题主要考查异面直线所成的角,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.5.A解析:A 【分析】连接AC BD 、交点为O ,根据根据向量加法运算法则1122PO PA PC =+,1122PO PD PB =+,求得PD ,然后由BE BP PE =+求解. 【详解】 如图所示:连接AC BD 、交点为O ,则1122PO a c =+, 又1122PO PD PB =+, 所以PD a c b =+-, 又11112222PE PD a c b ==+-,所以131222BE BP PE a b c =+=-+. 故选:A. 【点睛】本题主要考查空间向量基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.C解析:C 【分析】根据直线与平面垂直时直线的方向量与平面的法向量共线,利用共线时对应的坐标关系即可计算出x 的值. 【详解】因为直线l ⊥平面α,所以//m n , 所以12224x -==--,所以1x =-. 故选:C. 【点睛】本题考查根据直线与平面的位置关系求解参数,其中涉及到空间向量的共线计算,难度一般.已知直线l 的方向向量为a ,平面α的法向量为b ,若//l α则有a b ⊥,若l α⊥则有//a b . 7.C解析:C 【分析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A 、B 、D 三个选项中的向量均为共面向量,利用反证法可证明C 中的向量不共面 【详解】 解:()()2a b a b a ++-=,∴a ,a b +,a b -共面,不能构成基底,排除A ; ()()2a b a b b +--=,∴b ,a b +,a b -共面,不能构成基底,排除B ;()()31222a b a b a b -=-++,∴a b +,a b -,2a b -共面,不能构成基底,排除D ; 若c 、a b +,a b -共面,则()()()()c a b m a b m a m b λλλ=++-=++-,则a 、b 、c 为共面向量,此与{},,a b c 为空间的一组基底矛盾,故c 、a b +,a b -可构成空间向量的一组基底. 故选:C . 【点睛】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.8.A解析:A 【分析】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,求出1B P 和MN 的坐标,设1B P 与MN 所成的角为θ,利用11cos B P MN B P MNθ=⋅⋅即可求解.【详解】如图以A 为原点,分别以1,,AB AD AA 所在的直线为,,x y z 轴建立空间直角坐标系,设正方体的棱长为2,则()0,1,0M ,()2,2,1N ,()12,0,2B ,()0,1,2P , 所以()12,1,0B P =-,()2,1,1MN =, 设1B P 与MN 所成的角为θ, 所以1122130cos 56B P MN B P MNθ=⋅-⨯+==⨯⋅, 1B P 与MN 30,故选:A 【点睛】 方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.9.A解析:A 【分析】根据空间向量的线性运算,得出AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,结合题意,即可求出11,2y z ==,从而得出x y z ++的值. 【详解】解:由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,由题可知,2AC x AB y BC z CC →→→→''=++, 则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=. 故选:A. 【点睛】本题考查空间向量的基本定理的应用,以及空间向量的线性运算,属于基础题.10.A解析:A 【分析】以{},,a b c 为基底表示出11,A E AC ,利用向量夹角公式计算出异面直线1A E 与1AC 所成角的余弦值. 【详解】设1,,AB a AC b AA c===,则{},,a b c 构成空间的一个基底, 111112A E AB B E a c =+=-,11AC AC CC b c =+=+,111111cos ,||||A E AC A E AC A E AC ⋅〈〉=⋅1()21||2a cbc a c b c ⎛⎫-⋅+ ⎪⎝⎭=-⋅+ ()222112212a b b c a c c a c b c ⋅-⋅+⋅-=⎛⎫-⋅+ ⎪22222144cos600062124a a c c b b c c ⨯⨯︒-+-⨯=-⋅+⋅+⋅+ =135213==-⨯. 所以异面直线1A E 与1AC 所成角的余弦值为1313. 故选:A 【点睛】本小题主要考查异面直线所成角的求法,属于中档题.11.A解析:A 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1BD 所成角的余弦值. 【详解】解:在正方体1111ABCD A B C D -中,E 为棱11A B 的中点,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A B C D -中棱长为2,则(2A ,0,0),(2E ,1,2),(2B ,2,0),1(0D ,0,2), (0AE =,1,2),1(2BD =-,2-,2),设异面直线AE 与1BD 所成角为θ, 则11||15cos ||||512AE BD AE BD θ===. ∴异面直线AE 与1BD 所成角的余弦值为15.故选:A .【点睛】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.12.C解析:C 【分析】因为在四面体OABC 中,D 是BC 的中点,G 是AD 的中点,12OE OA AD =+,即可求得答案. 【详解】在四面体OABC 中,D 是BC 的中点,G 是AD 的中点∴12OG OA AD =+11()22OA AB AC =+⨯+1()4OA OB OA OC OA =+⨯-+-111244OA OB OC =++ 故选:C. 【点睛】本题主要考查了向量的线性运算,解题关键是掌握向量基础知识和数形结合,考查了分析能力和空间想象能力,属于基础题.13.D解析:D 【分析】利用空间向量的加法和减法法则可将OE 用a 、b 、c 表示. 【详解】12CE ED =,()111111=333236CE CD CA AD CA AB CA AB ⎛⎫∴==+=++ ⎪⎝⎭,()()11113636OE OC CE OC CA AB OC OA OC OB OA∴=+=++=+-+-112112663663OA OB OC a b c =++=++. 故选:D. 【点睛】本题考查空间向量的基底分解,解题时要灵活利用空间向量加法和减法法则,考查计算能力,属于中等题.二、填空题14.【分析】设平面的夹角为利用空间向量夹角公式得:由已知知建立关于的方程解方程即可得到答案【详解】设平面的夹角为又面的法向量面的法向量则利用空间向量夹角公式得:由已知得故故即解得:故答案为:【点睛】结论解析:【分析】设平面,αβ的夹角为θ,利用空间向量夹角公式得:cos 3⋅==m n m nλθλ,由已知sin 6=θ,知21cos 18=θ,建立关于λ的方程,解方程即可得到答案.【详解】设平面,αβ的夹角为θ,又面α的法向量(1,,1)n λ=,面β的法向量(2,1,2)m =--,则利用空间向量夹角公式得:cos 1⋅===+m n m nθ由已知得sin =θ,故22221cos 1sin 116618⎛⎛⎫=-=-=-=⎪ ⎪⎝⎭⎝⎭θθ 故2118=,即2222119(2)1822=⇒=++λλλλ,解得:λ=故答案为: 【点睛】结论点睛:本题考查利用空间向量求立体几何常考查的夹角:设直线,l m 的方向向量分别为,a b ,平面,αβ的法向量分别为,u v ,则 ①两直线,l m 所成的角为θ(02πθ<≤),cos a b a bθ⋅=;②直线l 与平面α所成的角为θ(02πθ≤≤),sin a u a uθ⋅=;③二面角l αβ--的大小为θ(0θπ≤≤),cos .u v u vθ⋅=15.【分析】首先可证平面PAC 则BD 与平面PAC 所成角为所以当D 为PC 的中点时取得最大值如图建立空间直角坐标系利用空间向量法求出线面角的正弦值;【详解】解:因为PAABAC 两两垂直所以平面PAC 则BD 与 【分析】首先可证AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠,所以当D 为PC 的中点时ADB ∠取得最大值,如图建立空间直角坐标系,利用空间向量法求出线面角的正弦值; 【详解】解:因为PA ,AB ,AC 两两垂直,PA AC A =所以AB ⊥平面PAC ,则BD 与平面PAC 所成角为ADB ∠, 所以3tan AB ADB AD AD∠==, 当AD 取得最小值时,ADB ∠取得最大值在等腰Rt PAC △中, 当D 为PC 的中点时,AD 取得最小值,以A 为坐标原点, 建立如图所示的空间直角坐标系A -xyz ,则(0,0,0)A ,(3,0,0)B ,(0,2,0)C ,(0,0,2)P ,(0,1,1)D , 则(0,1,1)AD =,(0,2,2)PC=-,(3,2,0)BC =-,设平面PBC 的法向量为(,,)n x y z =,则0n PC n BC ⋅=⋅=,即220320y z x y -=⎧⎨-+=⎩,令3y =,得(2,3,3)n =. 因为311cos ,11222n AD 〈〉==⨯, 所以AD 与平面PBC 311. 311【点睛】(1)求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.(2)作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.16.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系写出向量的坐标利用空间向量法可求得直线与直线所成角的余弦值【详解】如下图所示以点为坐标原点所在直线分别为轴建立空间直角坐标系则点因此直线与直线解析:269【分析】以点D为坐标原点,DA、DC、1DD所在直线分别为x、y、z轴建立空间直角坐标系,写出向量1A E、1B F的坐标,利用空间向量法可求得直线1A E与直线1B F所成角的余弦值.【详解】如下图所示,以点D为坐标原点,DA、DC 、1DD所在直线分别为x、y、z轴建立空间直角坐标系D xyz-,则点()12,0,4A、()12,2,4B、()0,2,2E、()1,1,0F,()12,2,2A E=--,()11,1,4B F=---,11111126cos,2332A EB FA EB FA EB F⋅<>===⨯⋅,因此,直线1A E与直线1B F26.