利用轴对称求最短距离问题

合集下载

利用轴对称破解最短路径问题

利用轴对称破解最短路径问题

第一章平移、对称与旋转第4 讲利用轴对称破解最短路径问题一、学习目标1.理解“直线上同一侧两点与此直线上一动点距离和最小”问题通过轴对称的性质与作图转化为“两点之间,线段最短”问题求解。

2.能将实际问题或几何问题(对称背景图)中有关最短路径(线段之差最大值)问题借助轴对称转化为两点之间,线段最短问题分析与求解。

二、基础知识•轻松学与轴对称有关的最短路径问题关于最短距离,我们有下面几个相应的结论:(1)在连接两点的所有线中,线段最短(两点之间,线段最短);(2)三角形的两边之和大于第三边,两边之差小于第三边;(3)在三角形中,大角对大边,小角对小边。

(4)垂直平分线上的点到线段两端点的距离相等;【精讲】一般说来,线段和最短的问题,往往把几条线段连接成一条线段,利用“两点之间线段最短” 或者“三角形两边之和大于第三边”加以证明,关键是找相关点关于直线的对称点实现“折”转“直” 。

另外,在平移线段的时候,一般要用到平行四边形的判定和性质。

(判定:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;性质:平行四边形的对边相等。

)三、重难疑点•轻松破最短路径问题在平面图形中要解决最短路径问题,自然离不开构建与转化“两点之间,线段最短”的数学公理,通常将涉及到的两点中的任一点作出关于直线的对称点,从而运用两点之间,线段最短解决实际问题.在日常生活、工作中,经常会遇到有关行程路线的问题。

“最短路径问题”的原型来自于“饮马问题” 、“造桥选址问题” ,出题通常以直线、角、等腰(边)三角形、长方形、正方形、坐标轴等对称图形为背景。

(1)“一线同侧两点”问题例1如图,点A B在直线m的同侧,点B'是点B关于m的对称点,AB'交m于点P.(1)AB与AP+PB相等吗为什么(2)在m上再取一点N,并连接AN与NB比较AN+N有AP+PB的大小,并说明理由.解析:(1)T 点B'是点B 关于m 的对称点,••• PB=PB ,••• AB =AP+PB , ••• AB =AP+PB(2)如图:连接 AN, BN B ' N,TAB' =AP+PB• AN+NB=AN+NB> AB', • AN+N > AP+PB点评:两条线段之和最短,往往利用对称的思想,利用两点之间的线段最短得出结果。

轴对称结合两点之间线段最短求最短距离问题

轴对称结合两点之间线段最短求最短距离问题

轴对称结合两点之间线段最短求最短距离问题轴对称结合两点之间线段最短求最短距离问题
1.已知点A 、B 为直线m 同侧的两个点,请在直线m 上找一点C ,使得AM+BM 有最小值。

m
B
A
2.已知边长为4的正三角形ABC 上一点E ,AE=1,AD ⊥BC 于D,请在AD 上找一点N ,使得EN+BN 有最小值,并求出最小值。

有最小值,并求出最小值。

E
D C
B A
3.已知边长为4的正方形ABCD 上一点E ,AE=1,请在对角线AC 上找一点N ,使得EN+BN 有最小值,并求出最小值。

有最小值,并求出最小值。

E D
C B A
4.已知D 为∠BAC 内一点,请在射线AC 、AB 上分别找到一点M 、N ,使得△DMN 的周长最小。

最小。

D
C
B A
四个问题均为先作点关于直线的对称点,再找最短路线,利用了轴对称三角形全等的知识来
解释,四个问题结合,可以加深学生对本知识点的掌握,其中4题也可以给∠BAC一个特
两边的距离,进而求出最短周长。

定角度(30°等),并给出点D到∠BAC两边的距离,进而求出最短周长。

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

用轴对称求最短距离

用轴对称求最短距离

用轴对称求最短距离在研究几条线段长之和(差)的最小或最大值时,常常需要把这些线段集中到一起,然后将其与某条长度固定的线段进行比较。

把其中的部分特殊点进行恰当的轴对称变换,是实现这一目标的有效手段。

现举例说明,供同学们参考。

一、为了在已知直线上寻找与同侧两点距离之和最小的点,可通过轴对称变换,把同侧两点转化为异侧两点,再利用“三角形任意两边之和大于第三边”来确定例1. 如图1,牧童在A处放牧,其家在B处,A、B到河岸l的距离分别为AC、BD,,且A处到河岸CD中点的距离为500m。

(1)如牧童从A处将马牵到河边饮水后再回家,试问:在何处饮水,所走路程最短?(2)最短的路程是多少?解析:这个问题可简述为“已知直线CD和直线CD同侧的两点A,B,在直线CD 上求一点M,使最小。

