航线运行安全审计手册(LOSA)
Info-Note-5-Doc9803alltext航线安全审计.en
Approved by the Secretary General and published under his authorityLine OperationsSafety Audit (LOSA)First Edition — 2002Doc 9803AN/761AMENDMENTSThe issue of amendments is announced regularly in the ICAO Journal and in the monthly Supplement to the Catalogue of ICAO Publications and Audio-visual Training Aids, which holders of this publication should consult. The space below is provided to keep a record of such amendments.RECORD OF AMENDMENTS AND CORRIGENDA AMENDMENTS CORRIGENDANo.DateapplicableDateenteredEnteredby No.Dateof issueDateenteredEnteredbyTABLE OF CONTENTSPage PageForeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(v) Acronyms and Abbreviations . . . . . . . . . . . . . . . . .(vi) Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(vii) Chapter 1.Basic error management concepts. .1-11.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . .1-11.2Background . . . . . . . . . . . . . . . . . . . . . . . . .1-2Reactive strategies. . . . . . . . . . . . . . . . . .1-2Combined reactive/proactive strategies. .1-2Proactive strategies . . . . . . . . . . . . . . . . .1-41.3 A contemporary approach to operationalhuman performance and error. . . . . . . . . . .1-51.4The role of the organizational culture . . . .1-71.5Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . .1-7 Chapter2.Implementing LOSA . . . . . . . . . . . . .2-12.1History of LOSA. . . . . . . . . . . . . . . . . . . . .2-12.2The Threat and Error Management Model.2-1Threats and errors defined. . . . . . . . . . . .2-1Definitions of crew error response . . . . .2-4Definitions of error outcomes. . . . . . . . .2-4Undesired Aircraft States . . . . . . . . . . . .2-42.3LOSA operating characteristics . . . . . . . . .2-5Observer assignment . . . . . . . . . . . . . . . .2-7Flight crew participation. . . . . . . . . . . . .2-72.4How to determine the scope of a LOSA . .2-72.5Once the data is collected. . . . . . . . . . . . . .2-82.6Writing the report . . . . . . . . . . . . . . . . . . . .2-82.7Success factors for LOSA. . . . . . . . . . . . . .2-8Chapter3.LOSA and the safety changeprocess (SCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-13.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . .3-13.2 A constantly changing scene. . . . . . . . . . . .3-13.3One operator’s example of an SCP . . . . . .3-2 Chapter4.How to set up a LOSA —US Airways experience . . . . . . . . . . . . . . . . . . . . . .4-14.1Gathering information. . . . . . . . . . . . . . . . .4-14.2Interdepartmental support . . . . . . . . . . . . . .4-14.3LOSA steering committee. . . . . . . . . . . . . .4-1Safety department . . . . . . . . . . . . . . . . . .4-1Flight operations and trainingdepartments . . . . . . . . . . . . . . . . . . . . . . .4-2Pilots union . . . . . . . . . . . . . . . . . . . . . . .4-24.4The key steps of a LOSA. . . . . . . . . . . . . .4-2Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2Action plan . . . . . . . . . . . . . . . . . . . . . . .4-24.5The keys to an effective LOSA . . . . . . . . .4-4Confidentiality and no-jeopardy. . . . . . .4-4The role of the observer . . . . . . . . . . . . .4-54.6Promoting LOSA for flight crews . . . . . . .4-5 Appendix A — Examples of the various forms utilized by LOSA . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 Appendix B — Example of an introductory letterby an airline to its flight crews. . . . . . . . . . . . . . . .B-1 Appendix C — List of recommended readingand reference material. . . . . . . . . . . . . . . . . . . . . . .C-1FOREWORDThe safety of civil aviation is the major objective of the International Civil Aviation Organization (ICAO). Consider-able progress has been made in increasing safety, but additional improvements are needed and can be achieved. It has long been known that the majority of aviation accidents and incidents result from less than optimum human per-formance, indicating that any advance in this field can be expected to have a significant impact on the improvement of aviation safety.This was recognized by the ICAO Assembly, which in 1986 adopted Resolution A26-9 on Flight Safety and Human Factors. As a follow-up to the Assembly Resolution, the Air Navigation Commission formulated the following objective for the task:“To improve safety in aviation by making States more aware and responsive to the importance of Human Factors in civil aviation operations through the provision of practical Human Factors materials and measures, developed on the basis of experience in States, and by developing and recommending appropriate amendments to existing material in Annexes and other documents with regard to the role of Human Factors in the present and future operational environments. Special emphasis will be directed to the Human Factors issues that may influence the design, transition and in-service use of the future ICAO CNS/A TM systems.”One of the methods chosen to implement Assembly Resolution A26-9 is the publication of guidance materials, including manuals and a series of digests, that address various aspects of Human Factors and its impact on aviation safety. These documents are intended primarily for use by States to increase the awareness of their personnel of the influence of human performance on safety.The target audience of Human Factors manuals and digests are the managers of both civil aviation administrations and the airline industry, including airline safety, training and operational