故答案为:269.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.17.②④【分析】由题意知abAC 三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB 以直线AC 为旋转轴则A 点保持不变B 点的运动轨迹是以C 为圆心为半径的圆以C 坐标原点以CD 为x 轴CB 为解析:②④ 【分析】由题意知,a 、b 、AC 三条直线两两相互垂直,构建如图所示的长方体,|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,利用向量法求出结果. 【详解】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13 故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C 3为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D 3,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′3θ3θ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =θθ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则)(10cos 3,,θα-⋅=='⋅sin a AB θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 323os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB |cos θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|33πα===, ∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|2=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.18.【分析】通过用向量的数量积转化求解距离即可【详解】解:在直角坐标系中已知现沿轴将坐标平面折成的二面角后在平面上的射影为作轴交轴于点所以所以所以故答案为:【点睛】此题考查与二面角有关的立体几何综合题考 解析:【分析】通过用向量的数量积转化求解距离即可 【详解】解:在直角坐标系中,已知()1,6A -,()3,8B -,现沿x 轴将坐标平面折成60︒的二面角后,()1,6A -在平面xOy 上的射影为C ,作BD x ⊥轴,交x 轴于点D ,所以AB AC CD DB =++,所以2222222AB AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅2221648268682=++-⨯⨯⨯=, 所以217AB =, 故答案为:217【点睛】此题考查与二面角有关的立体几何综合题,考查了数形结合的思想,属于中档题.19.5【分析】将已知条件转化为向量则有利用向量的平方以及数量积化简求解由此能求出线段的长度【详解】平行六面体中即向量两两的夹角均为则因此故答案为:5【点睛】本题考查向量的数量积和模在求解距离中的应用考查解析:5 【分析】将已知条件转化为向量则有11AC AB BC CC →→→→=++,利用向量的平方以及数量积化简求解,由此能求出线段1AC 的长度. 【详解】平行六面体1111ABCD A B C D -中, 1160A AB A AD BAD ∠=∠=∠=︒,即向量1,,AB AD AA→→→两两的夹角均为1601,2,3AB AD AA →→→︒===,,则11AC AB BC CC →→→→=++ 22221111222149212cos60213cos60223cos6025AC AB BC CC AB BC BC CC CC AB →→→→→→→→→→︒︒︒=+++⋅+⋅+⋅=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=因此15AC →=. 故答案为:5.本题考查向量的数量积和模在求解距离中的应用,考查学生转化与划归的能力,难度一般.20.【分析】四个向量中找出三个不共面的非零向量可以作为基底除正交基底外的向量用正交基底表示出来【详解】1100若共面则存在使得化简得:无解故不共面则为正交基底设则解得:故答案为:【点睛】本题考察了空间向 解析:1122c a bd =-+【分析】四个向量中找出三个不共面的非零向量可以作为基底,除正交基底外的向量用正交基底表示出来. 【详解】(1a =,1,0),(1b =-,1,0),(1c =,0,1),(0d =,0,1),∴0a b =,0a d =,0b d =,若,,a b d 共面,则存在,x y 使得a xb yd =+,化简得:110x x y =-⎧⎪=⎨⎪=⎩,无解,故,,a b d 不共面,则a ,b ,d 为正交基底, 设c xa yb zd =++,则101x y x y z =-⎧⎪=+⎨⎪=⎩, 解得:11,,122x y z ==-=, ∴1122c a bd =-+.故答案为:1122c a bd =-+. 【点睛】本题考察了空间向量的基本定理,正交分解坐标表示,属于基础题.21.【分析】由题知:再给式子平方即可求出的长度【详解】如图由题意可知所以所以故答案为:【点睛】本题主要考查利用向量法求线段长度解题时要认真审题注意向量法的合理应用属于中档题【分析】由题知:11AC AB AD AA =++,再给式子平方即可求出1AC 的长度如图,由题意可知,111AC AB AD CC AB AD AA =++=++,所以1221())(AC AB AD AA =++ 222111222AB AD AA AB AD AB AA AD AA +=++++1112(cos 60cos 60cos 60)6+++++==.所以16AC =【点睛】本题主要考查利用向量法求线段长度,解题时要认真审题,注意向量法的合理应用.属于中档题.22.【分析】用表示从而求出即可求出从而得出答案【详解】点在上且为的中点故故答案为【点睛】本题主要考查了平面向量的线性运算运用向量的加法法则来求解属于基础题解析:13【分析】用,,a b c 表示,ON OM ,从而求出MN ,即可求出,,x y z ,从而得出答案 【详解】,,,OA a OB b OC c ===点M 在OA 上,且2OM MA =,N 为BC 的中点22=33OM OA a ∴=()111222ON OB OC b c =+=+ 112=223MN ON OM b c a ∴-=+-211,,322x y z ∴=-==故21113223x y z ++=-++= 故答案为13【点睛】本题主要考查了平面向量的线性运算,运用向量的加法法则来求解,属于基础题23.【解析】很明显当四点共面时数量积能取得最值由题意可知:则是以点D为顶点的直角三角形且:当向量反向时取得最小值:解析:4-【解析】很明显当,,,O D M N 四点共面时数量积能取得最值,由题意可知:OD OM ON ==,则MDN △是以点D 为顶点的直角三角形,且:()()()2420,AM AN AD DM AD DN ADAD DM DN DM DN AD DO ⋅=+⋅+=+⋅++⋅=+⋅+当向量,AD DO 反向时,AM AN ⋅取得最小值:4224-⨯=-24.【分析】建立如图所示的空间直角坐标系设由向量法求两异面直线所成角的余弦表示为的函数求出最大值和最小值后得的范围这里需引入函数用导数求出函数的最小值从而得出的最大值【详解】以为轴为轴建立如图所示的空间解析:,62ππ⎡⎤⎢⎥⎣⎦【分析】建立如图所示的空间直角坐标系,设CM kCB =,由向量法求两异面直线所成角的余弦cos θ表示为k 的函数,求出最大值和最小值后得θ的范围.这里需引入函数()f x 用导数求出函数的最小值,从而得出cos θ的最大值. 【详解】以AB 为x 轴,AA '为z 轴建立如图所示的空间直角坐标系A xyz -,则(2,0,B ',(2,0,0)B ,(1,3,0)C,(1,3,2C ',设CM kCB=,则k ∈R,(1,CB =,(0,0,(1,(,,C M C C CM k k ''=+=-+=-.又(2,0,AB '=, 设直线AB '与C M '所成角为θ, 则cos 2AB C M AB C Mθ''⋅==''=, 4k =时,min (cos )0θ=,设()f x =,则32224()(2)x f x x +'==+,12x <-时,()0f x '<,()f x 递减,12x >-时,()0f x '>,()f x 递增,∴12x =-时,()f x 取得极小值也是最小值132f ⎛⎫-=- ⎪⎝⎭,4x <时,()0f x <,4x >时,222(4)8162x x x x -=-+<+,212x <+,∴max ()3f x =,max 3(cos )223θ==, 即30cos θ≤≤,∴,62ππθ⎡⎤∈⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:本题考查求异面直线所成的角.解题方法是空间向量法.求异面直线所成角的方法:(1)几何法(定义法):作出异面直线所成的角并证明,然后解三角形得解;(2)向量法:建立空间直角坐标系,求出两直线的方向向量的夹角余弦的绝对值得异面直线所成角的余弦值,从而得角.25.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平 解析:23【解析】分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n =(,,)m x y z =为平面1D EC 的法向量, ∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=-二面角1D EC D --的大小为4π∴cos4m n m nπ⋅=⋅,即222(2)12λ=-++ 解得 23λ=-,23λ=+(舍去)∴23AE =-故答案为23-点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).26.【分析】由题意结合向量基本定理得到方程组求解方程组即可确定的值【详解】由题意可知存在实数满足:据此可得方程组:求解方程组可得:故答案为【点睛】本题主要考查空间向量基本定理方程的数学思想等知识意在考查解析:1-【分析】由题意结合向量基本定理得到方程组,求解方程组即可确定λ的值.【详解】由题意可知,存在实数,m n满足:c ma nb=+,据此可得方程组:325432m nm nm nλ-=-⎧⎪=-+⎨⎪=+⎩,求解方程组可得:111mnλ=-⎧⎪=⎨⎪=-⎩.故答案为1-.【点睛】本题主要考查空间向量基本定理,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.。

