哈工大智能控制神经网络课件bps网络结构

合集下载

智能控制课设-BP神经网络的简要介绍

智能控制课设-BP神经网络的简要介绍

智能控制论文BP神经网络的简要介绍学院:电气工程学院专业班级:xxx姓名: xxx 学号:xxxBP神经网络的简要介绍BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP 神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。

虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。

这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

BP神经网络详解和实例ppt课件

BP神经网络详解和实例ppt课件
• 得到的结果见图1
• 图1飞蠓的触角长和翼长
• 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:

y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
• 假设有P个训练样本,即有P个输入输出对 • (Ip, Tp),p=1,…,P, 其中
输入向量为 :
I p (i p1 ,...,i pm )T
目标输出向量为(实际上的):
Tp (t p1 ,...,t pn )T
神经网络研究的两个方面
• 从生理上、解剖学上进行研究 • 从工程技术上、算法上进行研究
脑神经信息活动的特征
(1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。
神经网络基本模型
电脉冲
输 入
树 突
细胞体 形成 轴突




信息处理
传输
图 12.2 生物神经元功能模型
• 神经元的数学模型
cqk
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
… b1 Vn1
Vh1 V11
V1i bi Vhi
… Vni
V1p bp Vhp Vnp

BP神经网络1ppt课件

BP神经网络1ppt课件

b
f
net
k
net
b
net net net
b 0为 常 数 , 称 饱 和 值 , 是 该 神 经 单 元 的 最 大 输 出 ;
输出函数值限制在 b,b范围内。
ppt课件完整
13
C(.2符) 号输出函函数数f
s ig n 型 函 数 , 不 可 微 ; 对 称 硬 极 限 函 数 ;
ppt课件完整
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
激活与抑制
ppt课件完整
8பைடு நூலகம்
人工神经元模型的三要素:
一组连接 一个加法器
连接权值,突触连接强度权 权值 值00, ,抑 激制 活 输入信号关于神经元突触的线性加权
一个激励函数 将神经元的输出信号限制在有限范围内
3






com
petitive
lea rn in g
network
SOM 神 经 网 络
ppt课件完整
2
人工神经网络 是生物神经网络的某种模型(数学模型) 是对生物神经网络的模仿 基本处理单元为人工神经元
ppt课件完整
3
1. 生物神经系统与生物神经元
大量生物神经元的广泛、复杂连接,形成生
物神经网络 (Biological Neural Network, BNN)。
实现各种智能活动
生物神经元(neuron)是基本的信息处理单元
第2部分:BP神经网络
ppt课件完整
1
主要内容
一. 人工神经网络基本知识

哈工大智能控制神经网络神经网络系统辨识PPT教案

哈工大智能控制神经网络神经网络系统辨识PPT教案
线性系统差分方程模型 (是是1描描)述述差离离分散散方系系程统统的的时时域域模模型型。。
uu((kk)),,yy((kk))是是SSIISSOO 系系统统能能观观测测到到的的确确定定性性输输入入输输出出,,则则确确定定性性系系统统差差分分方方程程::
yy((kk))++aa11yy((kk 11)) ++ aa22yy((kk 22))++++aannyy((kknn)) bb00uu((kkdd) + b1u(k d 1) + bb22uu((kkdd22))++++bbmmuu(k(kddmm) )
m
n
y(k) biu(k d i) ai y(k i)
i0
i1

y(k) qd B(q1) u(k) B(q1) u(k d)
A(q 1 )
A(q 1 )
第一式为 ARMA 模型:
右边第 2 项为输出 y(k)的过去值组合称自回归部分; 第 1 项为输入 u(k)的过去值组合称滑动平均部分。
主要内容
系统辨识理论基础 神经网络系统辨识原理 NN线性模型辨识 NN非线性模型辨识 NN逆模型辨识
第2页/共70页
系统辨识理论基础
定义:在输入/输出数据基础上, 从一组给定模型类中确定一个 所测系统等价的模型。 辨识三要素: 输入/输出数据 模型类(系统J 结e 构) 等价准则 e.g.
充分激励原理:输入信号必须激励系统的 所有动态;
激励时间充分长; 输入信号形式:
白噪声序列(均匀分布,正态分布); 二进制伪随机码(M序列和逆M序列);
第9页/共70页
系统模型及逆模型辨识

BP神经网络模型PPT课件

BP神经网络模型PPT课件

激活函数: f()
误差函数:e

1 2
q o1
(do (k )

yoo (k ))2
BP网络的标准学习算法
第一步,网络初始化 给各连接权值分别赋一个区间(-1,1) 内的随机数,设定误差函数e,给定计 算精度值 和最大学习次数M。
第二步,随机选取第 k个输入样本及对应 期望输出
修正各单元权 值
误差的反向传播
BP网络的标准学习算法-学习过程
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
x(k) x1(k), x2(k), , xn(k)
do (k) d1(k),d2(k), ,dq(k)
BP网络的标准学习算法
第三步,计算隐含层各神经元的输入和
输出
n
hih (k ) wih xi (k ) bh
i 1
h 1, 2, , p
hoh (k) f(hih (k)) h 1, 2, , p

f(
yio (k)))2)
hoh (k)
hoh (k)
hih (k)