managers. The target audience also includes regulatory bodies, safety and investigation agencies and training establishments, as well as senior and middle non-operational airline management.This manual is an introduction to the latest information available to the international civil aviation community on the control of human error and the development of counter-measures to error in operational environments. Its target audience includes senior safety, training and operational personnel in industry and regulatory bodies.This manual is intended as a living document and will be kept up to date by periodic amendments. Subsequent editions will be published as new research results in increased knowledge on Human Factors strategies and more experience is gained regarding the control and management of human error in operational environments.ACRONYMS AND ABBREVIATIONS ADS Automatic Dependent SurveillanceA TC Air Traffic ControlCFIT Controlled Flight Into TerrainCNS/A TM Communications, Navigation and Surveillance/Air Traffic Management CPDLC Controller-Pilot Data Link CommunicationsCRM Crew Resource ManagementDFDR Digital Flight Data RecorderETOPS Extended Range Operations by Twin-engined AeroplanesFAA Federal Aviation AdministrationFDA Flight Data AnalysisFMS Flight Management SystemFOQA Flight Operations Quality AssuranceICAO International Civil Aviation OrganizationLOSA Line Operations Safety AuditMCP Mode Control PanelQAR Quick Access RecorderRTO Rejected Take-OffSCP Safety Change ProcessSOPs Standard Operating ProceduresTEM Threat and Error ManagementUTTEM University of Texas Threat and Error ManagementINTRODUCTION1.This manual describes a programme for the management of human error in aviation operations known as Line Operations Safety Audit (LOSA). LOSA is proposed as a critical organizational strategy aimed at developing countermeasures to operational errors. It is an organizational tool used to identify threats to aviation safety, minimize the risks such threats may generate and implement measures to manage human error in operational contexts. LOSA enables operators to assess their level of resilience to systemic threats, operational risks and front-line personnel errors, thus providing a principled, data-driven approach to prioritize and implement actions to enhance safety.2.LOSA uses expert and highly trained observers to collect data about flight crew behaviour and situational factors on “normal” flights. The audits are conducted under strict no-jeopardy conditions; therefore, flight crews are not held accountable for their actions and errors that are observed. During flights that are being audited, observers record and code potential threats to safety; how the threats are addressed; the errors such threats generate; how flight crews manage these errors; and specific behaviours that have been known to be associated with accidents and incidents.3.LOSA is closely linked with Crew Resource Management (CRM) training. Since CRM is essentially error management training for operational personnel, data from LOSA form the basis for contemporary CRM training refocus and/or design known as Threat and Error Man-agement (TEM) training. Data from LOSA also provide a real-time picture of system operations that can guide organizational strategies in regard to safety, training and operations. A particular strength of LOSA is that it identifies examples of superior performance that can be reinforced and used as models for training. In this way, training inter-ventions can be reshaped and reinforced based on successful performance, that is to say, positive feedback. This is indeed a first in aviation, since the industry has traditionally collected information on failed human performance, such as in accidents and incidents. Data collected through LOSA are proactive and can be immediately used to prevent adverse events.4.LOSA is a mature concept, yet a young one. LOSA was first operationally deployed following the First LOSA Week, which was hosted by Cathay Pacific Airways in Cathay City, Hong Kong, from 12 to 14 March 2001. Although initially developed for the flight deck sector, there is no reason why the methodology could not be applied to other aviation operational sectors, including air traffic control, maintenance, cabin crew and dispatch.5.The initial research and project definition was a joint endeavour between The University of Texas at Austin Human Factors Research Project and Continental Airlines, with funding provided by the Federal Aviation Admin-istration (FAA). In 1999, ICAO endorsed LOSA as the primary tool to develop countermeasures to human error in aviation operations, developed an operational partnership with The University of Texas at Austin and Continental Airlines, and made LOSA the central focus of its Flight Safety and Human Factors Programme for the period 2000 to 2004.6.As of February 2002, the LOSA archives contained observations from over 2 000 flights. These observations were conducted within the United States and internationally and involved four United States and four non-United States operators. The number of operators joining LOSA has constantly increased since March 2001 and includes major international operators from different parts of the world and diverse cultures.7.ICAO acts as an enabling partner in the LOSA programme. ICAO’s role includes promoting the importance of LOSA to the international civil aviation community; facilitating research in order to collect