”(1)如图2,先作点A关于直线CD的对称点,再连接交CD于点M,则点M为所求的点。

证明如下:在CD上任取一点,连接、、、AM。

点A、关于直线CD对称,点M、在CD上,。

最小。

(2)由(1)知,,。

故M为CD中点,且最短路程为。

二、在涉及折线段长的最值问题的,一般是通过多次轴对称变换,利用两点之间线段最短求最值。

例2. 如图3,牧童家在A处。

现在牧童要先带马到河边(图中用直线a表示)饮水,再到草地(图中用直线b表示)吃草,然后回家。

问:牧童让马在何处饮水、吃草,所走的总路程最短?解析:设点B、点C分别是马饮水、吃草处,本题即是要求线段长之和AB+BC+CA 的最小值。

我们通常需要把它和固定线段相比较。

可通过轴对称变换,把这些线段放在同一直线上,利用两点之间线段最短来解决。

如图4所示,分别作点A关于直线a的对称点A”,点A关于直线b的对称点A””。

连接A”A””。

A”A””交直线a于点B,交直线b于点C,则AB+BC+CA=A”B+BC+CA””=A”A””。

而对其他地点B”、C”,也都可以同样转化为A”B”+B”C”+C”A””,即为A”、A””两点间的折线段的长。

利用轴对称求最短距离

利用轴对称求最短距离
杂的图形找到基本图形—A点关于直线L的对称点A′,连AA′B,就能解
决关于轴对称图形求最小值问题。 解:(1)设直线AB的解析式为y=px+q
则 解得 ∴直线AB的解析式为y=-x+1 2分 ∵当x=3和x=-3时,这条抛物线上对应点的纵坐标相等 ∴抛物线的对称轴为y轴,∴b=0,∴y=ax 2+c 把A(-4,3)、B(2,0)代入,得:
A
D F M B C H E
(2)在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B 分别在X轴、Y轴的正半轴上,OA=3,OB=4,D为边OB的中点。
①若E为边OA上的一个动点,当?CDE的周长最小时,求点E的坐
标;
②若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小
时,求点E、F的坐标。
解①:作点D关于X轴对称点D′,连D′C交X轴与点E,则点E即为所
求D(1,0)
解②:∵EF=2,取CM=2作D关于X轴对称点D′,连D′M,交X轴于点
E,∵M(1,4) D′(0,-2)则D′M的解析式
Y=kx+b y
4=k+b B C
b=-2
D′M的解析式为 D
y=bx-2
一、基础知识 如图直线l同侧有两点A、B,在直线l上找点P,使得PA+PB最短,并 简要说明理由。解:作点关于直线l的对称点A′,连A′B交直线l于点 P,则点P即为所求,此时PA+PB=PA′+PB= A′B。
B A
PL LL
二、典型例题: A组(1)以菱形为载体的最短距离问题: 如图所示,菱形ABCD中, ∠ BAD=60°,AB=4,M是AB的中点,P是对 角线AC上的一个动点,则PM+PB的最小值是_________。 解:∵菱形ABCD是以AC为对称轴的轴对称图形。 ∴点B关于直线AC的对称点为点D, 连接DM交AC于点P,则PM+PB的最小值即为线段DM,此时DM= ∴PM+PM的最小值为.

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题

初二数学上册:利用轴对称求解最短路径问题一、知识重点1、最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.2、运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.3、利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.二、经典例子解析【例一】有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A—B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.解:如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.【例二】如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点解:如图,【例三】如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短。

解:先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B【例四】在图中直线l上找到一点M,使它到A,B两点的距离和最小解:如图,作点B关于直线l的对称点B′;连接AB′交直线l于点M.则点M即为所求的点.【例五】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A 村与B村供水。