( 1 2
q
((do (k)
o1

p
f(
h1
whohoh (k)
bo )2 ))
hoh (k)
hoh (k)
hih (k)


q o1
(do (k )

神经网络BP网络课堂PPT

神经网络BP网络课堂PPT
它是一种多层前向反馈神经网络,其神经元的 变换函数是S型函数
输出量为0到1之间的连续量,它可实现从输入 6 到输出的任意的非线性映射
.
2.1 BP网络简介
BP网络主要用于下述方面 函数逼近:用输入矢量和相应的输出矢量训练一个 网络逼近一个函数 模式识别和分类:用一个特定的输出矢量将它与输 入矢量联系起来;把输入矢量以所定义的合适方式 进行分类; 数据压缩:减少输出矢量维数以便于传输或存储
利用梯度下降法求权值变化及误差的反向传播
– 输出层的权值变化
• 其中 • 同理可得
16
.
2.3 学习规则
利用梯度下降法求权值变化及误差的反向传播
– 隐含层权值变化
• 其中
• 同理可得
17
.
2.3 学习规则
对于f1为对数S型激活函数,
对于f2为线性激活函数
18 .
2.4 误差反向传播图形解释
之间的误差修改其权值,使Am与期望的Tm,(m=l,…,q) 尽可能接近
12
.
2.3 学习规则
BP算法是由两部分组成,信息的正向传递与误差 的反向传播
– 正向传播过程中,输入信息从输入层经隐含层逐层计 算传向输出层,每一层神经元的状态只影响下一层神 经元的状态
– 如果在输出层未得到期望的输出,则计算输出层的误 差变化值,然后转向反向传播,通过网络将误差信号 沿原来的连接通路反传回来修改各层神经元的权值直 至达到期望目标
38
.
4.2 附加动量法
带有附加动量因子的权值调节公式
其中k为训练次数,mc为动量因子,一般取0.95左右
附加动量法的实质是将最后一次权值变化的影响,通 过一个动量因子来传递。
当动量因子取值为零时,权值变化仅根据梯度下降法产生

哈工大智能控制神经网络课件第五课径向基函数网络(RBFN)

哈工大智能控制神经网络课件第五课径向基函数网络(RBFN)

RBFN——迭代步骤III
第 i 步。确定 qi (1)令 k=1, 候选向量 v k p k r jk q j ,其中 r jk
j 1 i 1
pk , q j q j,q j

ˆ (2)计算 g i
vk t vk vk
T
T
,k
ˆ2 T gi vk vk t t
T

(3)返回(1), 直至 P 的所有 s 个分量计算结束。 (1)取对应 k 最大的索引,令其为 k * 。最终选取 q i = v k * 。
(4) 重复上述步骤
MATLAB RBFN: RBFN设计函数
RBFN设计和训练合一 net = newrbe(P,T,SPREAD)
对每一个输入样本对应一个RBF神经元; Spread控制RBF形状,^光滑 当出现Rank deficient时,应减小spread重新 设计
MATLAB RBFN: RBFN设计函数(2)
RBFN——计算方法
P 为方阵且非奇异时有解: w P 1 t
ˆ P 为长方阵(数据远多于未知数个数),有 w P t 。
根据矩阵的 QR 分解,代入前式,有
t Q R w Q g ,g=Rw
s
或记为 t
q g ,即 t 在一组基 qi 上的分解。
i i i 1
ˆ 同样根据最小二乘法有: g Q Q Q T t 1Q T t 。
[net,tr] = newrb(P,T,GOAL,SPREAD,MN,DF)
自动计算RBF神经元个数; GOAL为最小误差; MN:最大神经元数目;DF:每次递增数
newrb创建过程
以所有样本输入网络,找到误差最大样本; 增加一个(或多个)隐含层神经元,中心值c 与该样本向量相同; 重新调整w,使误差最小; 如果误差满足要求或神经元数量足够多,退 出,否则继续上述过程;