necessary data; acting as a cultural mediator in the unavoidably sensitive aspects of data collection; and contributing multicultural obser-vations to the LOSA archives. In line with these objectives, the publication of this manual is a first step at providing information and, therefore, at increasing awareness within the international civil aviation community about LOSA.8.This manual is an introduction to the concept, methodology and tools of LOSA and to the potential remedial actions to be undertaken based on the data collected under LOSA. A very important caveat must be introduced at this point: this manual is not intended to convert readers into instant expert observers and/or LOSA auditors. In fact, it is strongly recommended that LOSA not be attempted without a formal introduction to it for the(viii)Line Operations Safety Audit (LOSA)following reasons. First, the forms presented in Appendix A are for illustration purposes exclusively, since they are periodically amended on the basis of experience gained and feedback obtained from continuing audits. Second, formal training in the methodology, in the use of LOSA tools and, most important, in the handling of the highly sensitive data collected by the audits is absolutely essential. Third, the proper structuring of the data obtained from the audits is of paramount importance.9.Therefore, until extensive airline experience is accumulated, it is highly desirable that LOSA training be coordinated through ICAO or the founding partners of the LOSA project. As the methodology evolves and reaches full maturity and broader industry partnerships are developed, LOSA will be available without restrictions to the international civil aviation community.10.This manual is designed as follows:•Chapter 1 includes an overview on safety, and human error and its management in aviationoperations. It provides the necessary backgroundinformation to understand the rationale for LOSA.•Chapter 2 discusses the LOSA methodology and provides a guide to the implementation of LOSAwithin an airline. It also introduces a model of crewerror management and proposes the error classi-fication utilized by LOSA, which is essentiallyoperational and practical.•Chapter 3 discusses the safety change process that should take place following the implementation ofLOSA.•Chapter 4 introduces the example of one operator’s experience in starting a LOSA.•Appendix A provides examples of the various forms utilized by LOSA.•Appendix B provides an example of an introductory letter by an airline to its flight crews.•Appendix C provides a list of recommended reading and reference material.11.This manual is a companion document to the Human Factors Training Manual (Doc 9683). The cooperation of the following organizations in the production of this manual is acknowledged: The University of Texas at Austin Human Factors Research Project, Continental Airlines, US Airways and ALPA, International. Special recognition is given to Professor Robert L. Helmreich, James Klinect and John Wilhelm of The University of Texas at Austin Human Factors Research Project; Captains Bruce Tesmer and Donald Gunther of Continental Airlines; Captains Ron Thomas and Corkey Romeo of US Airways; and Captain Robert L. Sumwalt III of US Airways and of ALPA, International.Chapter 1BASIC ERROR MANAGEMENT CONCEPTS1.1INTRODUCTION1.1.1Historically, the way the aviation industry has investigated the impact of human performance on aviation safety has been through the retrospective analyses of those actions by operational personnel which led to rare and drastic failures. The conventional investigative approach is for investigators to trace back an event under consideration to a point where they discover particular actions or decisions by operational personnel that did not produce the intended results and, at such point, conclude human error as the cause. The weakness in this approach is that the conclusion is generally formulated with a focus on the outcome, with limited consideration of the processes that led up to it. When analysing accidents and incidents, investigators already know that the actions or decisions by operational personnel were “bad” or “inappropriate”, because the “bad” outcomes are a matter of record. In other words, investigators examining human performance in safety occurrences enjoy the benefit of hindsight. This is, however, a benefit that operational personnel involved in accidents and incidents did not have when they selected what they thought of as “good” or “appropriate” actions or decisions that would lead to “good” outcomes.1.1.2It is inherent to traditional approaches to safety to consider that, in aviation, safety comes first. In line with this, decision making in aviation operations is considered to be 100 per cent safety-oriented. While highly desirable, this is hardly realistic. Human decision making in operational contexts is a compromise between production and safety goals (see Figure 1-1). The optimum decisions to achieve the actual production demands of the operational task at hand may not always be fully compatible with the optimumFigure 1-1.Operational Behaviours — Accomplishing the system’s goals1-2Line Operations Safety Audit (LOSA)decisions to achieve theoretical safety demands. All production systems — and aviation is no exception —generate a migration of behaviours: due to the need for economy and efficiency, people are forced to operate at the limits of the system’s safety space. Human