利用轴对称求最短距离问题(最新整理)
(完整版)利用轴对称求最短距离问题
利用轴对称求最短距离问题基本题引入:如图(1),要在公路道a 上修建一个加油站,有A,B 两人要去加油站加BN A No因为直线a 是A A ’的对称轴,点 M,N 在a 上,所以 AM= A M,AN= A ’ N 。
••• AM+BM= A M+BM= A B在^ A BN 中,•/ A B< A N+BN ••• AM+B < AN+BN即 AM +B M!小。
点评:经过复习学生恍然大悟、 面露微笑,不一会不少学生就利用轴对称知识将上一道 中考题解决了。
思路如下:②••• BC = 9 (定值),•••△ PBC 的周长最小,就是 PB+ PC 最小.由 题意可知,点 C 关于直线DE 的对称点是点 A ,显然当P 、A B 三点共线时PB+PA 最小.此 时 DP = DE PB+PA = AB.由/ ADM / FAE / DFA=/ ACB= 90°,得^ DAF^A ABC. EF// BC115 9 得 AE= BE= — AB=丄,EF= - . •• AF: BO AD : AB,I 卩 6 : 9 = AD : 15. •• AD= 10. Rt △ADF2229 25中,AD= 10, AF = 6,.・.DF = 8. •• DE = DF + FE = 8+ —=——.•••当 使AM 与BM 的和最小。
设 A M 与BM 的和最小。
在连接A B 的线中,线段AB 最短。
因此,线段 A B 与直线a 的交点C 的位置即为所求。
如图3,为了证明点C 的位置即为所求,我们不妨在直线a 上另外任取一点 N,连接AN25X = —— 时,△ PBC 的周长遵循学生认知规律,合理油。
加油站修在公路道的什么地方,可使两人到加油站的总路程最短?A '是A 的对称点,本问题也就是要使 M2 2最小,y值略。
数学新课程标准告诉我们:教师要充分关注学生的学习过程,组织教学内容,建立科学的训练系统。
利用轴对称求距离和最小问题专题练习 (无答案)
利用轴对称求距离和最小问题专题练习基础知识:直线外一点和直线上各点的所连线中, 最短.简称: 最短。
平面上连接两点的所有线中, 最短. 简称:两点之间, 最短。
知识探索:一、关于 一 条变化线段最短问题思路指导:此类问题一般应用垂线段最短来解决 例 1.如图1,一次函数122y x =-交两坐标轴与A ,B 两点,M 点坐标为(445-,0),N 为直线AB 上的一个动点,当MN 取最小值时MN= ,此时N 点坐标为 . 练习:1. 如图2,矩形ABCD 中AB=6,tan ∠ADB=34,E 为对角线BD 上一个动点,则AE 的最小值为 . 2. 如图3,菱形ABCD 中,AB=10,∠B=45°,M 为BC 上一个动点,则AM 的最小值为 . 3. 如图4,⊙O 直径为10,弦AB 长为8,M 为AB 上一点,则OM 的最小值为 .4. 如图5,在直角坐标系中,点C 坐标为(-4,-3),⊙C 半径为1,P 为x 轴上一个动点,PQ 切⊙C 于Q , 则当PQ 最小时,P 点坐标为 .5. 如图6,在平面直角坐标系中,△ABC 三个顶点的坐标分别为()6,0A -,()6,0B ,()0,43C ,延长AC 到点D,使CD=12AC,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.(要求:简述确定G 点位置的方法,但不要求证明)6.已知MN为一条东西走向的公路,在公路的一侧是平坦的草原,大伟驾驶汽车从A处出发到位于点A东北方向(北偏东45°)的B处,B距离公路的距离BC为10km,已知汽车在公路上的行驶速度为40km/h,在草原上的速度为20km/h,大伟规划了两种方案:方案一:直接沿线段AB行驶从A到B方案二:现沿公路行驶至C处,再沿CB从C到B(1)请你计算哪种方案用时较少?(2)同行的王教授提出,如果沿公路先行驶一段距离,再沿直线方向到B可以用时较少;Ⅰ. 汽车先沿公路行驶5km到D,再沿DB到B,求所用时间.Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。
轴对称结合两点之间线段最短求最短距离问题
轴对称结合两点之间线段最短求最短距离问题轴对称结合两点之间线段最短求最短距离问题
1.已知点A 、B 为直线m 同侧的两个点,请在直线m 上找一点C ,使得AM+BM 有最小值。
m
B
A
2.已知边长为4的正三角形ABC 上一点E ,AE=1,AD ⊥BC 于D,请在AD 上找一点N ,使得EN+BN 有最小值,并求出最小值。
有最小值,并求出最小值。
E
D C
B A
3.已知边长为4的正方形ABCD 上一点E ,AE=1,请在对角线AC 上找一点N ,使得EN+BN 有最小值,并求出最小值。
有最小值,并求出最小值。
E D
C B A
4.已知D 为∠BAC 内一点,请在射线AC 、AB 上分别找到一点M 、N ,使得△DMN 的周长最小。
最小。
D
C
B A
四个问题均为先作点关于直线的对称点,再找最短路线,利用了轴对称三角形全等的知识来
解释,四个问题结合,可以加深学生对本知识点的掌握,其中4题也可以给∠BAC一个特
两边的距离,进而求出最短周长。
定角度(30°等),并给出点D到∠BAC两边的距离,进而求出最短周长。
13.4轴对称之最短路径问题人教版2024—2025学年八年级上册
13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。
用轴对称求最短距离
用轴对称求最短距离在研究几条线段长之和(差)的最小或最大值时,常常需要把这些线段集中到一起,然后将其与某条长度固定的线段进行比较。
把其中的部分特殊点进行恰当的轴对称变换,是实现这一目标的有效手段。
现举例说明,供同学们参考。
一、为了在已知直线上寻找与同侧两点距离之和最小的点,可通过轴对称变换,把同侧两点转化为异侧两点,再利用“三角形任意两边之和大于第三边”来确定例1. 如图1,牧童在A处放牧,其家在B处,A、B到河岸l的距离分别为AC、BD,,且A处到河岸CD中点的距离为500m。
(1)如牧童从A处将马牵到河边饮水后再回家,试问:在何处饮水,所走路程最短?(2)最短的路程是多少?解析:这个问题可简述为“已知直线CD和直线CD同侧的两点A,B,在直线CD 上求一点M,使最小。