BP神经网络PPTPPT课件

BP神经网络PPTPPT课件

➢ 兴奋与抑制 信号可以起兴奋作用,也可以起抑制作用 一个神经元接受信号的累积效果(综合大小,代
数和)决定该神经元的状态(兴奋、抑制) 每个神经元可以有一个“阈值”
精选ppt课件2021
6
2. 人工神经网络与人工神经元
人工神经网络是对生物神经系统的模拟。 大量简单的计算单元(结点,神经元)以某种形式
输 出 层 n L1 m
4相 邻 层 连 接 权 值
l 0,1, ..., L 1
l ij



l-1层


点 i 与 当 前 精选ppt课件2021

l层


j的




31
BP算法训练过程描述
5假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k; 位于当前层第j个计算单元的输出为Olj,j 1,...,nl
连接,形成一个网络. 其 中 某 些 因 素 , 如 : 连 接 强 度 (连 接 权 值 , 其 大 小 决
定 信 号 传 递 强 弱 ); 结 点 计 算 特 性 (激 活 特 性 ,神 经 元 的 输 入 输 出 特 性 );甚 至 网 络 结 构 等 , 可 依 某 种 规 则 随 外 部 数 据 进行适当调整,最终实现某种功能。
输 入 至 网 络 , 由 前 向 后 , 逐 层 得 到 各 计 算 单 元 的 实 际 输 出 y:
对 于 当 前 层 l 的 第 j个 计 算 单 元 ,j 1,..., nl











n l1

BP神经网络原理ppt课件

BP神经网络原理ppt课件

精选ppt课件
6
(3)输入和输出神经元的确定
利用多元回归分析法对神经网络的输入参数 进行处理,删除相关性强的输入参数,来减 少输入节点数。
(4)算法优化
由于BP算法采用的是剃度下降法,因而易陷 于局部最小并且训练时间较长。用基于生物 免疫机制地既能全局搜索又能避免未成熟收 敛的免疫遗传算法IGA取代传统BP算法来克 服此缺点。
精选ppt课件
13
(2)学习率对收敛速度的影响 学习率的设置对BP算法的收敛性有很大的影响。
学习率过小,误差波动小,但学习速度慢,往往由于训 练时间的限制而得不到满意解;学习率过大,学习速度 加快,会引起网络出现摆动现象,导致不收敛的危险。 因此,选择一个合适的学习率是B P算法的一个较关 键的问题。学习率的主要作用是调整权值、阈值的 修正量. (3)隐层层数的选择对收敛速度的影响
精选ppt课件
12
BP神经网络收敛速度
阈值、学习率、隐层层数、隐层节点个数等对神 经网络的学习速度(收敛速度)都有较大的影响。本 文在BP网络的基础上,研究讨论了各个参数对收敛 速度的影响,以减小选取网络结构和决定各参数值的 盲目性,达到提高收敛速度的目的。
(1)初始权值和阈值对收敛速度的影响 初始权值和阈值要选得小一些。选择隐层节点数的 原则是尽量使网络结构简单,运算量小。从实验数据 分析可知:当节点数太少时,每个节点负担过重,迭代 而有的选择却要迭代几千次,或者更多,甚至不收敛。
精选ppt课件
11
BP神经网络理论应用于系统安全评价中的优点
(1)利用神经网络并行结构和并行处理的特征,通 过适当选择评价项目,能克服安全评价的片面性, 可以全面评价系统的安全状况和多因数共同作用下 的安全状态。 (2)运用神经网络知识存储和自适应特征,通过适 应补充学习样本,可以实现历史经验与新知识完满 结合,在发展过程中动态地评价系统的安全状态。 (3)利用神经网络理论的容错特征,通过选取适当 的作用函数和数据结构,可以处理各种非数值性指 标,实现对系统安全状态的模糊评价。

哈工大模式识别课件-第6章多层神经网络

哈工大模式识别课件-第6章多层神经网络

谢谢观看
算法的优缺点分析
01
优点
02
适用于多层神经网络的训练,能够学习复杂的非线性映射关系。
通过反向传播不断调整权重和偏置,能够逐渐减小误差,提高
03
网络的准确性。
算法的优缺点分析
• 可以使用各种优化算法(如梯度 下降法)来更新网络参数,实现 快速收敛。
算法的优缺点分析
01
缺点
02 在训练过程中容易陷入局部最小值,导致 网络性能不佳。
语音识别
通过循环神经网络和长短时记忆网络实现语 音到文本的转换。
自然语言处理
利用循环神经网络和变换器模型进行文本生 成、情感分析等任务。
推荐系统
利用神经网络对用户行为进行建模,实现个 性化推荐。
02
多层感知器
感知器的线性分类能力
01
感知器是一种线性分类器,其分类能力取决于数据 是否线性可分。
02
03
对于大规模数据集,训练时间较长,且需 要大量的存储空间和计算资源。
04
对于非凸优化问题,可能会出现多个局部 最小值,导致不同的训练结果。
04
深度神经网络
深度神经网络的基本概念
深度神经网络是一种多层的神经网络结构,通过组合低层特征形成更加抽象的高层 表示,以解决复杂分类和回归问题。
它由多个隐藏层组成,每个隐藏层包含多个神经元,用于学习和提取输入数据的层 次特征。
多层感知器的训练方法

多层感知器的训练通常采用反向 传播算法进行。
02
反向传播算法通过计算输出层与 实际标签之间的误差,并根据误
差调整权重来逐渐减小误差。
反向传播算法使用梯度下降法来 最小化误差函数,并使用链式法 则计算梯度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档