几何法求线面角二面角与距离课件-2025届高三数学一轮复习

几何法求线面角二面角与距离课件-2025届高三数学一轮复习
中,解三角形求出PQ的长度就是点P到平面α的距离.
(2)转化法:若点P所在的直线l平行于平面α,则转化为直线l上的某
一个点到平面α的距离来求.
(3)等体积法.
(4)向量法:设平面α的一个法向量为n,A是α内任意一点,则点P到
平面α的距离为d=
PA·

.
巩固训练3
已知正方体ABCD-A1B1C1D1棱长为2,则点C到平面BDD1B1的距离为
大小是__________.
π
答案:
3
(
)
A.1
B. 2
C.2 2
D.2 3
答案:B
1.如图,在长方体ABCD-A1B1C1D1中,已知AB=4,BC=2,BB1=3,
则点B到上底面A1B1C1D1的距离为(
)ቤተ መጻሕፍቲ ባይዱ
A.4
B.2
C.2 2
D.3
答案:D
解析:∵BB1⊥平面A1B1C1D1 ,∴BB1 的长度为点
B到平面A1B1C1D1的距离,故点B到上底面A1B1C1D1
上的动点,则A1M与平面ABC1D1所成角的取值范围为(
)
π
π
π
π
A.[ , ] B.[ , ]
4
2
π
π
C.[ , ]
6
4
答案:C
6
3
π
π
D.[ , ]
4
3
题后师说
几何法求线面角的一般步骤
一作(找)角,二证明,三计算,其中作(找)角是关键,先找出斜线在
平面上的射影,关键是作垂线,找垂足,然后把线面角转化到三角形
B.
3
2
D.
2
题型二 几何法求二面角

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)

立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。

1.4.2用空间向量研究距离、夹角问题高中数学人教A版选择性必修1课件

1.4.2用空间向量研究距离、夹角问题高中数学人教A版选择性必修1课件
P35-2(2).棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是线段DD1, BB1的中点,求直
线FC1到直线AE的距离.
①公式法 析 : 可证AE // FC1,
直线FC1到直线AE的距离即为点F到直线AE的距离,
A
建系Dxyz , A(2,0,0), E (0,0,1), F (2,2,1) AE (2,0,1), AF (0,2,1), 1
E
B
C
P
| AB n |
|n |
z
P
(法4 : 几何补形法)
E
将四棱锥补成正方体可以快速找到高
A
Cy
D
B
探究交流
③找垂线法(过点找面的垂线)
[例1]各棱长为1的正四面体, 求点O到面ABC的距离.
O
析 : 分别取BC, AC的中点E, F .
连接AE , BF交于点D, 则D为ABC 的中心.
,
, 2),
2
2
2 2
设直线AN 与CM 所成角为 ,
AN CM
7
∵cos AN , CM

8
| AN || CM |
7
所以直线与夹角的余弦值等于− .
8
M
O
N
探究交流 考点八.求线面角
①空间向量法
例 7 如图 1.4-19,在棱长为 1 的正四面体(四个面都是正三角形)
点,求异面直线AN和CM所成角的余弦值.
三棱锥对棱相等,可以补成一个长方体,如图
解 : 如图建立空间直角坐标系O xyz.
2 2
2
2
则A(0, 0, 2), C ( 2, 7, 2), N (

等体积法求线面角(人教A版)

等体积法求线面角(人教A版)

等体积法求线面角(人教A版)
一、单选题(共6道,每道16分)
1.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则直线PA与平面ABC所成角的大小为( )
A.60°
B.75°
C.45°
D.30°
2.如图,在正四棱锥P-ABCD中,已知PA=AB=,若M为PA的中点,则直线BM与平面PAD所成角的正弦值是( )
A. B.
C. D.
3.如图,在三棱锥中,已知平面,,,则
与平面所成角的正弦值是( )
A. B.
C. D.
4.如图,在三棱锥S-ABC中,底面ABC是边长为2的等边三角形,SA⊥底面ABC,SA=3,则直线AB与平面SBC所成角的正弦值为( )
A. B.
C. D.
5.如图,已知PA=PB=PC,且PA,PB,PC两两垂直,则PA与平面ABC所成角的正弦值为( )
A. B.
C. D.
6.如图,已知P是正四面体ABCD的棱AC的中点,则直线PD与平面BCD所成角的正弦值为( )
A. B.
C. D.。

9-5线面、面面垂直的判定及性质-高考数学总复习·人教A版数学

9-5线面、面面垂直的判定及性质-高考数学总复习·人教A版数学

误区警示
1.不要将
ab⊥⊥αα⇒a∥b 及
aa⊥⊥αβ⇒α∥β,及
a∥b
a∥c
⇒b∥c,及 αα∥∥βγ⇒β∥γ,错误迁移到 αα⊥⊥γβ⇒β∥γ、
ab∥∥αα⇒a∥b、
aa⊥⊥bc⇒b⊥c、
aa⊥⊥bc⇒b∥c 及
α⊥β
α⊥γ
⇒β⊥γ 致误..
2.不要将“经过一点有且仅有一条直线与平面垂 直”;“经过一点有且仅有一个平面与已知直线垂直”; “经过平面外一点有无数条直线与已知平面平行,这无 数条直线在同一个平面内,即经过平面外一点有且仅有 一个平面与已知平面平行”;“经过直线外一点有且仅 有一条直线 l 与已知直线平行,有无数个平面与已知直线 平行,这无数个平面的交线为 l”弄混错用.
面 A1BC1 与平面 AB1D 相交于经过 D 点的一条交线,又 A1B⊂平面 A1BC1,AB1⊂平面 AB1D,设 AB1 与 A1B 相 交于 O,∴平面 A1BC1∩平面 AB1D=OD,故只须证明
BC1∥OD.
解析:(1)D 为 A1C1 的中点,证明如下:
∵BC1∥平面 AB1D,BC1⊂平面 A1BC1,
D.a⊥α,b⊥β
[答案] D
[解析]
bα⊥⊥ββ⇒b∥α 或 b⊂α,又 a∥α,此时 a 与
b 位置关系不确定,排除 A;设 α∩β=l,当 a∥b∥l 时,
排除 B;同 A 的讨论一样可排除 C;
aα⊥⊥αβ⇒a∥β或a⊂β⇒a⊥b,故 D 正确.
b⊥β
线面垂直的判定与性质
[例 2] 已知长方体 AC1 中,棱 AB=BC=1,棱 BB1 =2,连结 B1C,过 B 点作 B1C 的垂线交 CC1 于 E,交 B1C 于 F.

几何法求空间角(异面直线所成角、线面角)(最新人教版优质教案)( 含解析 )

几何法求空间角(异面直线所成角、线面角)(最新人教版优质教案)( 含解析 )