”(1)如图2,先作点A关于直线CD的对称点,再连接交CD于点M,则点M为所求的点。
证明如下:在CD上任取一点,连接、、、AM。
点A、关于直线CD对称,点M、在CD上,。
最小。
(2)由(1)知,,。
故M为CD中点,且最短路程为。
二、在涉及折线段长的最值问题的,一般是通过多次轴对称变换,利用两点之间线段最短求最值。
例2. 如图3,牧童家在A处。
现在牧童要先带马到河边(图中用直线a表示)饮水,再到草地(图中用直线b表示)吃草,然后回家。
问:牧童让马在何处饮水、吃草,所走的总路程最短?解析:设点B、点C分别是马饮水、吃草处,本题即是要求线段长之和AB+BC+CA 的最小值。
我们通常需要把它和固定线段相比较。
可通过轴对称变换,把这些线段放在同一直线上,利用两点之间线段最短来解决。
如图4所示,分别作点A关于直线a的对称点A”,点A关于直线b的对称点A””。
连接A”A””。
A”A””交直线a于点B,交直线b于点C,则AB+BC+CA=A”B+BC+CA””=A”A””。
而对其他地点B”、C”,也都可以同样转化为A”B”+B”C”+C”A””,即为A”、A””两点间的折线段的长。
利用轴对称解决“两点一线”型最短距离问题
利用轴对称解决“两点一线”型最短距离问题模型:“两点一线”模型条件:如图,A、B是直线l同旁的两个定点.+的值最小.问题:在直线l上确定一点P,使PA PB方法:作点A关于直线l的对称点A',连结A B'交l于点P,+=的值最小.则PA PB A B'模型应用:一. 两点一线间的对称二.三角形中的对称1.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边上的中点,E是AB边上的一动点,则EC+ED的最小值是__2.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是.三.四边形中的对称1.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的动点,则DN+MN的最小值为多少?2.如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED交AC 于P ,则PB PE +的最小值是___________;3.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形 ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .B .C .3 D四.圆中的对称1.如图,已知点A 是⊙O 上的一个六等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点,若⊙O 的半径长为1,求AP +BP 的最小值.2.如图,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;五.立体图形中的对称如图是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A 处,它想吃到盒内表面对侧中点B 处的食物,已知盒高h =10cm ,底面圆的周长为32cm ,A 距离下底面3cm .请你帮小蚂蚁算一算,为了吃到食物,它爬行的最短路程为 cm .课堂练习:1.如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P 在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是.2.如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E 在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是.3.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为.的正方形ABCD中,点解答题:1.如图,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值.2.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).(1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标.中考题综合演练:1.(1)观察发现:如(a )图,若点A ,B 在直线l 同侧,在直线l 上找一点P ,使AP +BP 的值最小.做法如下:作点B 关于直线l 的对称点B ',连接AB ',与直线l 的交点就是所求的点P .再如(b )图,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小.做法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求的点P ,故BP +PE 的最小值为 . (2)实践运用:如(c )图,已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ^的中点,在直径CD 上找一点P ,使BP +AP 的值最小,并求BP +AP 的最小值. (3)拓展延伸:如(d )图,在四边形ABCD 的对角线AC 上找一点P ,使∠APB =∠APD .保留作图痕迹,不必写出作法.A BP R Q 图32.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;3 时,求正方形的边长.⑶当AM+BM+CM的最小值为1。
初中数学专题复习(轴对称-最短距离问题)
初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。
利用轴对称求最短距离精修订
分析:由题意知:首先找点D或者点E关于AC所在直线的对称点。由正方形的轴对称性不难发现:点B即是点D关于直线AC的对称点,则连接BE与线段AC的交点即为P点。那么PD+PE的最小值实际上就是线段BE的长度,BE=2。
(2)、以正方形为媒介的最短距离问题:
如下图,正方形ABCD边长为2,△ABE为等边三角形,且点E在正方形ABCD内部,在对角线AC上找一点P,使PD+PE最小,则这个最小值为多少?