轴对称最短路径问题7种类型

轴对称最短路径问题7种类型

轴对称最短路径问题7种类型
轴对称最短路径问题是一种经典的计算几何问题,其目标是在给定图形中找到从起点到终点的最短路径。

根据不同的条件和限制,轴对称最短路径问题可以分为以下七种类型:
1. 简单轴对称最短路径问题:给定一个轴对称图形,起点和终点分别位于对称轴的两侧,求最短路径。

2. 带有障碍物的轴对称最短路径问题:在轴对称图形中存在一些障碍物,起点和终点在障碍物两侧,求最短路径。

3. 多个起点和终点的轴对称最短路径问题:给定多个起点和终点,每个起点和终点都在对称轴的两侧,求所有起点到所有终点的最短路径。

4. 带有权值的轴对称最短路径问题:在轴对称图形中,不同的点或边具有不同的权值,求起点到终点的最短路径。

5. 动态规划解决轴对称最短路径问题:使用动态规划算法解决轴对称最短路径问题,将问题分解为子问题,逐步求解。

6. A*搜索算法解决轴对称最短路径问题:使用A*搜索算法,通过估价函数指导搜索方向,加速求解速度。

7. 双向搜索解决轴对称最短路径问题:从起点和终点同时进行搜索,通过比较两个方向的搜索结果得到最短路径。

以上七种类型是轴对称最短路径问题的常见分类,每种类型都有其特定的解决方法,需要根据具体问题的特点选择合适的方法进行求解。

初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。

轴对称最短路线问题原理

轴对称最短路线问题原理

轴对称最短路线问题原理
一、问题描述
轴对称最短路线问题,即求平面上两点间沿轴对称线走的最短距离。

二、问题解法
1. 构造对称轴
首先需要找到两点的对称轴,对称轴的构造方法有多种,常用的有以
下两种:
(1)连接两点,垂直平分线即为对称轴。

(2)以两点为圆心,以它们之间的距离为半径,画两个圆;两圆的交
点就是对称轴。

2. 沿对称轴转换
对称轴将平面分为两个对称部分,假设起点在对称轴左侧(或右侧),求出终点在对称轴右侧(或左侧)的最短距离,即为要求的轴对称最
短路线。

3. 求最短距离
最短距离可以使用最短路算法(如 Dijkstra 算法、Bellman-Ford 算法等)来计算。

三、应用领域
轴对称最短路线问题常见于自动化生产线、机器人运动等领域,在这
些领域中,机器人需要在不碰撞的情况下从一个点到达另一个点,同
时保证走的路径最短。

该问题的解决方法可以为机器人运动路径规划
提供参考。

(完整版)利用轴对称求最短距离问题

(完整版)利用轴对称求最短距离问题

利用轴对称求最短距离问题基本题引入:如图(1),要在公路道a上修建一个加油站,有A,B两人要去加油站加油。

加油站修在公路道的什么地方,可使两人到加油站的总路程最短?你可以在a上找几个点试一试,能发现什么规律?·B ·A·B·Aa·B·Aa·A′图1M·A′MNa 图2图3思路分析:如图2,我们可以把公路a近似看成一条直线,问题就是要在a上找一点M,使AM与BM的和最小。

设A′是A的对称点,本问题也就是要使A′M与BM的和最小。

在连接A′B的线中,线段A′B最短。

因此,线段A′B与直线a的交点C的位置即为所求。

如图3,为了证明点C的位置即为所求,我们不妨在直线a上另外任取一点N,连接AN、BN、A′N。

因为直线a是A,A′的对称轴,点M,N在a上,所以AM= A′M,AN= A′N。

∴AM+BM= A′M+BM= A′B在△A′BN中,∵A′B<A′N+BN∴AM+BM<AN+BN即AM+BM最小。

点评:经过复习学生恍然大悟、面露微笑,不一会不少学生就利用轴对称知识将上一道中考题解决了。

思路如下:②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由题意可知,点C关于直线DE的对称点是点A,显然当P、A、B三点共线时PB+PA最小.此时DP=DE,PB+PA=AB.由∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC.EF∥BC,1159AB=,EF=.∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10.Rt△ADF22292525中,AD=10,AF=6,∴DF=8.∴DE=DF+FE=8+=.∴当x=时,△PBC的周长222得AE=BE=最小, y值略。

数学新课程标准告诉我们:教师要充分关注学生的学习过程,遵循学生认知规律,合理组织教学内容,建立科学的训练系统。

使学生不仅获得数学基础知识、基本技能,更要获得数学思想和观念,形成良好的数学思维品质。

初中数学最短距离说明(奶站问题)

初中数学最短距离说明(奶站问题)

奶站问题的讨论以及解决策略奶站问题中中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

解题总思路:找点关于线的对称点实现“折”转“直”,利用平移把“折”转“直”,利用平面展开图把“折”转“直”。

一、运用轴对称解决距离最短问题利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离。

基本思路是运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.注意:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.1、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)2、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C 就是所求的点.应用1、(2009年达州)在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2、(2009年抚顺市)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .63、(2009年鄂州)已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17172B 、17174C 、17178D 、33、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小4、两个点在矩形内部例:已知矩形ABCD 内有两个点M 、N ,过M 击球到CD 边P ,然后击到BC 边Q ,然后到N,则小球所走的最短路线?二、利用平移确定最短路径选址通过平移,除去固定部分的长,使其余几段的和正好为两定点之间的距离。

利用轴对称求最短距离

利用轴对称求最短距离

利用轴对称求最短距离轴对称知识在近来的中考题中,经常出现,笔者浏览最近几年各地的中考试题,发现各地中考试题除考察轴对称图形的基本知识和性质,还考察了利用轴对称知识解决最短距离问题,这类问题在各地中考试题中,屡见不鲜,如何利用轴对称的性质解决最短距离问题呢?根据本人多年从事初三数学教学工作的一些体会。

概括一些一些常见的题型。

一、基础知识如图直线l 同侧有两点A 、B ,在直线l 上找点P ,使得PA+PB 最短,并简要说明理由。

解:作点关于直线l 的对称点A ′,连A ′B 交直线l 于点P,则点P 即为所求,此时PA+PB=PA ′+PB= A ′B 。

A 1二、典型例题:A 组(1)以菱形为载体的最短距离问题:如图所示,菱形ABCD 中, ∠ BAD=60°,AB=4,M 是AB 的中点,P 是对角线AC 上的一个动点,则PM+PB 的最小值是_________。