任务检查异面直线所成的角问题定位1长方体中,,,为的中点,则异面直线与所成角的余弦值为()A.B.C.D.答案B解答连接、,如图:在长方体中,则为异面直线与所成角,由,,得, , , ,异面直线与所成角的余弦值为,异面直线所成角的求法方法一:平移直线至有公共点方法二:平移(构造)几何体故选.原因分析精准突破异面直线的定义我们把不同在任何一个平面内、没有公共点的两条直线叫做异面直线.例如,如图所示,直线、为异面直线.异面直线夹角的定义如图所示,已知两条异面直线,,如图①,作直线,使得,如图②,我们把与所成的锐角(或直角)叫做异面直线与所成的角(或夹角),如图③.异面直线夹角的范围为.2三棱柱中,与且、所成的角均为,,且,则与所成角的正弦值为( )A.B.C.D.答案D解答在三棱柱中,,,是平行四边形,,与所成角等于,设,则,,为正三角形,,又,,,由余弦定理可知:,四边形为矩形,,,,故与所成角的正弦值为,故选.3正四棱锥的侧棱长为,底面边长为,为的中点,则异面直线与所成的角是()A .B .C .D .答案C 解答取的中点,连接、,则,异面直线与所成的角为,,,,又在中,由余弦定理可得,则在中,可得,在中,由余弦定理得,,故选.4如图,在直三棱柱中,∠ACB=90°,AA =2,AC =BC =1,则异面直线A B 与AC 所成角的余弦值是( )A .B .C .D .11答案D 解答补形5如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,(1)求异面直线AP与BD所成的角;(2)若E,F,M分别是AB,BC,PQ的中点,异面直线EM与AF所成的角为θ,求cos θ的值.答案见解析解答(1)如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,所以∠APG为异面直线AP与BD所成的角,在△AGP中,AG=GP=AP,所以∠APG=.(2)设N为BF的中点,连接EN,MN,则∠MEN是异面直线EM与AF所成的角或其补角.不妨设正方形ABCD和ADPQ的边长为4,则EN=,EM=,MN=.在△MEN中,由余弦定理得cos∠MEN=即cos θ=.课中巩固6在直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A.B.C.D.C解答方法一:取的中点,连接、、、、,在直棱柱中,,,且、、分别是、、中点,且,,且,四边形是平行四边形,与所成角即为与所成角,,设,在直三棱柱中,,,且 , ,,,,在中,由余弦定理可得:,故选.7在正方体‐中,为棱的中点,则异面直线与所成的角的余弦值为()A.B.C.D.答案A解答取的中点,连接,,,.因为,分别是,的中点,所以,且,因此四边形为平行四边形,,而或其补角为异面直线与所成的角,设正方体的棱长为,则,,在中,由余弦定理得,异面直线与所成角的余弦值为,故选.8如图所示,在三棱柱中,底面,,,点、分别是棱、的中点,则直线和所成的角是()A.B.C.D.答案B解答如上图所示:延长至点,使得,连接、、,,,,,,四边形为平行四边形,,又、分别是、的中点,,设,则,,,,,又直线所成的角不为钝角,直线和所成的角是,【补救学习】故选.9(2015浙江)如图,三棱锥A—BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.解答如图所示,连接DN ,取线段DN 的中点K ,连接MK ,CK.∵M 为AD 的中点,∴MK ∥AN ,∴∠KMC 为异面直线AN ,CM 所成的角.∵AB =AC =BD =CD =3,AD =BC =2,N 为BC 的中点,由勾股定理求得AN =DN =CM =2,∴MK =.在Rt △CKN 中,CK =.在△CKM 中,由余弦定理,得cos ∠KMC =.总结优化10如图所示,在正方体中,,分别是,的中点,则异面直线与所成的角的大小为.【拓展提升】答案.如上图所示:、分别是、中点,,又,,四边形为平行四边形,,与所成角等于,设正方体的边长为,则,,故与所成角的大小为.11如图,正方形ABCD 与正方形BCEF所成角的二面角的平面角的大小是 ,PQ 是正方形BDEF所在平面内的一条动直线,则直线BD 与PQ 所成角的取值范围是( )A. B. C. D.答案B解答略12(2016浙江)如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=CD=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD的内部(含边界),则点M的轨迹的最大长度等于________;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于________.答案 解答当平面ABC⊥平面BCD时,点A在平面BCD上的射影为BC的中点M,当点A在平面BCD上的射影M在BD上时,因为AB=AC,所以BM=MC,因为BC=CD=3,所以∠DBC=30°,所以由∠BCD=90°得BM=MD,点M的轨迹的最大长度等于CD=,将其补为四棱锥,所以AB=,AE==,又因为∠EBA为直线AB和CD 所成的角,所以cos∠EBA==.线面角问题定位13如图所示,在正方体中,是棱的中点.求直线与平面所成的角的正弦值.答案.解答作的中点,连接、,在正方体中,为中点,为中点,,又平面,平面,即是直线与平面所成的角,设,设正方体的棱长为,,,平面,,,,,.14如图,正方体中,面对角线与对角面所成的角为.答案.解答连接交于点,连接,如图所示:四棱柱是正方体,三棱柱是直棱柱,平面平面,四边形是正方形,即,平面平面,平面,即是直角三角形,是与平面所成的角,具体步骤①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;③把该角置于三角形中计算。

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】

线面角的求解【方法总结】1、线面角的范围:[0°,90°]2、线面角求法(一):先确定斜线与平面,找到线面的交点A为斜足;找线在面外的一点B,过点B向平面α做垂线,确定垂足O;连结斜足与垂足为斜线AB在面α上的投影;投影AO与斜线AB之间的夹角为线面角;把投影AO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

注意:以上第二步过面外一点向平面做垂线的方法有一下几种:1)线在面外的一点B与平面上某点的连线正垂直于面α,无需再做辅助线;2)题中已知有与面α垂直的直线,过线在面外的一点B直接做此垂线的平行线;3)过线在面外的一点B做两垂直平面交线的垂线,利用面面垂直的性质证明OB⊥面α(这两个垂直平面一个是面α,另一个是过点B且与α垂直的平面)。

3、线面角求法(二)用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

114、线面角求法(三)利用空间向量进行求解,高二再学。

【巩固练习】1、已知正方体1111ABCD A B C D -的体积为162,点P 在正方形1111D C B A 上,且1,A C 到P 的距离分别为2,23,则直线CP 与平面11BDD B 所成角的正切值为( )A.2 B.3 C.12D.13【答案】A【解析】易知22AB =;连接1C P ,在直角1CC P ∆中,可计算22112C P CP CC =-=;又1112,4A P A C ==,所以点P 是11A C 的中点;连接AC 与BD 交于点O ,易证AC ⊥平面11BDD B ,直线CP 在平面11BDD B 内的射影是OP ,所以CPO ∠就是直线CP 与平面11BDD B 所成的角,在直角CPO ∆中,2tan 2CO CPO PO ∠== .2、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为A.B.C.D.[来源网ZXXK]【答案】C【解析】如图所示,当平面平面时,三棱锥的体积最大,取的中点,则平面,故直线和平面所成的角为,则,所以,故选C.3、如图,在三棱锥P-ABC中,,PA AB⊥PC BC⊥,,AB BC⊥22,AB BC==5PC=,则PA与平面ABC所成角的大小为_______.【答案】45︒【解析】如图,作平行四边形ABCD,连接PD,由AB BC⊥,则平行四边形ABCD是矩形.由BC CD⊥,BC PC⊥,PC CD C=,∴BC⊥平面PCD,而PD⊂平面PCD,∴BC PD⊥,同理可得AB PD⊥,又AB BC B⋂=,∴PD⊥平面11ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,5CD AB PC ===得1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心O ,则AB 1与底面ABC 所成角的正弦值为( )A .23B .13C .33D .23【答案】A【解析】作1A H ⊥面ABC 于点H ,延长11B A 到D ,延长BA 到E 使得111B A A D =,,BA AE =如图则有11A EAB ,又因为1A O ⊥面ABC ,故1A EO ∠为所求角,且111sin AO A EO A E∠=已知底面为正三角形,且O为底面中点,解三角形可知:111336,333AO AB AA A O AA==∴=又在AEO∆中运用余弦定理,150EAO∠=︒则()()22212cos3EO EA AO EA AO EAO AB=+-⋅∠=故由勾股定理可得22113A E AO EO AB=+=则1623sin33A EO∠==故选A5、如图所示,已知AB为圆O的直径,且AB=4,点D为线段AB上一点,且13AD DB=,点C为圆O上一点,且3BC AC=.点P在圆O所在平面上的正投影为点D,PD=DB.(1)求证:CD⊥平面PAB;(2)求直线PC与平面PAB所成的角.【答案】(1)见解析;(2)301旗开得胜1【解析】(1)证明:连接CO ,由3AD =DB 知,点D 为AO 的中点. 又因为AB 为圆O 的直径,所以AC ⊥CB. 由3AC =BC 知,∠CAB =60°, 所以△ACO 为等边三角形.故CD ⊥AO. 因为点P 在圆O 所在平面上的正投影为点D ,所以PD ⊥平面ABC ,又CD ⊂平面ABC ,所以PD ⊥CD , 由PD ⊂平面PAB ,AO ⊂平面PAB ,且PD ∩AO =D , 得CD ⊥平面PAB.(2)由(1)知∠CPD 是直线PC 与平面PAB 所成的角, 又△AOC 是边长为2的正三角形,所以CD =3. 在Rt △PCD 中,PD =DB =3,CD =3,所以3tan 3CD CPD PD ∠==,∠CPD =30°, 即直线PC 与平面PAB 所成的角为30°.16、如图,在四棱锥P -ABCD 中,AP ⊥平面PCD ,//AD BC ,AB BC ⊥,12AP AB BC AD ===,E 为AD 的中点,AC 与BE 相交于点O .(1)证明:PO ⊥平面ABCD .(2)求直线BC 与平面PBD 所成角的正弦值.【答案】(1)证明见解析(2)2211【解析】 (1)证明:AP ⊥平面PCD ,CD ⊂平面PCD ,AP CD ∴⊥,//,AD BC 12BC AD =,E 为AD 的中点,则//BC DE 且BC DE =. ∴四边形BCDE 为平行四边形,//BE CD ∴,AP BE ∴⊥.1又,AB BC⊥12AB BC AD ==,且E 为AD 的中点,∴四边形ABCE 为正方形,BE AC ∴⊥,又,AP AC A =BE ∴⊥平面APC ,PO ⊂平面APC ,则BE PO ⊥.AP ⊥平面,PCD PC ⊂平面PCD ,AP PC ∴⊥,又22AC AB AP ==,PAC ∴∆为等腰直角三角形,O 为斜边AC 上的中点,PO AC ∴⊥且,ACBE O =PO ∴⊥平面ABCD .(2)高一学生可以用等体积法求解。