(3)、以圆为媒介的最短距离问题:
如下图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,
∠AOB=60°,P是OB上一动点,求PA+PC的最小值
(4)、以二次函数为媒介的最短距离:
如下图,抛物线y=x^2+2x-3与x轴交与A、B两点,与y轴交与点C,对称轴上存在一点P,使△PBC周长最小,求P点坐标。
三、巩固加深:
(5)、以三角形为媒介的最短距离问题:
如下图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC的角平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少
分析:由AD是∠BAC的角平分线得,点N关于直线AD对称的点N′一定在线段AC上,则直线AD是线段NN′的垂直平分线,则MN=MN′,则求BM+MN的最小值就是求BM+MN′的最小值。易知点B、M、N′三点共线时BM+MN′最小,根据“点到直线上点的距离中垂线段最短”得:过点B作AC的垂线,垂足为N′′,则BN′′的长度就是BM+MN′的最小值,也就是BM+MN的最小值。由△ABN′′为等腰直角三角形,AB=4立得。
专题2.5 轴对称中最短路径问题
【教学目标】1【教学重难点】12【知识亮解】知识点在直线l上找一点P,使得PA+PB的和最小。
点P在锐角∠AOB的内部,在OA边上找一点C,在OB边上找一点D,,使得PC+PD+CD的和最小。
直线m∥n,在m,n上分别求点M、N,使MN⊥m,MN⊥n,且AM+MN+BN的和最小。
A.750米B.1000米【典例2】如图所示,45MON Ð=°,点P 为MON Ð内一点,点P 关于OM ON 、对称的对称点分别为点12P P 、,连接11212OP OPPP PP PP 、、、、,12PP 分别与OM ON 、交于点A B 、,连接AP BP 、,则APB Ð的度数为( )A .45°B .90°C .135°D .150°【典例3】如图,在锐角三角形AB C 中,AB =8,△ABC 的面积为40,BD 平分∠ABC ,若M 、N 分别是BD 、BC 上的动点,则CM +MN 的最小值为 _____.【典例4】如图,有一条笔直的河流,两岸EF ∥GH ,在河岸EF 的同侧有一个管理处A 和物资仓库B ,管理人员每天需要从管理处A 出发,先到物资仓库B 领取物资,接着到达河岸EF 上的C 点,乘坐停放在C 点的快艇,把物资送到对岸GH 的对接点D ,然后调头返回河岸EF 上的C 点,再返回管理房A .请你设计一条线路,使得管理员每天经过的路程最短.若用作图的方式来确定点C 和点D ,则确定点C 和点D 的步骤是:_____________.【典例5】如图,在锐角三角形AB C中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N 分别是BD和BC上的动点,则CM+MN的最小值是_____.【典例6】如图,点P是∠AOB内部一定点(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连OP1、OP2,则∠P1OP2=___.(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=___(用α的代数式表示).【亮点训练】1、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2、如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?3、如图,等腰△ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D 为BC边上的中点,M为线段EF上一动点,则△BDM的周长最小值为________ cm.4、如图,四边形ABC D中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为()A.130° B.120° C.110° D.100°6、如图,是等边三角形,长最小时,的度数是______.如图,在△AB C 中,已知ABC D AD FDE ÐA .(BM 垂直于a )B .(AM 不平行BN )C .(AN 垂直于b )D .(AM 平行BN )9、五羊大学建立分校,校本部与分校隔着两条平行的小河,如图12l l ∥表示小河甲,34l l ∥表示小河乙,A 为校本部大门,B 为分校大门。
轴对称中的最短路径问题
分析:此题的出题背景就是角。
此题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.
分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,那么PM+MN+NP最短.
例4.如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′〔桥宽不计〕,设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,恰当地架桥可使ADD′E′EB的路程最短,这个最短路程是多少米?
分析:
这就是“造桥选址问题〞
解:作AF⊥CD,且AF=河宽,
作BG⊥CE,且BG=河宽,
连接GF,与河岸相交于E′、D′.
作DD′、EE′即为桥.
证明:由作图法可知,AF∥DD′,AF=DD′,
那么四边形AFD′D为平行四边形,
于是AD=FD′,
同理,BE=GE′,
由两点之间线段最短可知,GF最小;
即当桥建于如下图位置时,ADD′E′EB最短.
例5.如图,当四边形PABN的周长最小时,a= 。
分析:
此题中的PN就相当于“造桥选址问题〞中的桥,其思路与上题是一样的。
通过构造平行四边形和轴对称将折线转之和最短转化为两点之间线段最短.