decision making in operational contexts lies at the intersection of production and safety and is therefore a compromise. In fact, it might be argued that the trademark of experts is not years of experience and exposure to aviation operations, but rather how effectively they have mastered the necessary skills to manage the compromise between production and safety. Operational errors are not inherent in a person, although this is what conventional safety knowledge would have the aviation industry believe. Operational errors occur as a result of mismanaging or incorrectly assessing task and/or situ-ational factors in a specific context and thus cause a failed compromise between production and safety goals.1.1.3The compromise between production and safety is a complex and delicate balance. Humans are generally very effective in applying the right mechanisms to successfully achieve this balance, hence the extraordinary safety record of aviation. Humans do, however, occasionally mismanage or incorrectly assess task and/or situational factors and fail in balancing the compromise, thus contributing to safety breakdowns. Successful compromises far outnumber failed ones; therefore, in order to understand human performance in context, the industry needs to systematically capture the mechanisms underlying suc-cessful compromises when operating at the limits of the system, rather than those that failed. It is suggested that understanding the human contribution to successes and failures in aviation can be better achieved by monitoring normal operations, rather than accidents and incidents. The Line Operations Safety Audit (LOSA) is the vehicle endorsed by ICAO to monitor normal operations.1.2BACKGROUNDReactive strategiesAccident investigation1.2.1The tool most often used in aviation to document and understand human performance and define remedial strategies is the investigation of accidents. However, in terms of human performance, accidents yield data that are mostly about actions and decisions that failed to achieve the successful compromise between production and safety discussed earlier in this chapter.1.2.2There are limitations to the lessons learned from accidents that might be applied to remedial strategies vis-à-vis human performance. For example, it might be possible to identify generic accident-inducing scenarios such as Controlled Flight Into Terrain (CFIT), Rejected Take-Off (RTO), runway incursions and approach-and-landing acci-dents. Also, it might be possible to identify the type and frequency of external manifestations of errors in these generic accident-inducing scenarios or discover specific training deficiencies that are particularly related to identified errors. This, however, provides only a tip-of-the-iceberg perspective. Accident investigation, by definition, concen-trates on failures, and in following the rationale advocated by LOSA, it is necessary to better understand the success stories to see if they can be incorporated as part of remedial strategies.1.2.3This is not to say that there is no clear role for accident investigation within the safety process. Accident investigation remains the vehicle to uncover unanticipated failures in technology or bizarre events, rare as they may be. Accident investigation also provides a framework: if only normal operations were monitored, defining unsafe behaviours would be a task without a frame of reference. Therefore, properly focused accident investigation can reveal how specific behaviours can combine with specific circumstances to generate unstable and likely catastrophic scenarios. This requires a contemporary approach to the investigation: should accident investigation be restricted to the retrospective analyses discussed earlier, its contribution in terms of human error would be to increase existing industry databases, but its usefulness in regard to safety would be dubious. In addition, the information could possibly provide the foundations for legal action and the allocation of blame and punishment.Combined reactive/proactive strategies Incident investigation1.2.4 A tool that the aviation industry has increasingly used to obtain information on operational human perform-ance is incident reporting. Incidents tell a more complete story about system safety than accidents do because they signal weaknesses within the overall system before the system breaks down. In addition, it is accepted that incidents are precursors of accidents and that N-number of incidents of one kind take place before an accident of the same kind eventually occurs. The basis for this can be traced back almost 30 years to research on accidents from different industries, and there is ample practical evidence that supports this research. There are, nevertheless, limitationsChapter 1.Basic error management concepts1-3on the value of the information on operational human performance obtained from incident reporting.1.2.5First, reports of incidents are submitted in the jargon of aviation and, therefore, capture only the external manifestations of errors (for example, “misunderstood a frequency”, “busted an altitude”, and “misinterpreted a clearance”). Furthermore, incidents are reported by the individuals involved, and because of biases, the reported processes or mechanisms underlying errors may or may not reflect reality. This means that incident-reporting systems take human error at face value, and, therefore, analysts are left with two tasks. First, they must examine