求线面角的三种方法

求线面角的三种方法

试题研究SHI TI Y ANJIU本文介绍求线面角的三种常见方法,并对其作比较分析.例如图1,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .求直线AD 和平面ABC 1所成角的正弦值.A 1ABCDE C 1B 1A 1AB C D E C 1B 1FH 图1图2方法1直接作出线面角求解分析因为本题几何图形是特殊的几何体——正三棱柱,点D 在特殊位置上——线段A 1B 1的中点,所以本题比较容易作出线面角.解如图2,设F 是AB 的中点,连结DF ,DC 1,C 1F .由正三棱柱ABC -A 1B 1C 1的性质及D 是A 1B 1的中点知,A 1B 1⊥C 1D ,A 1B 1⊥DF .又C 1DDF =D ,所以A 1B 1⊥平面C 1DF .而AB ∥A 1B 1,所以AB ⊥平面C 1DF .又AB 平面ABC 1,故平面ABC 1⊥平面C 1DF .过点D 作DH 垂直C 1F 于点H ,则DH ⊥平面ABC 1.连结AH ,则∠HAD 是AD 和平面ABC 1所成的角.由已知AB =2AA 1,不妨设AA 1=2,则AB =2,DF =2,DC 1=3,C 1F =5,AD =AA 21+A 1D 2=3,DH =DF ·DC 1C 1F=305.所以sin ∠HAD =DHAD=105.方法2用等体积法求出点D 到面ABC 1的距离h ,h AD为所求线面角的正弦值分析如图3,连结C 1D ,BD ,即得四棱锥D -ABC 1.用等体积法,即V D -ABC 1=V C 1-DAB,容易求出点D 到平面ABC 1的距离h .解如图3,连结C 1D ,BD.因为平面A 1B 1C 1⊥平面AB 1,C 1D ⊥A 1B 1,所以C 1D ⊥平面AB 1.不妨设AA 1=2,则AB =2,DC 1=3,AC 1=BC 1=6,AD =BD =3.易求S ΔA DB =2,S ΔABC 1=5.设D 在平面ABC 1内的射影为H ,DH =h ,连结AH ,则∠HAD 是AD 和面ABC 1所成的角.因为V D -A B C 1=V C 1-DA B,所以13×h ×S ΔA B C 1=13×C 1D ×S ΔABD ,h =305.所以sin ∠HAD =DHAD=105.A 1AB C DE C 1B 1图3H ⊙潜江舒云水五胡十六国标志中国正式成为具有相似生活习惯和同一文化观念的多民族国家。