至于“抛物线〞“折〞转“直〞,再利用“两点之间线段最短〞这一性质来解决。
利用轴对称求最短距离
利用轴对称求最短距离轴对称知识在近来的中考题中,经常出现,笔者浏览最近几年各地的中考试题,发现各地中考试题除考察轴对称图形的基本知识和性质,还考察了利用轴对称知识解决最短距离问题,这类问题在各地中考试题中,屡见不鲜,如何利用轴对称的性质解决最短距离问题呢?根据本人多年从事初三数学教学工作的一些体会。
概括一些一些常见的题型。
一、基础知识如图直线l 同侧有两点A 、B ,在直线l 上找点P ,使得PA+PB 最短,并简要说明理由。
解:作点关于直线l 的对称点A ′,连A ′B 交直线l 于点P,则点P 即为所求,此时PA+PB=PA ′+PB= A ′B 。
A 1二、典型例题:A 组(1)以菱形为载体的最短距离问题:如图所示,菱形ABCD 中, ∠ BAD=60°,AB=4,M 是AB 的中点,P 是对角线AC 上的一个动点,则PM+PB 的最小值是_________。
解:∵菱形ABCD 是以AC 为对称轴的轴对称图形。
∴点B 关于直线AC 的对称点为点D,ABLP连接DM 交AC 于点P,则PM+PB 的最小值即为线段DM,此时DM=32 ∴PM+PM 的最小值为32.(2)以矩形为载体求最短距离问题在矩形ABCD 中,AB=2,AD=4,E 为为边CD 中点。
P 为边BC 上的任一点,求PA+EP 的最小值。
解:作点A 关于BC 的对称点A ′,连A ′E 交BC 于点P,则点P 为所求,此时PA+PE 的最小值即为A ′E,过点E ,作EF ⊥AB , A ′E=2243 =5 ∴PA+PE 的最小值为5。
MA A 1ED如图所示,正方形ABCD 的边长为2,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上找一点P,使PD+PE 最小,则这个最小值为_________.解:∵正方形ABCD 是以AC 为对称轴的轴对称图形。
∴点B 关于点D 关于AC 对称 ∵BE 即为PD+PE 的最小值 ∴PD+PE 的最小值为2(4) 以圆形为载体的最短距离问题:如图,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB, ∠ABC=60°,P 是OB 上一动点,求PA+PC 的最小值。
轴对称解决实际问题(最短路程)(超经典、超全)
轴对称解决实际问题(最短路程问题)(1)利用轴对称解决几何极值问题仅仅是轴对称应用的一个方面,比较典型的是平面镜成像、光的反射等问题也经常用到轴对称。
(2)解决实际问题的关键是把这个实际问题抽象或转化为一个数学模型,然后通过对这个数学模型的研究来解决这个实际问题。
(3)在证明最大、最小这类问题时,常常采用任意另选一个,通过与要求证的那个“最大”或“最小”的量进行比较来证明。
问题1(分析1)如何用数学的方法解决这个问题?把这条河抽象为一条直线,而把将军的出发地(山脚)和宿营地分别看作直线同侧的两个点,建立几何模型,(如图①)把实际问题转换成“在已知直线上找一点,使它到直线同侧的两点的距离之和最小”的数学问题。
(分析2)连结AB ,作AB 的垂直平分线交直线a 于P 点,根据线段的垂直平分线的性质定理有PA =PB ,此时PA +PB 是否最短?(如图②) (用几何画板的度量及计算功能否定这种作法)(分析3)作A 点关于直线a 的对称点A ′连结P A ′,由轴对称的性质知PA =PA ′,那么PA +PB =PA ′+PB ,P 点在何处PA ′+PB 最短?(如图③)由一名学生上讲台拖动P 点,显然当B 、P 、A ′三点共线时PA ′+PB 最短。
探索得出作法:(如图④)(1)作A 点关于直线a 的对称点A ′. (2)连结BA ′,交直线a 于P 点. P 点即为所求。
如何证明? (分析4)在直线a 上另取一点P ′,连结PA 、A P ′、B P ′、 P ′A ′,(如图⑤)要证PA +PB 最小,由任意性, 只要证 :PA +PB <A P ′+B P ′, 由对称性可知:PA =PA ′, P ′A =P ′A ′只要证:PA ′+PB <P ′A ′+B P ′只要证: A ′B <P ′A ′+B P ′而△BA ′P ′中,有三角形两边之和大于第三边,问题得证。
a · · B A 图① a · · B A 图② P a · · B A 图③ A ′ · · P a · · B A 图④ A ′ · P a · ·B A 图⑤A ′ · P P ′问题2、如图,已知牧马营地在P 处,牧童每天要赶着马群先到河边饮水,再到草地吃草,然后回到营地,试设计出最短的放牧路线。
中考数学 轴对称及路径最短问题
轴对称及最短路径问题一、知识讲解1.轴对称、轴对称图形(1)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴。
对称轴一定为直线。
(2)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称。
两个图形中的对应点(即两个图形重合时互相重合的点)叫对称点。
2.轴对称图像的性质(1)对应线段相等,对应角相等;对称点的连线被对称轴垂直平分。
轴对称图形变换的特征是不改变图形的形状和大小,只改变图形的位置。
新旧图像具有对称性。
(2)轴对称的两个图形,它们对应线段或延长线相交,交点在对称轴上。
3.等腰三角形(1)性质:①两底角相等。
②顶角的角平分线、底边上的中线、底边上的高互相重合。
(2)判定:①有两条边相等的三角形是等腰三角形(定义);②有两个角相等的三角形是等腰三角形。
4.等边三角形(1)性质:①等边三角形各边都相等;②等边三角形各角都相等,并且都等于60°。
(2)判定:①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
5.特殊直角三角形(补充)(1)含30°的直角三角形中,30°角所对的边等于斜边一半,且三边长度比为1:2;(2)等腰直角三角形各边长比为1:1。