the reported processes or mechanisms leading up to the errors and establish whether such processes or mechanisms did indeed underlie the manifested errors. Then, based on this relatively weak basis, they must evaluate whether the error manage-ment techniques reportedly used by operational personnel did indeed prevent the escalation of errors into a system breakdown.1.2.6Second, and most important, incident reporting is vulnerable to what has been called “normalization of deviance”. Over time, operational personnel develop infor-mal and spontaneous group practices and shortcuts to circumvent deficiencies in equipment design, clumsy pro-cedures or policies that are incompatible with the realities of daily operations, all of which complicate operational tasks. These informal practices are the product of the collective know-how and hands-on expertise of a group, and they eventually become normal practices. This does not, however, negate the fact that they are deviations from procedures that are established and sanctioned by the organization, hence the term “normalization of deviance”. In most cases normalized deviance is effective, at least temporarily. However, it runs counter to the practices upon which system operation is predicated. In this sense, like any shortcut to standard procedures, normalized deviance carries the potential for unanticipated “downsides” that might unexpectedly trigger unsafe situations. However, since they are “normal”, it stands to reason that neither these practices nor their downsides will be recorded in incident reports.1.2.7Normalized deviance is further compounded by the fact that even the most willing reporters may not be able to fully appreciate what are indeed reportable events. If operational personnel are continuously exposed to sub-standard managerial practices, poor working conditions and/or flawed equipment, how could they recognize such factors as reportable problems?1.2.8Thus, incident reporting cannot completely reveal the human contribution to successes or failures in aviation and how remedial strategies can be improved to enhance human performance. Incident reporting systems are certainly better than accident investigations in understanding system performance, but the real challenge lies in taking the next step — understanding the processes underlying human error rather than taking errors at face value. It is essential to move beyond the visible manifestations of error when designing remedial strategies. If the aviation industry is to be successful in modifying system and individual per-formance, errors must be considered as symptoms that suggest where to look further. In order to understand the mechanisms underlying errors in operational environments, flaws in system performance captured through incident reporting should be considered as symptoms of mismatches at deeper layers of the system. These mismatches might be deficiencies in training systems, flawed person/technology interfaces, poorly designed procedures, corporate pressures, poor safety culture, etc. The value of the data generated by incident reporting systems lies in the early warning about areas of concern, but such data do not capture the concerns themselves.Training1.2.9The observation of training behaviours (during flight crew simulator training, for example) is another tool that is highly valued by the aviation industry to understand operational human performance. However, the “production”component of operational decision making does not exist under training conditions. While operational behaviours during line operations are a compromise between production and safety objectives, training behaviours are absolutely biased towards safety. In simpler terms, the compromise between production and safety is not a factor in decision making during training (see Figure 1-2). Training behaviours are “by the book”.1.2.10Therefore, behaviours under monitored conditions, such as during training or line checks, may provide an approximation to the way operational personnel behave when unmonitored. These observations may contribute to flesh out major operational questions such as significant procedural problems. However, it would be incorrect and perhaps risky to assume that observing personnel during training would provide the key to understanding human error and decision making in unmonitored operational contexts.Surveys1.2.11Surveys completed by operational personnel can also provide important diagnostic information about daily operations and, therefore, human error. Surveys1-4Line Operations Safety Audit (LOSA)provide an inexpensive mechanism to obtain significant information regarding many aspects of the organization, including the perceptions and opinions of operational personnel; the relevance of training to line operations; the level of teamwork and cooperation among various employee groups; problem areas or bottlenecks in daily operations; and eventual areas of dissatisfaction. Surveys can also probe the safety culture; for example, do personnel know the proper channels for reporting safety concerns and are they confident that the organization will act on expressed concerns? Finally, surveys can identify areas of dissent or confusion, for example, diversity in beliefs among particular groups from the same organization regarding the appropriate use of procedures or tools. On the minus side, surveys largely reflect perceptions. Surveys can be likened to incident reporting and are therefore