人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

一、选择题1.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( )A .323π B .86π C .36π D .323π2.如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A .12πB .32πC .36πD .48π3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm5.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦ C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦6.如图,梯形ABCD 中,AD ∥BC ,AD =AB =1,AD ⊥AB ,∠BCD =45°,将△ABD 沿对角线BD 折起,设折起后点A 的位置为A ′,使二面角A ′—BD —C 为直二面角,给出下面四个命题:①A ′D ⊥BC ;②三棱锥A ′—BCD 的体积为2;③CD ⊥平面A ′BD ;④平面A ′BC ⊥平面A ′D C .其中正确命题的个数是( )A .1B .2C .3D .47.如图,已知正方体1111ABCD A B C D -,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行8.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( ) A .1 B .2 C .1或7D .2或69.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm10.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32的正方形,则该球的表面积为( ) A .75518πB .62516πC .36πD .34π11.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4B .51C .4或51D .4或512.设l 是直线,α,β是两个不同的平面,下列命题正确的是( ) A .若//l α,//l β,则//αβ B .若αβ⊥,//l α,则l β⊥ C .若αβ⊥,l α⊥,则//l β D .若//l α,l β⊥,则αβ⊥ 13.垂直于同一条直线的两条直线的位置关系是( )A .平行B .相交C .异面D .A 、B 、C 均有可能14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.在如图所示的几何体中,侧面CDEF 为正方形,底面ABCD 中,//AB CD ,222AB BC DC ===,30BAC ∠=,AC FB ⊥.(1)求证:AC ⊥平面FBC ;(2)线段AC 上是否存在点M ,使//EA 平面FDM ?证明你的结论.16.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ; (2)求三棱锥C -AEB 的体积.17.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.18.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值; (Ⅲ)求点A 到平面PBD 的距离.19.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.20.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ; (2)若三棱锥A -BEA 1的体积是3,求异面直线AB 和A 1C 1所成角的大小. 21.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ; (2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1; 23.如图,在四棱锥O ﹣ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =3π,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(I )证明:直线MN //平面OCD ; (II )求异面直线AB 与MD 所成角的余弦值.24.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ; (Ⅱ)求三棱锥A PFB -的体积;25.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.26.如图所示,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,过E 点作EF PB ⊥交PB 于点F .求证:(1)//PA 平面EDB ; (2)PB ⊥平面EFD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可. 【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=, 所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题.2.C解析:C 【分析】根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积. 【详解】∵M ,N 分别为棱SC ,BC 的中点, ∴MN ∥SB∵三棱锥S −ABC 为正棱锥, ∴SB ⊥AC (对棱互相垂直) ∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A , ∴MN ⊥平面SAC , ∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==, ∴R =3, ∴V =36π. 故选:C 【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键.3.B解析:B 【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可. 【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立, 当αβ⊥时,l β⊥不一定成立, 即“l β⊥”是“αβ⊥”的充分不必要条件, 故选:B . 【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.4.B解析:B 【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可. 【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示, 其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B. 【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.5.B解析:B 【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值. 【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球. 因为三棱锥A BCD -的棱长为2,故正方体的棱长为2, 可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小, 此时球心O 到截面的距离为OM ,△OBD 为等腰三角形, 过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B. 【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.6.C解析:C 【分析】根据//AD BC ,1AD AB ==,AD AB ⊥,45BCD ︒∠=, 易得 CD BD ⊥,再根据,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',可判断③的正误;由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则可求出A BDC V '-,进而可判断②的正误;根据CD ⊥平面A BD ',有CD AB '⊥,,A B A D ''⊥ 得A B '⊥平面CDA ',④利用面面垂直的判定定理判断④的正误;根据CD ⊥平面A BD ',有CD A D '⊥,若A D BC '⊥,则可证AD '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,进而可判断①的正误.【详解】由题意,取BD 中点H ,连接A H ',则折叠后的图形如图所示:由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则A H CD '⊥, ∴A BDC V '-=1221326⨯⨯=,②正确, ∵CD BD ⊥,A H CD '⊥,且A H BD H '=,∴CD ⊥平面A BD ',故③正确,∵1A B '=,由几何关系可得3A C '=,2BC =,∴2222132A B A C BC ''+=+==,∴A B A C ''⊥,由CD ⊥平面A BD ',得CD A B '⊥,又A CCD C '=∴A B '⊥平面A DC ',∵A B '⊂平面A BC ',∴ 平面A BC '⊥平面A DC ',④正确, CD ⊥平面A BD ',CD A D '∴⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,所以①错误.故选C .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,解题关键是利用好直线与平面,平面与平面垂直关系的转化关系,属于中档题.7.D解析:D【分析】在正方体1111ABCD A B C D -中,可得11//BD B D ,根据线面平行的判定定理和性质定理可得11////m BD B D ,可判断选项A 结论;分别取11,BD B D 中点1,O O ,连1,OP O P ,则1OPO ∠为平面PBD 与平面11B D P 的平面角,判断1OPO ∠是否为直角,即可判断选项B 的结论;若P 为1CC 中点时,可证平面PBD 与平面11B D Q 平行,即可判断选项C 的结论;根据面面平行的性质定理可得11//n B D ,即可判断选项D 的结论.【详解】在正方体1111ABCD A B C D -中,四边形11BB D D 为矩形,11//,BD B D BD ∴⊂平面PBD ,11B D ⊄平面PBD ,11//B D 平面PBD ,11B D ⊂平面11B D P ,平面BDP 与平面1111////P B D m m B D BD =∴,选项A ,11//,m B D m ⊄平面11B D Q ,11B D ⊂平面11B D Q ,//m 平面11B D Q ,选项A 结论正确;选项B ,分别取11,BD B D 中点1,O O ,连11,,OP O P OO ,设正方体的边长为2,设CP h =,则11BP DP B P D P ====,,PO BD PO m ∴⊥⊥,同理1PO m ⊥,1OPO ∴∠为平面PBD 与平面11B D P 的平面角,在1OO P △中,22222112,2(2),4OP h O P h OO =+=+-=,22211OP O P OO +>,1OPO ∴∠不是直角,所以平面PBD 与平面11B D P 不垂直,选项B 结论正确;选项C ,若P 为1CC 中点,取1BB 中点E 连1,C E QE ,则1//C E BP ,又Q 为棱1AA 的中点,1111//,QE C D QE C D ∴=,四边形11C D QE 为平行四边形,1111//,//,D Q C E D Q BP D Q ∴∴⊄面PBD ,BP ⊂平面PBD ,1//D Q ∴平面PBD ,同理11//B D 平面PBD ,1111111,,B D D Q D B D D Q =⊂平面11B D Q ,∴平面//PBD 平面11B D Q ,选项C 结论正确;选项D ,在正方体中,平面//ABCD 平面1111D C B A ,平面ABCD 平面11B D Q n =,平面1111A B C D 平面1111B Q D B D =11//,//n B D n m ∴∴,选项D 结论不正确.故选:D .【点睛】本题考查空间线、面位置关系,涉及到线线平行、线面平行、面面平行、面面垂直的判定,掌握平行、垂直的判定定理和性质定理是解题的关键,属于中档题.8.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.9.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 10.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,32AB =,∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.11.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得222539392393x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:222539392393x x x =++-⨯+,∴1x =6, ∴2AB =,22BC =O 4484++=;或26AB =3BC =,球O 2424351++=故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题. 12.D解析:D【分析】利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若//l α,//l β,则α与β可能平行,也可能相交,所以不正确.B.若αβ⊥,//l α,则l 与β可能的位置关系有相交、平行或l β⊆,所以不正确.C.若αβ⊥,l α⊥,则可能l β⊆,所以不正确.D.若//l α,l β⊥,由线面平行的性质过l 的平面与α相交于l ',则ll ',又l β⊥.所以l β'⊥,所以有αβ⊥,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.13.D解析:D【分析】结合公理及正方体模型可以判断:A ,B ,C 均有可能,可以利用反证法证明结论,也可以从具体的实物模型中去寻找反例证明.【详解】解:如图,在正方体1AC 中,1A A ⊥平面ABCD ,1A A AD ,1A A BC ⊥, 又//AD BC ,∴选项A 有可能; 1A A ⊥平面ABCD ,1A A AD ,1A A AB ⊥,又AD AB A =,∴选项B 有可能;1A A ⊥平面ABCD ,1A A ⊥平面1111D C B A ,AC ⊂平面ABCD ,11A D ⊂平面1111D C B A ,1A A AC ∴⊥,111A A A D ⊥,又AC 与11A D 不在同一平面内,∴选项C 有可能.故选:D .【点睛】本题主要考查了空间中直线与直线之间的位置关系,考查空间想象能力和思维能力,属于中档题.14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力.二、解答题15.(1)证明见解析;(2)M 为AC 的中点,证明见解析.【分析】(1)本题首先可通过正弦定理得出90ACB ∠=以及AC BC ⊥,然后根据AC FB ⊥以及线面垂直的判定即可证得结果;(2)本题首先可取AC 的中点M ,连接CE 、MN ,然后通过三角形中位线的性质得出//EA MN ,最后通过线面平行的判定即可得出结果.【详解】(1)因为30BAC ∠=,2AB =,1BC =, 所以sin sin AB BC ACB BAC =∠∠,即211sin 2ACB ,解得sin 1ACB ∠=,90ACB ∠=,AC BC ⊥,因为AC FB ⊥,BC FB B ⋂=,所以AC ⊥平面FBC .(2)当M 为AC 的中点时,//EA 平面FDM .证明如下:如图,取AC 的中点M ,连接CE ,与DF 交于点N ,连接MN ,因为四边形CDEF 为正方形,所以N 为CE 的中点,因为M 是AC 的中点,所以//EA MN ,因为MN ⊆平面FDM ,EA ⊄平面FDM ,所以//EA 平面FDM .【点睛】关键点点睛:本题考查线面垂直与线面平行的判定,若直线与平面内的两条相交直线都垂直,则线面垂直,若平面外一条直线平行平面内一条直线,则线面平行,考查数形结合思想,是中档题.16.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).17.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】(1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥又平面ADE ⊥平面ABCE ,平面ADE平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n = 又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =, 2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,22022220x x y z +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =-- ()12122221211cos ,111113n n n n n n ⋅∴===⋅⨯+-+ ∴平面ADE 与平面BDC 所成锐二面角的余弦值为1111. 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.18.(Ⅰ)证明见解析;(Ⅱ6;(Ⅲ23 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AEn AE n AE n ⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n ⋅=求解.【详解】 (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂=所以CD PAD ⊥面.因为AE PAD ⊂面,所以CD AE ⊥. (Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =,向量(2,2,0)BD =-,(2,0,2)PB =-.设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩, 令y=1,可得n =(1,1,1),所以 6cos ,AE nAE n AE n ⋅==⋅ 所以直线AE 与平面PBD . (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 3AE n d n ⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.19.(1)证明见解析;(2)13. 【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA=,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =,由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C .(2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD .由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB ,所以1C AD ∠是1AC与平面1ABB 所成的角.由11B C =11AB =,11AC =得1116cos 7C AB ∠=,111sin 7C A B ∠=, 所以13CD =,故11139sin C D C AC AD ∠==. 因此,直线1AC 与平面1ABB 所成的角的正弦值是39.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 20.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,12BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE , 则111111322332ABEA A ABE ABE V V S B E AB --==⋅=⨯⨯⨯⨯=,解得3AB =, 则113A B AB ==, 在111Rt A B C △中,11111113tan 3B C C A B A B ∠===,11130A C B ∴∠=, 即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D , 又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.22.(1)证明见解析;(263)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B ,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC, ∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =22×3=62. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=, 解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(I) 证明见解析;2 【分析】(I )取OD 的中点E ,通过证明四边形MNCE 是平行四边形可得MN //EC ,即可证明; (II )可得MDC ∠为异面直线AB 与MD 所成的角(或其补角),连接,AC MC ,求出三角形各边长,即可根据余弦定理求出.【详解】(Ⅰ)证明:取OD 的中点E ,∵M 为OA 的中点 12MEAD ∴, ∵N 为BC 的中点,12NCAD ∴, 12ME NC ∴, ∴四边形MNCE 是平行四边形,∴MN //EC ,∵MN ⊄平面OCD ,EC ⊂平面OCD ,∴MN //平面OC D.(Ⅱ)解://CD ABMDC ∴∠为异面直线AB 与MD 所成的角(或其补角), 连接,AC MC ,1,3AD AB BC ABC π===∠=, 1AC ∴=,M 是OA 的中点,1AM ∴=,OA ⊥平面ABCD ,∴OA ⊥AD ,2MD MC ∴==2cos 4212MDC ∴∠==⨯⨯ 【点睛】 方法点睛:证明线面平行的方法是在平面内找一条直线与已知直线平行,常用的证明线线平行的方法是构造平行四边形或者利用三角形的中位线定理.24.(Ⅰ)证明见解析;(Ⅱ)33 . 【分析】 (Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB .(Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 6022443A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯= 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.25.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B . (2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴, ∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 26.(1)证明见解析;(2)证明见解析.【分析】(1)连结AC 、BD ,交于点O ,连结OE ,通过//OE PA 即可证明;(2)通过PD BC ⊥, CD BC ⊥可证BC ⊥平面PDC ,即得DE BC ⊥,进而通过DE ⊥平面PBC 得DE PB ⊥,结合EF PB ⊥即证.【详解】证明:(1)连结AC 、BD ,交于点O ,连结OE ,底面ABCD 是正方形,∴O 是AC 中点, 点E 是PC 的中点,//OE PA ∴.OE ⊂平面EDB , PA ⊄平面EDB , ∴//PA 平面EDB .(2)PD DC =,点E 是PC 的中点,DE PC ∴⊥. 底面ABCD 是正方形,侧棱PD ⊥底面ABCD , ∴PD BC ⊥, CD BC ⊥,且 PD DC D ⋂=, ∴BC ⊥平面PDC ,∴DE BC ⊥, 又PC BC C ⋂=,∴DE ⊥平面PBC , ∴DE PB ⊥,EF PB ⊥,EF DE E ⋂=,PB ∴⊥平面EFD .【点睛】本题考查线面平行和线面垂直的证明,属于基础题.。