二、要点补充轴对称是关于某一直线对称的图形,要注意图形中隐藏的条件,要将分散的条件集中起来达到解题的目的。
本讲的学习要特别注意分类讨论思想及转化思想的运用。
要点1在平面直角坐标系中,若已知A、B两点的坐标(或位置)要求第三个点C,使得A、B、C三点构成等腰三角形的方法如下:①连接AB,以点A(或点B)为圆心,线段AB的长度为半径作圆,圆周上除点B(或点A)的所有的点,都可以与点A、点B构成等腰三角形。
②连接AB,作线段AB的垂直平分线l,该垂直平分线l上除该线与线段AB交点外的所有的点都能与点A、点B构成等腰三角形。
(完整版)利用轴对称求最短距离
利用轴对称求最短距离一、问题引入:1、以以下列图,在直线异侧各有点 A、 B, 在直线上找一点 p,使PA+PB最小。
2、以以下列图,在直线同侧各有点 A、 B, 在直线上找一点 p,使PA+PB最小。
解析:依照“两点之间线段最短〞,可知:连接 AB,与直线的交点即为 P 点 . 此根本种类为:一线〔直线〕两定点〔点 A、 B〕。
解析:作点 A 关于直线的对称点 A′,连接 AA′,那么直线就是线段 AA′的垂直均分线,依照“垂直均分线上一点到线段两端点的距离相等〞可得,直线上任一点到点 A 的距离都等于到点A′的距离。
事实上,这个问题就可以转变为:在直线异侧各有点A′、 B, 在直线上找一点 p,使 PA′ +PB 最小。
即:一线两定点的问题。
由〔 1〕得,连接 BA′,与直线的交点即为点P。
解析:由题意知:第一找二、典型例题:点 B 也许点 M关于 AC所〔1〕、以菱形为媒介的最短距离问题:在直线的对称点。
由菱形以以下列图,菱形 ABCD中,∠ BAD=60°, AB=4,点 M是 AB中点,的轴对称性不难发现:点P 是对角线 AC上的一个动点,那么 PM+PB的最小值是多少?D即是点 B 关于直线 AC的对称点,那么连接DM 与线段 AC 的交点即为P 点。
那么 PM+PB的最小值实质上就是线段 DM的长度解析:由题意知:第一找〔2〕、以正方形为媒介的最短距离问题:点 D 也许点 E 关于 AC 所以以下列图,正方形 ABCD 边长为 2,△ ABE为等边三角形,且点 E 在直线的对称点。
由正方在正方形ABCD内部,在对角线 AC上找一点 P,使 PD+PE最小,形的轴对称性不难发现:那么这个最小值为多少?点 B 即是点 D关于直线 AC的对称点,那么连接BE 与线段 AC的交点即为P 点。
那么 PD+PE的最小值实质上就是线段BE 的长度,BE=2。
〔3〕、以圆为媒介的最短距离问题:以以下列图,⊙ O的半径为2,点 A、 B、 C 在⊙ O上,OA⊥ OB,∠AOB=60°, P 是 OB上一动点,求PA+PC的最小值解析:由题意知:第一找点 A也许点 C关于 OB所在直线的对称点。
(完整版)利用轴对称求最短距离[1]
④ 如图所示,在/ AOB 的边AO , BO 上分别找一点 E , F 使得DE + EF + CF 最小.分别 过点C , D 作关于AO , BO 的对称点 DC ',连接D C ',并与AO , BO 分别交于点 E , F , 此时DE + EF + CF 最小,则点E , F 即为所求.最短路径问题 和最小【方法说明】 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离 的和最小(将军饮马问题)•如图所示,在直线 直线AB 与直线I 的交点时,PA + PB 最小. l 上找一点 P 使得PA + PB 最小.当点P 为 B 4P , B' 【方法归纳】 ①如图所示,在直线I 上找一点B 使得线段AB AB 即为所求.最小•过点A 作AB 丄I ,垂足为B ,则线段 ②如图所示,在直线 BB 与直线I 交于点 I 上找一点P 使得PA + PB 最小.过点B 作关于直线I 的对称点B P ,此时PA + PB 最小,则点P 即为所求. B a p. B'③如图所示,在/ AOB 的边AO , BO 上分别找一点 C , D 使得PC + CD + PD 最小.过点P 分别作关于 AO , BO 的对称点E , F ,连接EF ,并与AO , BO 分别交于点 C , D ,此时PC + CD + PD 最小,则点C , D 即为所求.BA D' A⑤如图所示,长度不变的线段CD在直线I上运动,在直线I上找到使得AC + BD最小的CD的位置.分别过点A, D作AA 7/ CD , DA '// AC, AA '与DA '交于点A',再作点B关于直线I的对称点B ',连接A'B与直线I交于点D 7,此时点D'即为所求.0 Ir f f-A'D D'B'1⑥如图所示,在平面直角坐标系中,点P为抛物线(y= -x2) 上的一点,点 A (0, 1 )在y 轴正半轴.点P在什么位置时PA+ PB最小?过点B作直线I: y=- 1的垂线段BH BH ' 与抛物线交于点P',此时PA+ PB最小,则点P即为所求.1.(13广东)已知二次函数y= x2—2mx + m2- 1.(1)当二次函数的图象经过坐标原点0( 0, 0)时,求二次函数的解析式;(2)如图,当m = 2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC + PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.A D' A【思路点拨】(1)由二次函数的图象经过坐标原点0(0, 0),直接代入求出m的值即可;(2)把m= 2代入求出二次函数解析式,令x= 0,求出y的值,得出点C的坐标;利用配方法或顶点坐标公式求出顶点坐标即可;(3)根据当P、C、D共线时根据“两点之间,线段最短”得出PC + PD最短,求出CD 的直线解析式,令y= 0,求出x的值,即可得出P点的坐标.