解:∵菱形ABCD 是以AC 为对称轴的轴对称图形。

∴点B 关于直线AC 的对称点为点D,ABLP连接DM 交AC 于点P,则PM+PB 的最小值即为线段DM,此时DM=32 ∴PM+PM 的最小值为32.(2)以矩形为载体求最短距离问题在矩形ABCD 中,AB=2,AD=4,E 为为边CD 中点。

P 为边BC 上的任一点,求PA+EP 的最小值。

解:作点A 关于BC 的对称点A ′,连A ′E 交BC 于点P,则点P 为所求,此时PA+PE 的最小值即为A ′E,过点E ,作EF ⊥AB , A ′E=2243 =5 ∴PA+PE 的最小值为5。

MA A 1ED如图所示,正方形ABCD 的边长为2,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上找一点P,使PD+PE 最小,则这个最小值为_________.解:∵正方形ABCD 是以AC 为对称轴的轴对称图形。

∴点B 关于点D 关于AC 对称 ∵BE 即为PD+PE 的最小值 ∴PD+PE 的最小值为2(4) 以圆形为载体的最短距离问题:如图,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB, ∠ABC=60°,P 是OB 上一动点,求PA+PC 的最小值。

(完整版)利用轴对称求最短距离

(完整版)利用轴对称求最短距离

利用轴对称求最短距离一、问题引入:1、如下图,在直线异侧各有点A、B,在直线上找一点p,使PA+PB最小。

2、如下图,在直线同侧各有点A、B,在直线上找一点p,使PA+PB最小。

二、典型例题:(1)、以菱形为媒介的最短距离问题:如下图,菱形ABCD中,∠BAD=60°,AB=4,点M是AB中点,P是对角线AC上的一个动点,则PM+PB的最小值是多少?(2)、以正方形为媒介的最短距离问题:如下图,正方形ABCD边长为2,△ABE为等边三角形,且点E 分析:根据“两点之间线段最短”,可知:连接AB,与直线的交点即为P点.此基本类型为:一线(直线)两定点(点A、B)。

分析:作点A关于直线的对称点A′,连接AA′,则直线就是线段AA′的垂直平分线,根据“垂直平分线上一点到线段两端点的距离相等”可得,直线上任一点到点A的距离都等于到点A′的距离。

事实上,这个问题就可以转化成:在直线异侧各有点A′、B,在直线上找一点p,使PA′+PB最小。

即:一线两定点的问题。

由(1)得,连接BA′,与直线的交点即为点P。

分析:由题意知:首先找点B或者点M关于AC所在直线的对称点。

由菱形的轴对称性不难发现:点D即是点B关于直线AC的对称点,则连接DM与线段AC的交点即为P点。

那么PM+PB的最小值实际上就是线段DM的长度分析:由题意知:首先找点D或者点E关于AC所在直线的对称点。

由正方在正方形ABCD内部,在对角线AC上找一点P,使PD+PE最小,则这个最小值为多少?(3)、以圆为媒介的最短距离问题:如下图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOB=60°,P是OB上一动点,求PA+PC的最小值(4)、以二次函数为媒介的最短距离:如下图,抛物线y=x^2+2x-3与x轴交与A、B两点,与y 轴交与点C,对称轴上存在一点P,使△PBC周长最小,求P 点坐标。

三、巩固加深:(5)、以三角形为媒介的最短距离问题:如下图,在锐角△ABC 中,AB=4,∠BAC=45°, ∠BAC的角平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?形的轴对称性不难发现:点B即是点D关于直线AC 的对称点,则连接BE与线段AC的交点即为P点。

(完整版)利用轴对称求最短距离[1]

(完整版)利用轴对称求最短距离[1]