人教A版必修二立体几何中的三类角的求解基础练

人教A版必修二立体几何中的三类角的求解基础练

立体几何中的三类角的求解专基础练习一、 线线角1. 如图,在正方体中,E ,F 分别是的中点,则异面直线AE 与BF所成角的余弦值为___________.1题图 2题图 3题图2. 如图,在长方体 中, 、 分别是棱 、 的中点,若 ,则异面直线 和 所成角为___________.3. 如图,线段AB 的两端在直二面角l αβ--的两个面内,并与这两个面都成30°角,则异面直线AB 与l 所成的角( )A .30°B .45°C .60°D .75°4. 如图,在四面体ABCD 中,E ,F 分别是AC 与BD 的中点,若CD =2AB =4,EF ⊥BA ,则EF 与CD 所成的角为( )A .90°B .45°C .60°D .30°4题图 5题图5. ★已知 , , , 是空间不共面的四个点,且 , ,则直线 与 ( )A .垂直B .平行C .相交D .位置关系不确定6. 将正方形ABCD 沿BD 折成直二面角,M 为CD 的中点,则∠AMD 的大小是( )A .45°B .30°C .60°D .90°NMDCB C 11A 1D 1AFECDB7. 已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为___________.7题图 8题图 10题图8. 如图,在底面为正方形的四棱锥中,侧面底面ABCD ,,,则异面直线PB 与AC 所成的角为___________. 9. 已知直三棱柱中,,,,则异面直线与所成角的余弦值为___________. 10. 如图,在直三棱柱中,,1AC BC ==,则异面直线与AC 所成角的余弦值是______.二、 线面角11. 在正方体 中,直线 与 所成角大小为___________. 12. 已知长方体中,,,则直线和平面所成角的正弦值为___________.13. 在长方体 中, , ,则直线 与平面 所成角的余弦值等于______.14. 如图,在三棱柱 中,各棱长相等,侧棱垂直于底面,点 是侧面 的中心,则 与平面 所成角的大小是___________.14题图 15题图 16题图15. 如图,在三棱锥中,侧面底面BCD ,,,,,直线AC 与底面BCD 所成角的大小为___________. 16. 如图,在矩形ABCD 中,,将沿折起,使得D 折起的位置为,且在平面ABC 的射影恰好落在AB 上,则直线与平面ABC 所成角的正弦值为___________.17. 如图,在三棱锥 中,底面ABC 为等边三角形,,,平面平面ABC ,则S C 与平面ABC 所成角的大小是______ .17题图 18题图 19题图18. 如图,二面角的大小是,线段,AB 与l 所成的角为则AB与平面所成的角的正弦值是______.19. ★在三棱锥 中, 平面 , , ,则直线 与平面所成角的大小为__________.三、 面面角20. 如图,锐二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于已知,,,则锐二面角的平面角的余弦值是___________.20题图 21题图CB21.在三棱锥中,平面,已知,则二面角的平面角是___________.22.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为,则侧面与底面所成的二面角为___________.23.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为___________.24.如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD中,下列说法正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABD25.等腰直角△ABC中,AB=BC=1,M为AC的中点,沿BM把△ABC折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为_____________.26.如图,正三棱柱中,各棱长都相等,则二面角的平面角的正切值为___________.26题图27题图27.三棱锥的两侧面PAB、PBC都是边长为2的正三角形,,则二面角的大小为___________.立体几何中的各类角的求解专练(答案)一、 线线角1. 如图,在正方体中,E ,F 分别是的中点,则异面直线AE 与BF 所成角的余弦值为 DA .B .C .D .2. 如图,在长方体 中, 、 分别是棱 、的中点,若 ,则异面直线 和 所成角为( D )A .B .C .D .【解析】∵M 、N 分别是棱BB 1、B 1C 1的中点,∴MN ∥AD 1, ∵∠CMN =90∘,∴CM ⊥MN ,∴CM ⊥AD 1, 由长方体的几何特征,我们可得CD ⊥AD 1, ∴AD 1⊥平面CDM ,故AD 1⊥DM 即异面直线AD 1与DM 所成的角为90∘3. 线段AB 的两端在直二面角l αβ--的两个面内,并与这两个面都成30°角,则异面直线AB 与l 所成的角是( B )A .30°B .45°C .60°D .75° 【解析】设AB=a ,在平面α内,作AA′⊥l 于A′, 则AA′⊥β,连A′B ,则∠ABA′=30°. 在Rt △AA′B 中,AB=a ,所以AA′=a . 同理作BB′⊥l 于B′,连AB′,则∠BAB′=30°, 所以BB′=a ,AB′=a ,所以A′B′= ′ ′ =a , 过B 作BCA′B′.连接A′C ,则A′CBB′,连接AC ,在Rt △AA′C 中,AC= ′′=a . 由BC ⊥平面AA′C ,所以△ABC 为直角三角形,且AC=BC , 所以∠ABC=45°,为l 与AB 所成角.4. 如图,在四面体ABCD 中,E ,F 分别是AC 与BD 的中点,若CD =2AB =4,EF ⊥BA ,111A则EF 与CD 所成的角为( D )A .90°B .45°C .60°D .30°【解析】设G 为AD 的中点,连接GF GE ,, 则GF GE , 分别为ABD ,三角形ACD 的中位线.则GF AB ,且112GF AB GE CD ==,,且122GE CD ==, 则EF 与CD 所成角的度数等于EF 与GE 所成角的度数 又EF AB GF AB EF GF ⊥∴⊥,, 则GEF 为直角三角形,1290GF GE GFE ==∠=︒,, 则在直角GEF 中,1302sin GEF GEF ∠=∴∠=︒.5. ★已知 , , , 是空间不共面的四个点,且 , ,则直线 与 ( A ).A .垂直B .平行C .相交D .位置关系不确定 【解析】 过点 作 平面 ,垂足为 .∵ ,由三垂线定理可得 .同理 , ,所以 .6. 已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( B )A .75°B .60°C .45°D .30°【解析】如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角. 在正三角形ABC 中,AB =BC =AC则S=3×(3)2=33,V ABC -A 1B 1C 1=S ×PO =,∴PO =.又AO =31,∴tan ∠P AO =0PO A =P AO =60°. 7. 将正方形ABCD 沿BD 折成直二面角,M 为CD 的中点,则∠AMD 的大小是( D )A .45°B .30°C .60°D .90° 8. 如图,在底面为正方形的四棱锥中,侧面底面ABCD ,,,则异面直线PB 与AC 所成的角为 C A .B .C .D .【解析】由题意:底面ABCD 为正方形,平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,,,,.是平行四边形,,所以MCA ∠就是异面直线PB 与AC 所成的角.设,在三角形ACM 中,,,三角形ACM 是等边三角形. 所以MCA ∠等于,即异面直线PB 与AC 所成的角为.9. 已知直三棱柱中,,,,则异面直线与所成角的余弦值为 CA .B .C .D .10. 如图,在直三棱柱中,,1AC BC ==,则异面直线与AC 所成角的余弦值是______.【答案】二、 线面角11. 如图,在正方体 中,直线 与 所成角大小为_____【答案】12.已知长方体中,,,则直线和平面所成角的正弦值为CA.B.C.D.13.在长方体中,,,则直线与平面所成角的余弦值等于______.【答案】14.如图,在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是( A )A.B.C.D.15.如图,在三棱锥中,侧面底面BCD,,,,,直线AC与底面BCD所成角的大小为AA.B.C.D.【解析】解:面底面BCD,,取DB中点O,则面BCD,就是直线AC与底面BCD所成角.,,,,在中,,在中,.直线AC与底面BCD所成角的大小为.16.如图,在矩形ABCD中,,将沿折起,使得D折起的位置为,且在平面ABC的射影恰好落在AB上,则直线与平面ABC所成角的正弦值为BA.B.C.D.【解析】设在平面ABC的射影为O,则又因为,所以平面,,即,,,,即,在直角三角形中由等面积可得:,,直线与平面ABC所成角的正弦值为.17.如图,在三棱锥中,底面ABC为等边三角形,,,平面平面ABC,则S C与平面ABC所成角的大小是______ .【答案】【解析】取AB的中点O,连接SO,CO,底面ABC为等边三角形,,,,面平面ABC,平面ABC,即是SC与平面ABC所成的角,,,,,,则直角三角形SOC中,,则,故答案为:.18.如图,二面角的大小是,线段,AB与l所成的角为则AB与平面所成的角的正弦值是______.【答案】【解析】过点A作平面的垂线,垂足为C,在内过C作l的垂线垂足为D∠为二面角的平面角,为连接AD,有三垂线定理可知AD BD⊥,故ADC又由已知,∠为AB与平面所成的角连接CB,则ABC设,则,;故答案为.19.★在三棱锥中,平面,,,则直线与平面所成角的大小为__________.【答案】【解析】作AD⊥PC,连接BD,∵P A⊥平面ABC,BC⊂平面ABC,∴P A⊥BC,∵AC⊥BC,P A∩AC=A,∴BC⊥平面P AC,∵AD⊂平面P AC,∴BC⊥AD,∵AD⊥PC,BC∩PC=C,∴AD⊥平面PBC,∴∠ABD为AB与平面PBC所成角,在直角△P AC中,由等面积可得AD==,在直角△ADB中,sin∠ABD===,∠ABD=∴AB与平面PBC所成的角为,故答案为:.三、面面角20.如图,锐二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于已知,,,则锐二面角的平面角的余弦值是BA.B.C.D.【解析】过B点作,且.,.,,是二面角的平面角,且面DBE,,.,,,.21.在三棱锥中,平面,已知,则二面角的平面角是( D )A.B.C.D.【解析】因为平面⊂平面,∠即为二面角的平面角,又,所以,故为直角三角形,∠,二面角的平面角是.22.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为,则侧面与底面所成的二面角为(C)A.30°B.45°C.60°D.90°23.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为(C)A.30°B.60°C.90°D.120°【解析】如图,由A ′B =BC =1,∠A ′BC =90°知A ′C .∵M 为A ′C 的中点,∴MC =AM =2,且CM ⊥BM ,AM ⊥BM , ∴∠CMA 为二面角C -BM -A 的平面角.∵AC =1,MC =MA =2,∴MC 2+MA 2=AC 2,∴∠CMA =90°. 24. 如图所示,四边形ABCD 中,AD ∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD,构成四面体A-BCD,则在四面体A-BCD 中,下列说法正确的是( D )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDCC .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABD【解析】因为,,45,90AD BC AD AB BCD BAD =∠=︒∠=︒,所以45ABD ADB ∠=∠=︒,所以90BDC ∠=︒,所以BD CD ⊥,又平面ABD ⊥平面BCD ,平面ABD ∩平面BCD BD =, CD ⊂平面BCD ,所以CD ⊥平面ABD ,又CD ⊂平面ADC ,所以平面ADC ⊥平面ABD .25. 等腰直角△ABC 中,AB =BC =1,M 为AC 的中点,沿BM 把△ABC 折成二面角,折后A与C 的距离为1,则二面角C —BM —A 的大小为_____________.【答案】【解析】结合题意可知 ,∠∠ ∠ ∠所以 ,而发现所以∠ ,结合二面角的找法:如果两平面内两直线分别垂直两平面交线,则该两直线的夹角即为所求二面角,故∠为所求的二面角,为26.如图,正三棱柱中,各棱长都相等,则二面角的平面角的正切值为DA.B.C.1 D.27.三棱锥的两侧面PAB、PBC都是边长为2的正三角形,,则二面角的大小为AA.B.C.D.【解析】取PB中点M,连接AM,CM,∆PAB、∆PBC都是边长为2的正三角形,,,则∠AMC为二面角的平面角.在中,由,可得,同理可得,在中,由,得.二面角的大小为.。