【解题过程】解:(1)•••二次函数的图象经过坐标原点O (0,0),•••代入二次函数y= x2—2mx + m2—1,得出:m2— 1 = 0,解得:m=± 1,•••二次函数的解析式为:y= x2—2x或y= x2+ 2x;(2)• m= 2,•••二次函数y= x2—2mx + m2—1 得:y = x2—4x + 3 =(x—2)2—1,•抛物线的顶点为:D (2,—1),当x= 0 时,y= 3,「. C 点坐标为:(0,3),• C (0,3)、D (2,—1);(3)当P、C、D共线时PC+ PD最短,【方法一】• C (0,3)、D (2,—1),设直线CD的解析式为y= kx + 3,代入得:2k+ 3 =—1,• k=—2,「.y=—2x + 3,当y= 0时,一2x+ 3= 0,解得x= 3,• PC + PD最短时,P点的坐标为:P (|,0).【方法二】过点D作DE丄y轴于点E,•PO〃DE,• DO=CO,• P0=4 解得:PO=2,•PC + PD最短时,P点的坐标为:P (2,0).12. (11荷泽)如图,抛物线 y = ?x 2+ bx -2与x 轴交于A , B 两点,与y 轴交于C 点,且A (-1, 0).(1)求抛物线的解析式及顶点 D 的坐标;(2) 判断△ ABC 的形状,证明你的结论;(3) 点M ( m , 0)是x 轴上的一个动点,当 MC + MD 的值最小时,求 m 的值.【思路点拨】(1) 把点A 的坐标代入求出b 的值,即可得出抛物线的解析式,通过配方法即可求出顶点 D 的坐标;(2)观察发现厶ABC 是直角三角形,可以通过勾股定理的逆定理证明.由抛物线的解析式,分别求出点B , C 的坐标,再得出AB , AC , BC 的长度,易得AC 2+ BC 2= AB 2,得出△ ABC 是直角三角形;(3) 作出点C 关于x 轴的对称点C',连接C'D 交x 轴于点M ,根据“两点之间,线段最 短”可知MC + MD 的值最小.求出直线 C'D 的解析式,即可得出点 M 的坐标,进而求出 m 的值. 【解题过程】解:(1 )• ••点A (- 1, 0)在抛物线 y =护+ bx —2 上,1X 2(—1 ) 2+ b X(— 1)— 2=0,解得 . 3b 一 3,-25) 抛物线的解析式为1 2 y=2x2-3 1/3、-?x—2=(x—p2 25—8 ,•顶点D的坐标为 (j,(2) 当x= 0 时y=—2,. • C (0,—2), OC = 2 .当y= 0 时,|x2—|x—2= 0,• •• X1=—1 , X2=4, • B(4, 0), • OA = 1 , OB = 4,AB = 5.•/ AB 2= 25, AC 2 = 0A 2+ 0C 2= 5, BC 2= 0C 2+ OB 2= 20,「. AC 2 + BC 2 = AB 2. •••△ ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C',贝U C ' ( 0, 2), 0C = 2,连接C 'D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知, MC + MD 的值最小.【方法一】x + 2.24• m =41.41 24.•.当 y = 0 时,—祛 + 2= 0, x = 41 【方法二】 设抛物线的对称轴交 x 轴于点E .•/ ED // y 轴,•/ OC 'M = / EDM ,/ C'OM =Z .OM = OCJ • EM = ED , 2 24 = ,…m =25 41 .DEM C 'OMDEM .设直线C D 的解析式为y = kx + n ,则 n = 2 |k + n 一 25 解得: n = 2k =-芸.y = 4112。
轴对称——最短路线问题
如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为_____.
解析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.
解:连接BD,DE,
∵四边形ABCD是正方形,
∴点B与点D关于直线AC对称,
∴DE的长即为BQ+QE的最小值,
∵DE=BQ+QE===5,
∴△BEQ周长的最小值=DE+BE=5+1=6.
故答案为:6.
典型例题:
例1·如图,边长为8的正方形ABCD中,E为CD边上一点,且DE=2,M是对角线AC上的一个动点,则DM+EM的最小值为_____.
例2:如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()
A.30°
B.45°
C.60°
D.90°
例3:如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE=2,求EM+BM的最小值.。
用轴对称求最短距离
用轴对称求最短距离最值问题,也就是最大值和最小值问题,这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,本文举例介绍一些常见的求解方法,供读者参考。
例1. (湖北潜江)如图1,小河边有两个村庄A、B.要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A、B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A、B村的水管最省料,应建在什么地方?分析(1)到A、B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”.(2)要使厂部到A村、B村的距离和最短,可联想到“两点之间线段最短”.解:(1)如图2,取线段AB的中点G,过中点G画AB的垂线,交EF与P,则P到A、B的距离相等.(2)如图3,画出点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到AB的距离和最短.点评:如果我们注意一下,在我们的生活中有很多都利用了轴对称,如果平时多观察、多思考,就会发现轴对称还可以帮助我们解决问题.例2. 如图3,两条公路OA、OB相交,在两条公路的中间有一个油库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.分析这是一个实际问题,我们需要把它转化为数学问题,经过分析,我们知道此题是求运油车所走路程最短,OA与OB相交,点P在∠AOB内部,通常我们会想到轴对称,分别做点P关于直线OA和OB的对称点P1、P2,连结P1P2分别交OA、OB于C、D,C、D两点就是使运油车所走路程最短,而建加油站的地点,那么是不是最短的呢?我们可以用三角形的三边关系进行说明.解:分别做点P关于直线OA和OB的对称点P1、P2,连结P1P2分别交OA、OB于C、D,则C、D就是建加油站的位置.若取异于C、D两点的点,则由三角形的三边关系,可知在C、D两点建加油站运油车所走的路程最短.点评:在这里没有详细说明为什么在C、D两点建加油站运油车所走的路程最短,请同学们思考弄明白。