④ 如图所示,在/ AOB 的边AO , BO 上分别找一点 E , F 使得DE + EF + CF 最小.分别 过点C , D 作关于AO , BO 的对称点 DC ',连接D C ',并与AO , BO 分别交于点 E , F , 此时DE + EF + CF 最小,则点E , F 即为所求.最短路径问题 和最小【方法说明】 “和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离 的和最小(将军饮马问题)•如图所示,在直线 直线AB 与直线I 的交点时,PA + PB 最小. l 上找一点 P 使得PA + PB 最小.当点P 为 B 4P , B' 【方法归纳】 ①如图所示,在直线I 上找一点B 使得线段AB AB 即为所求.最小•过点A 作AB 丄I ,垂足为B ,则线段 ②如图所示,在直线 BB 与直线I 交于点 I 上找一点P 使得PA + PB 最小.过点B 作关于直线I 的对称点B P ,此时PA + PB 最小,则点P 即为所求. B a p. B'③如图所示,在/ AOB 的边AO , BO 上分别找一点 C , D 使得PC + CD + PD 最小.过点P 分别作关于 AO , BO 的对称点E , F ,连接EF ,并与AO , BO 分别交于点 C , D ,此时PC + CD + PD 最小,则点C , D 即为所求.BA D' A⑤如图所示,长度不变的线段CD在直线I上运动,在直线I上找到使得AC + BD最小的CD的位置.分别过点A, D作AA 7/ CD , DA '// AC, AA '与DA '交于点A',再作点B关于直线I的对称点B ',连接A'B与直线I交于点D 7,此时点D'即为所求.0 Ir f f-A'D D'B'1⑥如图所示,在平面直角坐标系中,点P为抛物线(y= -x2) 上的一点,点 A (0, 1 )在y 轴正半轴.点P在什么位置时PA+ PB最小?过点B作直线I: y=- 1的垂线段BH BH ' 与抛物线交于点P',此时PA+ PB最小,则点P即为所求.1.(13广东)已知二次函数y= x2—2mx + m2- 1.(1)当二次函数的图象经过坐标原点0( 0, 0)时,求二次函数的解析式;(2)如图,当m = 2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC + PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.A D' A【思路点拨】(1)由二次函数的图象经过坐标原点0(0, 0),直接代入求出m的值即可;(2)把m= 2代入求出二次函数解析式,令x= 0,求出y的值,得出点C的坐标;利用配方法或顶点坐标公式求出顶点坐标即可;(3)根据当P、C、D共线时根据“两点之间,线段最短”得出PC + PD最短,求出CD 的直线解析式,令y= 0,求出x的值,即可得出P点的坐标.【解题过程】解:(1)•••二次函数的图象经过坐标原点O (0,0),•••代入二次函数y= x2—2mx + m2—1,得出:m2— 1 = 0,解得:m=± 1,•••二次函数的解析式为:y= x2—2x或y= x2+ 2x;(2)• m= 2,•••二次函数y= x2—2mx + m2—1 得:y = x2—4x + 3 =(x—2)2—1,•抛物线的顶点为:D (2,—1),当x= 0 时,y= 3,「. C 点坐标为:(0,3),• C (0,3)、D (2,—1);(3)当P、C、D共线时PC+ PD最短,【方法一】• C (0,3)、D (2,—1),设直线CD的解析式为y= kx + 3,代入得:2k+ 3 =—1,• k=—2,「.y=—2x + 3,当y= 0时,一2x+ 3= 0,解得x= 3,• PC + PD最短时,P点的坐标为:P (|,0).【方法二】过点D作DE丄y轴于点E,•PO〃DE,• DO=CO,• P0=4 解得:PO=2,•PC + PD最短时,P点的坐标为:P (2,0).12. (11荷泽)如图,抛物线 y = ?x 2+ bx -2与x 轴交于A , B 两点,与y 轴交于C 点,且A (-1, 0).(1)求抛物线的解析式及顶点 D 的坐标;(2) 判断△ ABC 的形状,证明你的结论;(3) 点M ( m , 0)是x 轴上的一个动点,当 MC + MD 的值最小时,求 m 的值.【思路点拨】(1) 把点A 的坐标代入求出b 的值,即可得出抛物线的解析式,通过配方法即可求出顶点 D 的坐标;(2)观察发现厶ABC 是直角三角形,可以通过勾股定理的逆定理证明.由抛物线的解析式,分别求出点B , C 的坐标,再得出AB , AC , BC 的长度,易得AC 2+ BC 2= AB 2,得出△ ABC 是直角三角形;(3) 作出点C 关于x 轴的对称点C',连接C'D 交x 轴于点M ,根据“两点之间,线段最 短”可知MC + MD 的值最小.求出直线 C'D 的解析式,即可得出点 M 的坐标,进而求出 m 的值. 【解题过程】解:(1 )• ••点A (- 1, 0)在抛物线 y =护+ bx —2 上,1X 2(—1 ) 2+ b X(— 1)— 2=0,解得 . 3b 一 3,-25) 抛物线的解析式为1 2 y=2x2-3 1/3、-?x—2=(x—p2 25—8 ,•顶点D的坐标为 (j,(2) 当x= 0 时y=—2,. • C (0,—2), OC = 2 .当y= 0 时,|x2—|x—2= 0,• •• X1=—1 , X2=4, • B(4, 0), • OA = 1 , OB = 4,AB = 5.•/ AB 2= 25, AC 2 = 0A 2+ 0C 2= 5, BC 2= 0C 2+ OB 2= 20,「. AC 2 + BC 2 = AB 2. •••△ ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C',贝U C ' ( 0, 2), 0C = 2,连接C 'D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知, MC + MD 的值最小.【方法一】x + 2.24• m =41.41 24.•.当 y = 0 时,—祛 + 2= 0, x = 41 【方法二】 设抛物线的对称轴交 x 轴于点E .•/ ED // y 轴,•/ OC 'M = / EDM ,/ C'OM =Z .OM = OCJ • EM = ED , 2 24 = ,…m =25 41 .DEM C 'OMDEM .设直线C D 的解析式为y = kx + n ,则 n = 2 |k + n 一 25 解得: n = 2k =-芸.y = 4112。