几何法求线线角,线面角,二面角的10类题型(教师版)

几何法求线线角,线面角,二面角的10类题型(教师版)

几何法求线线角、线面角、二面角常考题型题型一平行四边形平移法求线线角 4题型二中位线平移法求线线角 6题型三补形平移法求线线角 8题型四作垂线法求线面角 10题型五等体积法求线面角 13题型六定义法求二面角 15题型七三垂线法求二面角 17题型八垂面法求二面角 19题型九补棱法求二面角 22题型十射影面积法求二面角 25知识梳理一、线线角的定义与求解线线角主要是求异面直线所成角。

1、线线角的定义:①定义:设a,b是两条异面直线,经过空间任一点O作直线a ⎳a,b ⎳b,把a 与b 所成的锐角或直角叫做异面直线a,b所成的角(或夹角)②范围:0,π22、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.3、可通过多种方法平移产生,主要有三种方法:①平行四边形平移法;②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).二、线面角的定义与求解1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角,取值范围:[0°,90°]2、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B为斜足;找线在面外的一点A,过点A向平面α做垂线,确定垂足O;(2)连结斜足与垂足为斜线AB在面α上的投影;投影BO与斜线AB之间的夹角为线面角;(3)把投影BO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

3、公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

公式为:sinθ=h,其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长。

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

专题 立体几何之所成角-(人教A版2019必修第二册) (教师版)

立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。

人教版数学-备课资料从一道高考试题解析看线面所成的角的

人教版数学-备课资料从一道高考试题解析看线面所成的角的

从一道高考试题解析看直线与平面所成的角的求解方法直线与平面所成的角是空间角(线线角、线面角与面面角)的一个重要组成部分,在高考中时常涉及,一直为高考考查的重点,为此笔者就2007年全国卷Ⅰ中的立体几何解答题进行解析,谈一谈求解直线与平面所成角的几种方法:(全国卷)如图1,四棱锥SABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD ,若45ABC ∠=︒,2AB =,BC =SA SB ==(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD与平面SAB 所成角的大小.分析:研究立体几何问题有几何法与向量法两种角度,下面重点在于对问题(Ⅱ)进行分析,探讨直线与平面所成角问题,为了解题方便,首先将问题(Ⅰ)求解的两种角度展示出来,以备求解问题(Ⅱ)作以铺垫。

(Ⅰ)解法一(几何法):解析:如图2,作SO BC ⊥,垂足为O ,连结AO , 由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB ==AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,AO OB OC SO ===由三垂线定理,得SA BC ⊥. 解法二(向量法):解析:如图3,作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD . 因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO 如图,以O 为坐标原点,OA 为x 轴正向, 建立直角坐标系O xyz -,0)A ,,(0B ,(0C -,, (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)解法一(定义法):首先根据题意, 作出平面的垂线,找到斜线在平面内的射影, 通过解三角形,得到所求的角即可。

解析:如图4,取AB 的中点E ,连结,OE SE ,DBCAS O DBCS由(Ⅰ)可得OE AB ⊥,1OE =则SE AB ⊥,SE =AB ⊥平面SOE ,作OG SE ⊥,OG AB ⊥,则OG ⊥平面SAB ,2SO OE OG SE ⋅==, 连结DO ,延长DO 交AB 的延长线于点T ,则平面SAB平面GDT GT =,作//DH OG ,则DH ⊥平面SAB ,连结SH ,则DSH ∠为SD 与平面SAB 所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等体积法求线面角(人教A版)
一、单选题(共6道,每道16分)
1.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形,若P为底面A1B1C1的中心,则直线PA与平面ABC所成角的大小为( )
A.60°
B.75°
C.45°
D.30°
答案:A
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
2.如图,在正四棱锥P-ABCD中,已知PA=AB=,若M为PA的中点,则直线BM与平面PAD所成角的正弦值是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
3.如图,在三棱锥中,已知平面,,,则
与平面所成角的正弦值是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
4.如图,在三棱锥S-ABC中,底面ABC是边长为2的等边三角形,SA⊥底面ABC,SA=3,则直线AB与平面SBC所成角的正弦值为( )
A. B. C. D.
答案:D
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
5.如图,已知PA=PB=PC,且PA,PB,PC两两垂直,则PA与平面ABC所成角的正弦值为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
6.如图,已知P是正四面体ABCD的棱AC的中点,则直线PD与平面BCD所成角的正弦值为( )
A. B. C. D.
答案:A
解题思路:
试题难度:三颗星知识点:直线与平面所成的角
第11页共11页。

相关文档
最新文档