轴对称及最短路径问题
最短路径问题(一)利用轴对称解决最短路径问题问题作法图形原理类型一BA 连接AB,与l的交点即为点PPA+PB的最小值为AB的值,两点之间,线段最短类型二 BAl 作点A关于l的对称点A’,连接A’B,与l的交点即为点PBAPA’AP+PB的最小值为A’B的值,两点之间,线段最短类型三L2PL1在直线l1,l2上分别找点M,N,使△PMN周长最小分别作点P关于两直线l1,l2的对称点P’,P’’,连接P’P’’,与两直线的交点为M,NL2P’’M PN L1P’PM+PN+MN的最小值为P’P’’的值,两点之间,线段最短类型四L1PQL2在直线L1,L2上分别找点M,N,使四边形PMNQ的周长最小做点P,Q分别关于直线L1,L2的对称点P’,Q’,连接P’Q’,与两直线的交点M,NL1M PQN L2PM+MN+PN的最小值为P’Q’的值,两点之间线段最短(二)用平移解决造桥选址问题例1,如图,a//b,N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,当点N 在直线b的什么位置时,AM+MN+NB最小? aMN由于MN的长度是固定的,因此当AM+NB最小时,AM+MN+NB最小。
这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?详解:将AM沿与a垂直的方向平移,点M移动到点N,点A移动到点A’,则AA’=MN,AM+NB=A’N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A’N+NB最小?如图,在连接A’,B两点的线中,线段A’B最短。
因此,线段A’B最短。
因此,线段A’B 与直线b的交点N的位置即为所求,即在点N处造桥MN,所得路径AMNB是最短的。
L2A MA’ BN例2,在P、Q两村之间有两条河,且每条河的宽度相同,从P村到Q村,要经过两座桥MN、EF。
现在要设计一条道路,并在两条河上分别架这两座垂直于桥的大桥,问:如何设计这两座桥MN,EF的位置,使由P村到Q村的路程最短?PL1L2Q 1L2解析:河的宽度(桥的宽度)固定,利用“平移交换”解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A′N。
因为直线 a 是 A,A′的对称轴,点 M,N 在 a 上,所以 AM= A′M,AN= A′N。
∴AM+BM= A′M+BM= A′B
在△A′BN 中,
∵A′B<A′N+BN
∴AM+BM<AN+BN
即 AM+BM 最小。
点评:经过复习学生恍然大悟、面露微笑,不一会不少学生就利用轴对称知识将上一道
组织教学内容,建立科学的训练系统。使学生不仅获得数学基础知识、基本技能,更要获得 数学思想和观念,形成良好的数学思维品质。同时每年的中考题也千变万化,为了提高学生 的应对能力,除了进行专题训练外,还要多归纳多总结,将一类问题集中呈现给学生。
一、 两条直线间的对称
题目 1 如图,在旷野上,一个人骑马从 A 出发,他欲将马引到河 a1 饮水后再到 a2 饮 水,然后返回 A 地,问他应该怎样走才能使总路程最短。
图5
图6
由∠BAD=60°,AB=AD,AE=BE 知,
DE 3 2 3 2
故 PE+PB 的最小值为 3 。
1 15
9
得 AE=BE= AB= ,EF= .∴AF∶BC=AD∶AB,即 6∶9=AD∶15.∴AD=10. Rt△
22
2
9 25
ADF 中,AD=10,AF=6,∴DF=8.∴DE=DF+FE=8+ = .∴当 x= 时,△PBC 的
22
2
周长最小, y 值略。
数学新课程标准告诉我们:教师要充分关注学生的学习过程,遵循学生认知规律,合理
二、三角形中的对称
C
B
D
第 2 题图
题目 2 如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是 BC 边上的中点,E 是 AB 边上的一 动点,则 EC+ED 的最小值是 __
点评:本题只要把点 C、D 看成基本题中的A、B两镇,把线段 AB 看成燃气管道 a,问 题就可以迎刃而解了,本题只是改变了题目背景,所考察的知识点并没有改变。
点 P 运动到点 p′时,此时 AP+BP 有最小值为 2
B′
E H
h
B
A
第 5 题图 1
· BC A
F
G
第 5 题图 2
五、立体图形中的对称
题目 5 如图 1 是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的 A 处,它想吃
到盒内表面对侧中点 B 处的食物,已知盒高 h=10cm,底面圆的周长为 32cm,A 距离下底面
AM MB AP PB .
A
B
Ml P
A'
2、 已知:A、B 两点在直线 l 的同侧,试分别画出符合条件的点 M。 (1) 在 l 上求作一点 M,使得 AM BM 最小;
B A
l
(2) 在 l 上求作一点 M,使得 AM BM 最大;
B A
(3) 在 l 上求作一点 M,使得 AM+BM 最小。
三、四边形中的对称
题目 3 如图,正方形 ABCD 的边长为 8,
M 在 DC 上,且 DM=2,N 是 AC 上的动点,则
DN+MN 的最小值为多少?