与轴对称有关的最短路径问题及解析

与轴对称有关的最短路径问题及解析

与轴对称有关的最短路径问题及解析问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?解析:将A ,B 两地抽象为两个点,将河l 抽象为一条直 线。

作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C 。

则点C 即为所求。

B A lB • · A l B· lA ·B C证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′。

由轴对称的性质知, BC =B ′C ,BC ′=B ′C ′. ∴ AC +BC = AC +B ′C = AB ′,AC ′+BC ′= AC ′+B ′C ′. 在△AB ′C ′中, AB ′<AC ′+B ′C ′,∴ AC +BC <AC ′+BC ′. 即 AC +BC 最短. 若直线l 上任意一点(与点C 不重合)与A ,B两点的距离和都大于AC +BC ,就说明AC + BC 最小.问题2 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径。

解析:考点:作图—应用与设计作图,轴对称-最短路线问题专题:分析:根据“两点之间线段最短”,和轴对称最短路径问题解答.解答: 解:(1)两点之间,线段最短,连接PQ ;(2)作P 关于BC 的对称点P1,连接QP1,交BC 于M ,再连接MP .最短路线P--Q--M--P .点评:本题考查了作图--应用与设计作图,熟悉轴对称最短路径问题是解题的关键.问题3 如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在 B · lA ·BC C何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解析:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.问题4已知△ABC中,D、E是边AB、AC边上的点,在边BC上找一点M,使△DEM的周长最小。

中考数学高频考点突破——轴对称的应用——最短距离问题

中考数学高频考点突破——轴对称的应用——最短距离问题

中考数学高频考点突破——轴对称的应用——最短距离问题一、综合题1.已知二次函数y =﹣x 2+bx+c 的图象经过点A (2,0),B (5,0),过点D (0, 54)作y 轴的垂线DP 交图象于E 、F .(1)求b 、c 的值和抛物线的顶点M 的坐标;(2)求证:四边形OAFE 是平行四边形;(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP 与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式. 2.(1)问题提出:如图①在 ABC 中, AD 是 ABC 边 BC 的高,点E 是 BC 上任意一点,若 3,AD = 则 AE 的最小值为_ ;(2)如图②,在等腰 ABC 中, ,120,AB AC BAC DE =∠=︒ 是 AC 的垂直平分线,分别交 BC AC 、 于点 D E 、 , 1DE cm = ,求 ABD 的周长;(3)问题解决:如图③,某公园管理员拟在园内规划一个 ABC 区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路 AB BC 、 和 AC ,满足 90,BAC ∠=︒ 点 A 到 BC 的距离为 2km .为了节约成本,要使得 ,,AB BC AC 之和最短,试求AB BC AC ++ 的最小值(路宽忽略不计).3.(1)【问题提出】如图1,在矩形ABCD 中, 10AD = , 12AB = ,点E 为AD 的中点,点P 为矩形ABCD 内以BC 为直径的半圆上一点,则PE 的最小值为 ;(2)【问题探究】如图2,在ABC 中,AD 为BC 边上的高,且 4AD BC == ,点P 为 ABC 内一点,当 12PBC ABC S S = 时,求 PB PC + 的最小值;(3)【问题解决】李伯伯家有一块直角三角形菜园ABC ,如图3, 2003BC = 米,90C ∠=︒ , 60ABC ∠=︒ ,李伯伯准备在该三角形菜园内取一点P ,使得120APB ∠=︒ ,并在 ABP 内种植当季蔬菜,边BC 的中点D 为菜园出入口,为了种植方便,李伯伯打算在AC 边上取点E ,并沿PE 、DE 修两条人行走道,为了节省时间,要求人行走道的总长度( PE DE + )尽可能小,问 PE DE + 的长度是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.4.如图1,已知直线l 的同侧有两个点A ,B ,在直线l 上找一点P ,使P 点到A ,B 两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l 的对称点,对称点与另一点的连线与直线l 的交点就是所要找的点,通过这种方法可以求解很多问题(1)如图2,在平面直角坐标系内,点A 的坐标为(1,1),点B 的坐标为(5,4),动点P 在x 轴上,求PA+PB 的最小值;(2)如图3,在锐角三角形ABC 中,AB=8,∠BAC=45°,∠BAC 的角平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值为(3)如图4,∠AOB=30°,OC=4,OD=10,点E ,F 分别是射线OA ,OB 上的动点,则CF+EF+DE 的最小值为 。

用轴对称求最短距离

用轴对称求最短距离

用轴对称求最短距离最值问题,也就是最大值和最小值问题,这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,本文举例介绍一些常见的求解方法,供读者参考。