subject to the shortcomings inherent to reporting systems in terms of understanding operational human performance and error. Flight data recording1.2.12Digital Flight Data Recorder (DFDR) and Quick Access Recorder (QAR) information from normal flights is also a valuable diagnostic tool. There are, however, some limitations about the data acquired through these systems. DFDR/QAR readouts provide information on the frequency of exceedences and the locations where they occur, but the readouts do not provide information on the human behaviours that were precursors of the events. While DFDR/QAR data track potential systemic problems, pilot reports are still necessary to provide the context within which the problems can be fully diagnosed.1.2.13Nevertheless, DFDR/QAR data hold high cost/efficiency ratio potential. Although probably under-utilized because of cost considerations as well as cultural and legal reasons, DFDR/QAR data can assist in identifying operational contexts within which migration of behaviours towards the limits of the system takes place.Proactive strategiesNormal line operations monitoring1.2.14The approach proposed in this manual to identify the successful human performance mechanisms that contribute to aviation safety and, therefore, to the design of countermeasures against human error focuses on the monitoring of normal line operations.Figure 1-2.Training Behaviours — Accomplishing training goals。
差错与威胁管理(TEM)之基础理念
差错与威胁管理(TEM)之:基础理念理解差错与威胁管理(TEM)得最简单方法就是将它比作一个汽车司机得“防御性”驾驶。
防御性驾驶得目得不就是教人如何驾驶车辆(例如,如何操作手动变速箱),而就是要强调驾驶技术,人们可以使用以尽量减少安全风险(如依靠于自身驾驶技术来控制后轮打滑)。
同样,TEM不教飞行员如何从技术上驾驶一架飞机;相反,它提倡一种积极主动得安全理念哲学,并建立安全裕度。
TEM培训可以作为飞行员“防御性”飞行得理念。
TEM提出得威胁(例如恶劣天气),差错(如一名飞行员错选择了自动化模式),与不希望得飞机状态(例如高度偏差、航线偏离)就是机组必须设法保障安全得日常事件。
TEM起源TEM得起源与航线运行安全审计(LOSA)密不可分。
1994年德克萨斯大学人为因素研究项目组与达美航空公司之间合作利用驾驶舱观察座实施定期航班航线得观察审计。
当时所有方认识到,如果航线审核工作要发挥作用,即,真得瞧瞧航线运行上发生了什么,必须实施保密性得保证——不会让法规或组织管理层危害到被观察得机组。
机组必须相信不会有任何个人得反应;否则,她们知道被观察与审计,往往会“假装”或“想方设法”呈现出她们最好得表现。
第一个观察模式就是德克萨斯大学人为因素研究项目组为了评价机组资源管理(CRM)得行为。
该模式然后扩大到解决差错与差错得管理。
观察员注意到所犯得差错类型,谁造成差错以及对差错得响应(即,差错就是否检测到,由谁发现),与差错得结果。
知道差错发生而不真正知道当时得条件,因此,研究人员开发了威胁与威胁管理得概念。
1996年,美国大陆航空公司进行第一次完整得基于TEM理念得航线运行安全审计LOSA。
大陆航空突出了最常见得威胁,最常见得差错,最常见得不希望得飞机状态。
根据数据驱动得报告,公司成立跨部门委员会推出解决方案。
公司还为其所有得飞行员开展了为期一天TEM得培训课程,介绍了威胁与差错得概念,然后介绍了LOSA调查得结果。
民航机组资源管理训练效果评估模型
民航机组资源管理训练效果评估模型杜红兵;张庆庆【摘要】In order to preferably improve cooperation capabilities of flight crew,the training effectiveness of crew resource management (CRM)should be evaluated.According to civil aviation regulatory,expert in-terview results and Kirkpatrick's hierarchy model,twenty evaluation indictors were selected based on four metrics of CRM training.And then,evaluation indictor system of CRM training effectiveness with five in-gredients,namelylectures,organizational arrangements and facilities,participants'skills,team climate, and organizational performance,was established through exploratory factor analysis of twenty evaluation indictors usingSPSS19.0.To further quantilize the casual relationships among five ingredients,evaluation measurement model and structural model of flight CRM training effectiveness were modified by AMOS17. 0.Finally,an integrated evaluation model of CRM training effectiveness was generated.The study can act as reference for airline to improve effectiveness of CRM training.%为更好地提升飞行机组的配合与协作能力,提高航空运输安全水平,需要评估机组资源管理(CRM)训练的效果.依据民航规章要求、专家访谈结果并结合Kirkpatrick模型,从反应、学习、行为、组织4个层次选取并确定20项CRM训练效果评估指标.对20项评估指标进行探索性因子分析,建立以课堂讲授、组织安排与设施、学员技能、团队氛围、组织绩效5因子 CRM 训练效果的评估指标体系.为进一步量化因子间的因果关系,使用AMOS17.0软件对CRM训练效果评估测量模型及结构模型进行修正,最终形成一套完整的民航CRM训练效果评估模型.该模型为中国航空公司改善CRM训练及其效果评估工作提供了参考.【期刊名称】《解放军理工大学学报(自然科学版)》【年(卷),期】2016(017)003【总页数】5页(P246-250)【关键词】航空运输;CRM训练效果;结构方程模型;评估模型;因子分析【作者】杜红兵;张庆庆【作者单位】中国民航大学飞行技术学院,天津 300300;中国民航大学飞行技术学院,天津 300300【正文语种】中文【中图分类】V328.3自1979年美国的Helmreich和Foushee首次提出机组资源管理(crew resource management,CRM)概念以来,CRM训练就得到了国际民航组织、欧洲航空安全局和美国联邦航空局的重视[1],并在航空运营规章中明确要求对机组进行CRM 训练。
空中交通管制安全管理体系及其信息系统
南京航空航天大学硕士学位论文摘要本文基于现有的安全管理基础,以发挥安全管理效能,保障航空安全为目的,进行空管安全管理体系及其信息系统的研究。
本文运用文献法、比较研究法、理论研究等方法,从以下几方面展开了对本论题的研究,首先运用归纳法总结与概括了美国、欧控等航空业发达国家或组织的安全管理机制与策略;在此基础上,以国际民航组织的安全管理相关规定为标准,借鉴国外先进的安全理念与管理方法,结合我国空管系统的实际情况,研究了空管安全管理体系结构,从空管安全管理政策、机构、策略和文化四个主要方面构建了空管安全管理体系模型,并着重分析了安全评估的管理策略,描述了对危险事件进行风险管理的过程和判断方法;为保证空管安全管理的有效实施以及安全管理体系价值的真正实现,分析了空管安全管理要素与安全影响因素;最后在安全管理理论研究的基础上,设计与开发了空管安全管理信息系统,该系统实现了报告的提交、分析、统计和信息的发布等主要功能。
关键词:空中交通管制,安全管理体系,安全评估,安全管理要素,安全影响因素,安全管理信息系统I空中交通管制安全管理体系及其信息系统AbstractBased on the existing safety management, safety management system and information system for air traffic control are researched, with the purpose of ensuring aviation safety and performing the efficiency of safety management.With the methodologies of literature, comparison and theoretical research, the thesis is researched as follows. Firstly, safety management system of developed country or organization is generalized, like FAA and EUROCONTROL. According to ICAO regulations and standards of safety management system, safety management system for air traffic control is studied with the consideration of the advanced safety management theory and the status of China civil aviation. The safety management system is constituted from the four aspects of policies, organization, strategies and culture, with the emphasis on the safety evaluation strategy, and the process and method of risk management to hazard is also described. Further, safety management elements and safety factors of air traffic control are analyzed in order to implement successfully