点评:此题也是运用到正方形是轴对称图形这一特殊性质,点 D 关于直线 AC 的对称点
正好是点 B,最小值为 MB=10。
A
D
M N
B
C
第 3 题图
第 4 题图
四、圆中的对称
题目 4 已知:如图,已知点 A 是⊙O 上的一个六等分点,点 B 是弧 AN 的中点,点 P 是
半径 ON 上的动点,若⊙O 的半径长为 1,求 AP+BP 的最小值。
点评:这道题也运用了圆的对称性这一特殊性质。点 B 的对称点 B′在圆上,AB′交 ON
于点 p′,由∠AON﹦60°, ∠B′ON﹦30°,∠AOB′﹦90°,半径长为 1 可得 AB′﹦ 2 。当
点评:这道题学生拿到时往往无从下手。但只要把握轴对称的性质就能迎刃而解了。作 法:过点 A 作 a1 的对称点 A′,作 a2 的对称点 A〞,连接 A′A〞交 a1、a2 于 B、C,连接 BC. 所经过路线如图 5: A-B-C-A,所走的总路程为 A′A〞。
A′ B
a1 A
A E
a2 C
A″
第 1 题图
中考题解决了。思路如下:②∵BC=9(定值),∴△PBC 的周长最小,就是 PB+PC 最小.由
题意可知,点 C 关于直线 DE 的对称点是点 A,显然当 P、A、B 三点共线时 PB+PA 最小.此
时 DP=DE,PB+PA=AB.由∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC. EF∥BC,
利用轴对称求最短距离问题
基本题引入:如图(1),要在公路道 a 上修建一个加油站,有A,B两人要去加油站加油。 加油站修在公路道的什么地方,可使两人到加油站的总路程最短?
你可以在 a 上找几个点试一试,能发现什么规律?
·B
·B
·B
·A
·A
·A
a M
·A′
a
a
N M
·A′
图1
图2
图3
思路分析:如图 2,我们可以把公路 a 近似看成一条直线,问题就是要在 a 上找一点 M,
题目 6 长方体问题 如图,一只蚂蚁从实心长方体的顶点 A 出发,沿长方体的表面爬
到对角顶点 C1 处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?
D1 A1 D
A
4
C1
B1
1 C
2 B
析:展开图如图所示, 25 29 37
路线 1 即为所求。 长、宽、高中,较短的两条边的和作为一条直角边,最 长的边作为另一条直角边, 斜边长即为最短路线长。
通过变式训练既解决了一类问题,又归纳出了最本质的东西,以后学生再碰到类似问题
时学生就不会不知所措。同时变式训练培养了学生思维的积极性和深刻性,发展了学生的应
变能力。 综上所述,引导学生在熟练掌握书本例题、习题的基础上,进行科学的变式训练,对巩
固基础、提高能力有着至关重要的作用。更重要的是,变式训练能培养和发展学生的求异思 维、发散思维、逆向思维,进而培养学生全方位、多角度思考问题的能力,有助于提高学生 分析问题、解决问题的能力。
3cm.请你帮小蚂蚁算一算,为了吃到食物,它爬行的最短路程为
cm.
点评:如图 2,此题是一道立体图形问题需要转化成平面问题来解决,将圆柱的侧面展
开得矩形 EFGH,作出点 B 关于 EH 的对称点 B′,作 AC⊥GH 于点 C,连接 A B′。在 Rt△A B′C
中,AC﹦16, B′C﹦12,求得 A B′﹦20,则蚂蚁爬行的最短路程为 20cm。
l
A B
3、 如图,AD 为∠BAC 的平分线,DE⊥AB 于 E,DF⊥AC 于 F,那么点 E、F 是否关于 AD 对称?若对称,请说明理由。
l A
E F
B
D
C
4、 已知:如图,点 p1, p2 分别是 P 点关于∠ABC 的两边 BA、BC 的对称点,连接 p1 p2 ,分
别交 BA、BC 边于 E、D 点,若 p1 p2 =m,
(1) 求△PDE 的周长; (2)若 M 是 BA 边上异于 E 的一点,N 是 BC 边上异于 D 的一点,求证:△PMN 的周长>△PDE 的周长。
C
P2
N
D
P
轴对称在本题中的主要作用是将线段在保证长度不变的情况下改变 B 位置,要注意体会轴对称在这方面的应用。以此作为模型我们可以解决 下列求最小值的问题。
E
MA
P1
5. 如图,菱形 ABCD 中,AB=2,∠BAD=60°,E 是 AB 的中点,P 是对角线 AC 上的一个动点, 则 PE+PB 的最小值是________。
分析:首先分解此图形,构建如图 5 模型,因为 E、B 在直线 AC 的同侧,要在 AC 上找 一点 P,使 PE+PB 最小,关键是找出点 B 或 E 关于 AC 的对称点。如图 6,由菱形的对称性 可知点 B 和 D 关于 AC 对称,连结 DE,此时 DE 即为 PE+PB 的最小值,
使 AM 与 BM 的和最小。设 A′是 A 的对称点,本问题也就是要使 A′M 与 BM 的和最小。在连
接 A′B 的线中,线段 A′B 最短。因此,线段 A′B 与直线 a 的交点 C 的位置即为所求。
如图 3,为了证明点 C 的位置即为所求,我们不妨在直线 a 上另外任取一点 N,连接 AN、BN、
D D1
C1
D1
①D
C1
A1
1
②
B1 C1
1③
2
C
2
A 4 B2 C
A 1 A1 4 B1
A
4
B
AC1 =√42+32 =√25 ; AC1 =√62+12 =√37 ; AC1 =√52+22 =√29 .
由学生引申总结以下 1——4:
1、 已知:如图,A、B 两点在直线 l 的同侧,点 A 与 A 关于直线 l 对称,连结 AB 交 l 于 P 点, 若 AB =a,( 1) 求 AP+PB; ( 2) 若 点 M 是 直 线 l 上 异 于 P 点 的 任 意 一 点 , 求 证 :