例1. (湖北潜江)如图1,小河边有两个村庄A、B.要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A、B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A、B村的水管最省料,应建在什么地方?分析(1)到A、B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”.(2)要使厂部到A村、B村的距离和最短,可联想到“两点之间线段最短”.解:(1)如图2,取线段AB的中点G,过中点G画AB的垂线,交EF与P,则P到A、B的距离相等.(2)如图3,画出点A关于河岸EF的对称点A′,连结A′B交EF于P,则P到AB的距离和最短.点评:如果我们注意一下,在我们的生活中有很多都利用了轴对称,如果平时多观察、多思考,就会发现轴对称还可以帮助我们解决问题.例2. 如图3,两条公路OA、OB相交,在两条公路的中间有一个油库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运油车从油库出发,经过一个加油站,再到另一个加油站,最后回到油库所走的路程最短.分析这是一个实际问题,我们需要把它转化为数学问题,经过分析,我们知道此题是求运油车所走路程最短,OA与OB相交,点P在∠AOB内部,通常我们会想到轴对称,分别做点P关于直线OA和OB的对称点P1、P2,连结P1P2分别交OA、OB于C、D,C、D两点就是使运油车所走路程最短,而建加油站的地点,那么是不是最短的呢?我们可以用三角形的三边关系进行说明.解:分别做点P关于直线OA和OB的对称点P1、P2,连结P1P2分别交OA、OB于C、D,则C、D就是建加油站的位置.若取异于C、D两点的点,则由三角形的三边关系,可知在C、D两点建加油站运油车所走的路程最短.点评:在这里没有详细说明为什么在C、D两点建加油站运油车所走的路程最短,请同学们思考弄明白。

轴对称--最短路径问题

轴对称--最短路径问题

轴对称--最短路径问题1、如果A,B 两个村庄位于小河MN 的同侧,如图,为了解决两村村民的喝水问题,政府决定在小河边挖一口井,并使井到A,B 两村距离和最短,请你找出适合挖井的位置.NMBA2、如图,E ,F 分别是△ABC 的边AB ,AC 上的两个定点,在BC 上求一点M ,使△MEF 周长最短.3、如图,点P 为马厩,AB 为草地边缘(下方为草地),CD 为一河流.牧人欲从马厩牵马先去草地吃草,然后到河边饮水,最后回到马厩.请帮他确定一条最佳行走路线.4、如图,已知点A(-2,1)及点B(3,4),在x 轴上取一点C ,C',通过作图可知,当点C 的坐标为 时,使得AC+BC 最小.请在图中标出c',使得BC'-AC'最大.5、如图1,在等边三角形ABC 中,AB=2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP+PE 的值最小,最小值是 ;图图图图1P DCBAOP C BAP E DCB AP E D CBA(图2) (图3)6、如图2,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )。

A .2.4B .4C .4.8D .57、如图3,ABC ∆中,5AC BC ==,6AB =,4CD =,CD 为ABC ∆的中线,点E 、点F 分别为线段CD 、CA 上的动点,连接AE 、EF ,则AE EF +的最小值为 .8、已知如图所示,∠MON=400,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当∆PAB 的周长取最小值时,求∠APB 的度数.N PBMO A9、如图,∠AOB=300,点P 位于∠AOB 内,OP=3,点M 、N 分别是射线OA 、OB 上的动点,求∆PMN 的最小周长.NMPBAO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用轴对称求最短距离问题
欧阳学文
基本题引入:如图(1),要在公路道a 上修建一个加油站,有A,B两人要去加油站加油。

加油站修在公路道的什么地方,可使两人到加油站的总路程最短?
你可以在a 上找几个点试一试,能发现什么规律?
思路分析:如图2,我们可以把公路a 近似看成一条直线,问题就是要在a 上找一点M ,使AM 与BM 的和最小。

设A′是A 的对称点,本问题也就是要使A′M 与BM 的和最小。

在连接A′B 的线中,线段A′B 最短。

因此,线段A′B 与直线a 的交点C 的位置即为所求。

如图3,为了证明点C 的位置即为所求,我们不妨在直线a 上另外任取一点N ,连接AN 、BN 、A′N。

因为直线a是A,A′的对称轴,点M,N在a上,所以AM= A′M,AN= A′N。

∴AM+BM= A′M+BM= A′B
在△A′BN中,
∵A′B<A′N+BN
∴AM+BM<AN+BN
即AM+BM最小。

点评:经过复习学生恍然大悟、面露微笑,不一会不少学生就利用轴对称知识将上一道中考题解决了。

思路如下:②∵BC=9(定值),∴△PBC的周长最小,就是PB +PC最小.由题意可知,点C关于直线DE的对称点是点A,显然当P、A、B三点共线时PB+PA最小.此时DP=DE,PB+PA=AB.由∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC. EF∥BC,得AE=BE=AB=,EF=.∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD =10. Rt△ADF中,AD=10,AF=6,∴DF=8.∴DE=DF +FE=8+=.∴当x=时,△PBC的周长最小,y值略。