safety management system. Finally, upon the theoretical research, safety management information system for air traffic control is designed and developed, with the primary function of reports analyzing and information promulgating.Key Words:Air Traffic Control, Safety Management System, Safety Evaluation, Safety Management Elements, Safety Factors, Safety Management Information SystemII南京航空航天大学硕士学位论文图表目录表1.1 1997 年至2004 年全民航事故征候统计表 (1)表3.1 危险分类说明表 (25)表3.2 危险发生可能性定性和定量关系 (26)表4.1 安全管理要素在空管安全管理中的响应 (31)图2.1 EUROCONTROL 安全机构系统表述图 (10)图2.2 澳大利亚安全管理流程图 (14)图3.1 空管安全管理体系结构图 (21)图3.2 安全评估过程 (24)图3.3 判断风险可否接受的依据 (26)图5.1 空管安全管理信息系统总体框架图 (39)图5.2 系统主要流程图 (42)图5.3 系统结构图 (44)图5.4 登录界面 (46)图5.5 普通用户主界面 (47)图5.6 安全专家主界面 (48)图5.7 原始报告显示界面 (49)图5.8 分析报告提交界面 (50)图5.9 管理员主界面 (51)图5.10 分析报告查看界面 (52)图5.11 分析报告显示界面 (53)图5.12 信息查看界面 (54)图5.13 统计结果查看界面 (55)V承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
差错和威胁管理(TEM)之:基础理念
差错和威胁管理(TEM)之:基础理念理解差错和威胁管理(TEM)的最简单方法是将它比作一个汽车司机的“防御性”驾驶。
防御性驾驶的目的不是教人如何驾驶车辆(例如,如何操作手动变速箱),而是要强调驾驶技术,人们可以使用以尽量减少安全风险(如依靠于自身驾驶技术来控制后轮打滑)。
同样,TEM不教飞行员如何从技术上驾驶一架飞机;相反,它提倡一种积极主动的安全理念哲学,并建立安全裕度。
TEM培训可以作为飞行员“防御性”飞行的理念。
TEM提出的威胁(例如恶劣天气),差错(如一名飞行员错选择了自动化模式),和不希望的飞机状态(例如高度偏差、航线偏离)是机组必须设法保障安全的日常事件。
TEM起源TEM的起源和航线运行安全审计(LOSA)密不可分。
1994年德克萨斯大学人为因素研究项目组和达美航空公司之间合作利用驾驶舱观察座实施定期航班航线的观察审计。
当时所有方认识到,如果航线审核工作要发挥作用,即,真的看看航线运行上发生了什么,必须实施保密性的保证——不会让法规或组织管理层危害到被观察的机组。
机组必须相信不会有任何个人的反应;否则,他们知道被观察和审计,往往会“假装”或“想方设法”呈现出他们最好的表现。
第一个观察模式是德克萨斯大学人为因素研究项目组为了评价机组资源管理(CRM)的行为。
该模式然后扩大到解决差错和差错的管理。
观察员注意到所犯的差错类型,谁造成差错以及对差错的响应(即,差错是否检测到,由谁发现),和差错的结果。
知道差错发生而不真正知道当时的条件,因此,研究人员开发了威胁和威胁管理的概念。
1996年,美国大陆航空公司进行第一次完整的基于TEM 理念的航线运行安全审计LOSA。
大陆航空突出了最常见的威胁,最常见的差错,最常见的不希望的飞机状态。
根据数据驱动的报告,公司成立跨部门委员会推出解决方案。
公司还为其所有的飞行员开展了为期一天TEM的培训课程,介绍了威胁和差错的概念,然后介绍了LOSA调查的结果。
飞行员们能够从一个不同的角度看到在他们身上威胁和差错发生率和如何管理不希望的飞机状态。
航线运行安全检查LOSA
第八章航线运行安全检查(LOSA)在航空科技高度发展的今天,大多数事故或事故征候都是由人为因素造成。
因此,识别人因失误、降低操作风险已经成为提高航空安全水平、预防事故或事故征候发生的重要手段。
航线运行安全检查(Line Operations Safety Audit,LOSA),是国外最近十年发展起来的一种控制人因失误的有效措施,可以协助航空公司发现安全隐患,确定飞机运营系统的优势和缺陷,同时,也能对机组的飞行技术和管理能力进行全面评估,从而提高整个系统安全的水平。
本章将介绍LOSA的有关涵义、发展过程、理论基础及其实施过程。
第一节航线运行安全检查(LOSA)概述1999年,国际民航组织(ICAO)正式承认并支持航线运行安全检查(LOSA),并把它作为预防飞行员人因失误的主要措施。
经过几年的发展和调整,LOSA已经成为获取航空公司飞行运行系统运作方式安全数据的一项系统性观察战略。
目前,LOSA收集的数据不仅可以了解飞行机组的飞行技术和管理能力、空中交通管理的指挥能力、驾驶舱机组与客舱机组的协调能力、地面支持能力,而且还可以对飞行运行中的组织性强项和弱点提供系统的诊断性指标1。
一、LOSA的涵义航线运行安全检查(LOSA)是一种实时观察数据的收集方式,指飞行专家和经过严格训练的观察员在日常定期航班飞行中,从备用位置(jump seat)观察航线飞行机组所遇到的与安全有关的各种潜在环境压力和机组操作失误。
从本质上来讲,LOSA完全等同于病人每年的体格检查。
人们希望通过定期体格检查来发现严重影响病人的潜在健康问题后,确立一套如针对血压,胆固醇和肝功等指标在内的诊断系统,从而给病人能够提供一些有效的治疗方案和改变生活习惯的建议。
LOSA的建立也具有相同的前提,目的也为航空公司提供一套航线安全运行系统的诊断方案和防御措施。
LOSA的核心原则是避免和杜绝各种形式的惩罚与责备,事先对飞行机组进行有关安全训练、安全文化及CRM等方面的访谈和问卷调查,试图从全方位、系统地评估航线飞行操作安全,观察的数据不仅记录了飞行情境中存在的外部威胁和机组操作的内部失误,同时也记录了机组如何处理和解决这些威胁和失误的操作方案,能够给航空安全管理部门提供现有的各种潜在威胁、机组的压力来源及容易疏忽和失误的地方,进而采取适当措施来消除这些潜在威胁。
中国民用航空局关于全面深化运输航空公司飞行训练改革的指导意见
中国民用航空局关于全面深化运输航空公司飞行训练改革的指导意见文章属性•【制定机关】中国民用航空局(已撤销)•【公布日期】2019.06.21•【文号】民航发〔2019) 39号•【施行日期】2019.06.21•【效力等级】部门规范性文件•【时效性】现行有效•【主题分类】民航正文关于全面深化运输航空公司飞行训练改革的指导意见民航发〔2019) 39号民航各地区管理局,各运输航空公司,各航校:飞行训练工作是保证飞行安全,实现民航高质量发展的基础性工作。
实践表明,通过有效飞行训练可以大幅降低不安全事件和事故的发生率。
在民航运输总量保持快速增长态势,飞行人力资源结构性不平衡状况长期突出,民航安全管理进入基于绩效的系统安全管理阶段的背景下,航空公司基于行为的反应式飞行训练机制与运行环境的深刻变化之间的不协调日益凸显。
航空公司在正确处理安全与训练、发展与训练、作风与训练、运行与训练的关系上存在偏差。
为坚守飞行安全底线,显著减小机组原因导致的事故率量级,大幅降低人为原因不安全事件比例,持续推动运输航空高质量发展,现就全面深化运输航空公司飞行训练改革提出以下指导意见:一、总体要求(一)指导思想。
以习近平新时代中国特色社会主义思想为指导,全面贯彻落实习近平总书记“安全隐患零容忍”“加强队伍作风和能力建设”重要批示指示精神,按照民航局“抓基层、打基础、苦练基本功”的要求,发扬中国民航飞行队伍“帮思想、教技术、带作风”的优良传统,遵循“调整、巩固、充实、提高”方针,着力推进飞行训练的质量和效率变革,建成支撑有力、协同高效、开放创新的新时代中国特色飞行训练体系,为全面建成民航强国提供重要战略支点。
(二)基本原则。
以风促训。
发扬民航重视作风建设的优良传统,以形成飞行员良好的职业素养为切入点,加强飞行员队伍的思想作风建设,将作风建设贯穿于每个飞行员职业生涯的全过程、全链条,促进先进的训练理念和手段落地生根,充分发挥飞行作风在全面深化飞行训练改革中的基础保障作用。
OSAG运维安全审计系统产品描述(2013版) 0929
OSAG 运维安全审计系统
一、适用范围
“天锐锋” OSAG运维安全审计系统是是广州天锐锋信息科技有限公司自主研发、拥有自主知识产权的,针对当前企业运维安全问题孕育而生的运维安全审计系统,它是一款可对服务器、网络设备、数据库等设备的运维操作进行全面的记录,并提供实时监控、非法操作阻断和全程回放等功能,集统一认证、帐号、授权、审计4A管理为一体的信息安全审计系统。
OSAG运维安全审计系统支持Telnet、SSH、FTP、RDP、VNC、HTTP等多种通信协议,支持windows、Linux、Unix等多种操作系统服务器、各类网络设备、Web应用等。
可广泛应用于金融、政府、电信、证券、邮政、税务、教育、大型企业等安全需求较高的行业。
二、主要功能
三、产品配置
OSAG 运维安全审计系统型号规格表
注:“●”代表标准装备,“○”代表可选购买,“-”代表不提供。
机场安全审计手册(08年使用版).
机场安全审计手册(第二版)中国民用航空局2008年4月前言本手册是对2007年4月出台的第一版《民用机场安全审计手册》的修订版。
修订依据主要基于《民用机场运行安全管理规定》、《民用机场使用许可管理规定》以及《民用航空安全审计指南》(2008年3月第二版)等相关规定。
修订的内容主要包括以下方面:一、调整的内容仅涉及第一版的综合安全管理、飞行区安全、机坪安全和机场供油安全以及应急救援五个部分的内容。
本手册没有将“旅客运输管理”、“货物运输管理”、“危险品运输管理”和“机场空管”的审计内容包含在内。
二、调整审计小组,把“目视助航设施”从“飞行区安全”中分离出来,单独组成目视助航设施审计小组。
三、油料部分引用了即将出台的《民用航空油料设备完好技术规范》。
修订记录修订版本修订日期负责人第二版年4月民用机场安全审计手册1、民用机场安全审计组划分及审计内容民航机场安全审计(简称:机场安全审计)组分为十一个小组,分别是综合安全管理审计小组、飞行区安全审计小组、目视助航设施审计小组、机坪安全审计小组、消防安全审计小组、应急救援审计小组、机场供油安全审计小组、旅客运输管理审计小组、货物运输管理审计小组、危险品运输管理审计小组和机场空管审计小组。
各小组设组长一人,组员一般为两到三人。
涉及几个审计小组的具有共性的审计问题,建议在现场审计第一天联合审计,之后分组分别审计其余的问题。
民用机场安全审计内容包括:综合安全管理、飞行区安全、目视助航设施、机坪安全、消防安全、应急救援、机场供油安全、旅客运输管理、货物运输管理、危险品运输管理和机场空管十一个部分(下述内容不涉及旅客运输管理、货物运输管理、危险品运输管理和机场空管)。
1.1综合安全管理审计小组职责及工作范围负责机场综合安全审计工作,及时收集整理审计资料,向机场安全审计组汇报。
审计范围包括:(1) 机场安全管理的基本要求(2) 机场安全管理体系1(3) 机场安全管理制度(4) 人员培训(5) 民用机场使用手册的发放和使用管理(6) 民用机场使用手册的修改(7) 安全信息管理1.2飞行区安全审计小组职责及工作范围负责机场飞行区安全审计工作,及时收集整理审计资料,向机场安全审计组汇报。
航空公司运行控制中的威胁与差错管理分析
航空公司运行控制中的威胁与差错管理分析作者:李黎莎吕明源来源:《科技与创新》2015年第15期摘要:基于威胁与差错管理(TEM)理论,详细分析了航空公司运行控制中面临的威胁和可能出现的差错,利用威胁与差错管理模型对威胁、差错和非预期的航空器状态及其发展进行了研究,提出了航空公司运行控制中的TEM措施,以帮助航空公司提高运行控制过程的安全性和政策性。
关键词:运行控制;签派资源管理;TEM措施;航空公司中图分类号:V328.2 文献标识码:A DOI:10.15913/ki.kjycx.2015.15.043文章编号:2095-6835(2015)15-0043-02近年来,随着民用航空业的飞速发展,我国航空公司的机队规模不断扩大,航线数量迅猛增加,日益增长的航班量给航空公司的日常运行带了巨大的安全压力。
连续的航班失联、坠机和地面事故使航空安全成为航空公司亟待解决的问题。
从历史上和当前的航空事故分析中可看出,很多事故都是因人自身的因素或人员之间沟通不当造成的。