数学新课程标准告诉我们:教师要充分关注学生的学习过程,遵循学生认知规律,合理组织教学内容,建立科学的训练系统。

使学生不仅获得数学基础知识、基本技能,更要获得数学思想和观念,形成良好的数学思维品质。

同时每年的中考题也千变万化,为了提高学生的应对能力,除了进行专题训练外,还要多归纳多总结,将一类问题集中呈现给学生。

一、两条直线间的对称
题目1 如图,在旷野上,一个人骑马从A出发,他欲将马引到河a1饮水后再到a2饮水,然后返回A地,问他应该怎样走才能使总路程最短。

点评:这道题学生拿到时往往无从下手。

但只要把握轴对称的性质就能迎刃而解了。

作法:过点A作a1的对称点A′,作a2的对称点A〞,连接A′A〞交a1、a2于B、C,连接BC.所经过路线如图5:ABCA,所走的总路程为A′A〞。

A C
二、三角形中的对称
题目2 如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边上的中点,E 是AB 边上的一动点,则EC+ED 的最小值是 __
点评:本题只要把点C 、D 看成基本题中的A、B两镇,把线段AB 看成燃气管道a ,问题就可以迎刃而解了,本题只是改变了题目背景,所考察的知识点并没有改变。

三、四边形中的对称
题目3 如图,正方形ABCD 的边长为8, M 在DC 上,且DM=2,N 是AC 上的动点,则DN+MN 的最小值为多少?
点评:此题也是运用到正方形是轴对称图形这一特殊性质,点D 关于直线AC 的对称点正好是点B ,最小值为MB =10。

M A D
B
C N
第4题图
第2题图
第3题图
h A B
第5题图1 四、圆中的对称 题目4 已知:如图,已知点A 是⊙O 上的一个六等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点,若⊙O 的半径长为1,求AP+BP 的最小值。

点评:这道题也运用了圆的对称性这一特殊性质。

点B 的对称点B′在圆上,AB′交ON 于点p′,由∠AON﹦60°, ∠B′ON﹦30°,∠AOB′﹦90°,半径长为1可得AB′﹦。

当点P 运动到点p′时,此时AP+BP 有最小值为
五、立体图形中的对称 题目5 如图1是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A 处,它想吃到盒内表面对侧中点B 处的食物,已知盒高h =10cm ,底面圆的周长为32cm ,A 距离下底面3cm .请你帮小蚂蚁算一算,为了吃到食物,它爬行的最短路程为cm .
点评:如图2,此题是一道立体图形问题需要转化成平面问题来解决,将圆柱的侧面展开得矩形EFGH,作出点B
E F G
B ′
A C ·H 第5题图2
D 1C 1
①1②
B
1
A
1
C
1
1
1
D
1
D C
1

4
2
关于EH的对称点B′,作AC⊥GH于点C,连接A B′。

在Rt△A B′C中,AC﹦16, B′C﹦12,求得A B′﹦20,则蚂蚁爬行的最短路程为20cm。

通过变式训练既解决了一类问题,又归纳出了最本质的东西,以后学生再碰到类似问题时学生就不会不知所措。

同时变式训练培养了学生思维的积极性和深刻性,发展了学生的应变能力。

综上所述,引导学生在熟练掌握书本例题、习题的基础上,进行科学的变式训练,对巩固基础、提高能力有着至关重要的作用。

更重要的是,变式训练能培养和发展学生的求异思维、发散思维、逆向思维,进而培养学生全方位、多角度思考问题的能力,有助于提高学生分析问题、解决问题的能力。

题目6 长方体问题如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?
A B 2
4
长、宽、高中,较短的两条边的和作为一条直角边,最长的边作为另一条直角边,斜边长即为最短路线长。

由学生引申总结以下1——4:
1、已知:如图,A、B两点在直线的同侧,点与A关于直线对称,连结交于P点,若=a,(1)求AP+PB;(2)若点M是直线上异于P点的任意一点,求证:.
2、已知:A、B两点在直线的同侧,试分别画出符合条件的点M。

(1)在上求作一点M,使得
最小;
(2)在上求作一点M,使得
最大;
(3)在上求作一点M,使得AM+BM最小。

3、如图,AD为∠BAC的平分线,
DE⊥AB于E,DF⊥AC于F,那么
点E、F是否关于AD对称?若对
称,请说明理由。

4、已知:如图,点分别是P点关于∠ABC的两边BA、BC的对称点,连接,分别交BA、BC边于E、D 点,若=m,
(1)求△PDE的周长;
(2)若M是BA边上异于E的一点,N是BC边上异于D 的一点,求证:△PMN的周长>△PDE的周长。

轴对称在本题中的主要作用是将线段在保证长度不变的情况下改变位置,要注意体会轴对称在这方面的应用。

以此作为模型我们可以解决下列求最小值的问题。

5. 如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB 的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。

分析:首先分解此图形,构建如图5模型,因为E、B 在直线AC的同侧,要在AC上找一点P,使PE+PB最小,关键是找出点B或E关于AC的对称点。

如图6,由菱形的对称性可知点B和D关于AC对称,连结DE,此时DE即为PE+PB的最小值,
图5 图6
由∠BAD=60°,AB=AD,AE=BE知,故PE+PB的最小值为。

相关文档
最新文档