1978年,美国国家运输安全委员会(NTSB)在对相关事故调查的过程中提出了机组资源管理(CRM-Crew Resource Management)。
CRM从最初的仅针对驾驶舱(Cockpit)的资源管理扩展到对整个机组(Crew)的资源管理。
随着航空公司的发展,CRM的范围从飞机内部又扩大到了整个航空公司和整个航空系统,飞行机组、客舱乘务员、签派员、管制员和机务维修员等都需要进行资源管理训练。
因此,签派资源管理(DRM)这一概念应运而生。
本文将从航空公司运行控制的角度出发,对新一代CRM-威胁与差错管理(TEM)进行分析。
传统的签派资源管理主要对人的因素进行分析,而新一代DRM应被理解为签派员避免差错、降低航空公司运行控制风险的一种工具。
在运行控制中实施威胁与差错管理可更好地提高航空公司的运行效率,保证飞行的安全和正常。
1 航空公司运行控制运行控制是指航空公司使用用于飞行动态控制的系统和程序,对某次飞行的起始、持续和终止行使控制权的过程。
差错和威胁管理(TEM)之:基础理念
差错和威胁管理(TEM)之:基础理念理解差错和威胁管理(TEM)的最简单方法是将它比作一个汽车司机的“防御性”驾驶。
防御性驾驶的目的不是教人如何驾驶车辆(例如,如何操作手动变速箱),而是要强调驾驶技术,人们可以使用以尽量减少安全风险(如依靠于自身驾驶技术来控制后轮打滑)。
同样,TEM不教飞行员如何从技术上驾驶一架飞机;相反,它提倡一种积极主动的安全理念哲学,并建立安全裕度。
TEM培训可以作为飞行员“防御性”飞行的理念。
TEM提出的威胁(例如恶劣天气),差错(如一名飞行员错选择了自动化模式),和不希望的飞机状态(例如高度偏差、航线偏离)是机组必须设法保障安全的日常事件。
TEM起源TEM的起源和航线运行安全审计(LOSA)密不可分。
1994年德克萨斯大学人为因素研究项目组和达美航空公司之间合作利用驾驶舱观察座实施定期航班航线的观察审计。
当时所有方认识到,如果航线审核工作要发挥作用,即,真的看看航线运行上发生了什么,必须实施保密性的保证——不会让法规或组织管理层危害到被观察的机组。
机组必须相信不会有任何个人的反应;否则,他们知道被观察和审计,往往会“假装”或“想方设法”呈现出他们最好的表现。
第一个观察模式是德克萨斯大学人为因素研究项目组为了评价机组资源管理(CRM)的行为。
该模式然后扩大到解决差错和差错的管理。
观察员注意到所犯的差错类型,谁造成差错以及对差错的响应(即,差错是否检测到,由谁发现),和差错的结果。
知道差错发生而不真正知道当时的条件,因此,研究人员开发了威胁和威胁管理的概念。
1996年,美国大陆航空公司进行第一次完整的基于TEM理念的航线运行安全审计LOSA。
大陆航空突出了最常见的威胁,最常见的差错,最常见的不希望的飞机状态。
根据数据驱动的报告,公司成立跨部门委员会推出解决方案。
公司还为其所有的飞行员开展了为期一天TEM的培训课程,介绍了威胁和差错的概念,然后介绍了LOSA 调查的结果。
飞行员们能够从一个不同的角度看到在他们身上威胁和差错发生率和如何管理不希望的飞机状态。
运输类飞机复杂状态预防和改出训练指导材料-中国民用航空局
信息通告中国民用航空局飞行标准司编㊀㊀号IB-FS-2018-013下发日期:2018年10月12日运输类飞机复杂状态预防和改出训练指导材料前言为了指导和帮助航空运营人组织实施飞机复杂状态预防和改出的训练,我司于2015年编写制定了‘航空器驾驶员训练指南-复杂状态预防和改出训练(UPRT)“咨询通告(AC-91-30),要求航空器运营人按照咨询通告的要求对飞行员实施相应的UPRT训练㊂通过近三年的实践和努力,各航空运营人的UPRT训练显著提高了飞行员应对特殊情况的技能水平㊂为进一步提高航空运营人UPRT训练质量,我司于近期组织翻译了国际民航组织和航空器制造商共同编写的"AirplaneUpsetPreventionandRecoveryTrainingAid"(AUPRTA),命名为‘运输类飞机复杂状态预防和改出训练指导材料“,请各航空运营人组织学习和研究,同时完善UPRT训练课程㊂1目录1.引言12.‘UPRT指导材料“的目标23.飞机复杂状态的定义3 4.积极监控35.飞机进入复杂状态的原因55.1环境导致的飞机复杂状态55.1.1气团相关5 5.1.2尾流紊流125.2系统异常导致的飞机复杂状态14 5.2.1飞行仪表145.2.2自动飞行系统155.2.3飞行操纵和其他异常155.3飞行员导致的飞机复杂状态165.3.1仪表交叉检查165.3.2调整姿态和推力175.3.3疏忽和自满175.3.4从主要驾驶舱职责分心185.3.5飞行员失能1815.3.6眩晕或空间定向障碍18 5.3.7飞机自动化使用不当20 5.3.8飞行员诱导振荡(PIO)/飞机-飞行员耦合(APC)20 6.飞行员必备的飞行基础理论知识21 6.1飞行力学21 6.2能量状态22 6.3飞行包线23 6.4空气动力学基础知识24 6.4.1迎角和失速24 6.4.2水平和方向气动考虑事项29 6.4.3稳定性42 6.4.4机动飞行42 6.4.5低速飞行特点46 6.4.6高高度涡桨特征(涡桨)47 6.4.7高高度特性(涡喷)48 6.5飞机性能53 6.5.1最大升阻比(L/DMAX)53 6.5.2转换高度54 6.5.3最佳高度54 6.5.4最佳爬升速度偏离54 6.5.5最大高度55 6.5.6载重平衡对操纵品质的影响57 26.5.7最大速度57 6.5.8马赫俯冲和马赫抖振58 6.5.9抖振限制最大高度59 6.5.10失速59 6.6结冰61 6.6.1结冰条件中的飞行(涡桨)64 6.6.2过冷大水滴结冰对无动力副翼操纵的影响(涡桨)68 6.7自动化68 6.8发动机熄火71 6.9核心锁定717.飞机复杂状态改出72 7.1飞机复杂状态情景意识73 7.2与复杂状态改出相关的其他问题74 7.2.1惊吓因素75 7.2.2过载低于1G76 7.2.3全行程操纵输入的使用76 7.2.4反直觉因素76 7.2.5不同机型上完成的训练77 7.2.6复杂状态后的情况77 7.2.7对发动机的潜在影响78 7.3飞机复杂状态改出技术78 7.3.1失速79 37.3.2改出复杂状态技术总结80 7.3.3机头上仰改出技术81 7.3.4机头下俯改出技术84 8.UPRT教员的培训要求86 8.1模拟机的限制86 8.2教员操作台的使用878.3最低模拟机设备要求888.4模拟机性能概述88 9.原始设备制造商推荐的训练88 9.1航空器操纵品质89 9.1.1俯仰能力89 9.1.2横滚能力90 9.1.3方向舵使用演示90 9.1.4能量管理91 9.1.5抖振93 9.2复杂状态识别和改出93 9.2.1上仰/下俯93 9.2.2螺旋俯冲94 9.3失速95 9.4环境因素97 9.4.1山地波㊁滚轴云㊁水平和垂直风切变97 9.4.2结冰对螺旋桨飞机性能的影响(涡桨)9749.5尾流紊流99 9.6机械/系统故障导致的100 9.7飞行员因素100 9.7.1失去情景意识100 9.7.2自动飞行系统导致的10110.整个UPRT指导材料强调的重点10111.缩略语1045运输类飞机复杂状态预防和改出训练指导材料1. 引言《运输类飞机复杂状态预防和改出训练指导材料》(以下简称《UPRT指导材料》)的目标是提高运输类飞机飞行员识别和避免导致飞机进入复杂状态的能力,并完善飞行员改出非预期飞机状态偏离的能力。
六代crm发展史民航
六代crm发展史民航对1960年~1970年喷气式客机事故进行的调查发现,70%左右的事故涉及人为因素。
其中多数失误的起因并非技术上的缺陷,而是机组在交流、协作和决策等方面出了问题。
为了加强驾驶员之间的配合与机组间的协作,减少飞行中人为因素所造成的失误,美国联邦航空局提出了驾驶舱资源管理CRM(CockpitRe?sourceManagement)概念。
9年后,国际民航组织(ICAO)在关于飞行安全与人为因素中推广了CRM培训计划,提出了领导力与决策的概念,更注重团体的作用。
ICAO建议,人为因素教学内容应包括航空生理、航空心理、飞行适应性和SHEL(软件/硬件/环境/人)模型。
此后,民航界对CRM培训计划逐步细化。
美国联邦航空局扩展了人力资源概念,即从驾驶舱内的机组人员、客舱中的乘务人员扩展到空中交通管制人员、地面维修人员及其他与飞行相关的人员,形成对飞行安全有着深远影响的企业安全文化。
20世纪90年代,国际民航开始探索面向航线的飞行训练LOFT (LineOrientationFlightTraining),以行为表现的数据为训练基础,将CRM融合到技术训练和实际航班飞行中,并将CRM的焦点集中于人的差错管理,并对人的局限性进行相应训练。
直到2013年,国际民航组织采纳了EBT(询证训练)概念,发布了EBT实施指南和数据报告,把基于能力的训练用于飞行员的复训和检查当中,把CRM归结为民航从业者最重要的非技术能力。
近年来,中国民航局一直致力于不断创新和发展安全管理思路和行动路径,2019年7月,民航局发布关于《全面深化运输航空公司飞行训练改革的指导意见》,提出“抓基层、打基础、苦练基本功”的要求,指明了民航训练改革的方向。
今年4月,民航安全运行形势分析会提出,要大力弘扬和践行当代民航精神,以“敬畏生命、敬畏规章、敬畏职责”为内核,切实增强敬畏意识,深入推进作风建设,不断提升专业素养,全力确保民航安全运行平稳可控,为民航安全发展、训练改革注入了新的思想灵魂。
差错和威胁管理TEM之:基础理念
差错和威胁管理(TEM)之:基础理念理解差错和威胁管理(TEM)的最简单方法是将它比作一个汽车司机的“防御性”驾驶。
防御性驾驶的目的不是教人如何驾驶车辆(例如,如何操作手动变速箱),而是要强调驾驶技术,人们可以使用以尽量减少安全风险(如依靠于自身驾驶技术来控制后轮打滑)。
同样,TEM不教飞行员如何从技术上驾驶一架飞机;相反,它提倡一种积极主动的安全理念哲学,并建立安全裕度。
TEM培训可以作为飞行员“防御性”飞行的理念。
TEM提出的威胁(例如恶劣天气),差错(如一名飞行员错选择了自动化模式),和不希望的飞机状态(例如高度偏差、航线偏离)是机组必须设法保障安全的日常事件。
TEM起源TEM的起源和航线运行安全审计(LOSA)密不可分。
1994年德克萨斯大学人为因素研究项目组和达美航空公司之间合作利用驾驶舱观察座实施定期航班航线的观察审计。
当时所有方认识到,如果航线审核工作要发挥作用,即,真的看看航线运行上发生了什么,必须实施性的保证——不会让法规或组织管理层危害到被观察的机组。
机组必须相信不会有任何个人的反应;否则,他们知道被观察和审计,往往会“假装”或“想方设法”呈现出他们最好的表现。
第一个观察模式是德克萨斯大学人为因素研究项目组为了评价机组资源管理(CRM)的行为。
该模式然后扩大到解决差错和差错的管理。
观察员注意到所犯的差错类型,谁造成差错以及对差错的响应(即,差错是否检测到,由谁发现),和差错的结果。
知道差错发生而不真正知道当时的条件,因此,研究人员开发了威胁和威胁管理的概念。
1996年,美国大陆航空公司进行第一次完整的基于TEM理念的航线运行安全审计LOSA。
大陆航空突出了最常见的威胁,最常见的差错,最常见的不希望的飞机状态。
根据数据驱动的报告,公司成立跨部门委员会推出解决方案。
公司还为其所有的飞行员开展了为期一天TEM的培训课程,介绍了威胁和差错的概念,然后介绍了LOSA 调查的结果。
飞行员们能够从一个不同的角度看到在他们身上威胁和差错发生率和如何管理不希望的飞机状态。
人的因素与差错管理
学前自测题•应如何理解“人本安全”?•“人的因素”包括哪些?•“人的因素”就是坏的因素么?•应如何管理差错,将后果严重程度降到最低?(请带着这些问题开始本课学习。
)人的因素与差错管理南航员工基础安全培训系列课程“人”的安全至关重要。
•民航运输涉及的“人”分为两种:一是旅客,他们是民航运输服务的对象;二是从业人员,他们是在各个岗位上各司其职、分工协作,保障民航运输安全可靠的“人”。
•我们常说,“安全是民航的生命线”。
对“安全第一”的注脚,首先是“以人为本”。
这里的“人”既包括旅客,也包括从业人员。
毋庸臵疑的是,各岗位工作者既是民航安全的保障对象,又是保障民航安全的“主人公”,对民航运输安全的实现至关重要。
•“工欲善其事,必先利其器。
”——《论语•卫灵公》。
•每一名民航工作者都应不断提高自己的工作能力与职业素养。
除了专业知识、技术与实际操作,还应知晓“人的因素”,掌握差错管理方法,提高工作中的安全裕度。
【思考题】什么是“人的因素”?ICAO定义(Doc9683:《人的因素手册》):人的因素是指与人有关的任何因素。
人的因素包括工作和生活中的人,以及人与机器、程序、环境的关系,人与人的关系。
外在方面,影响人的因素:•噪音、振动、高空、加速度等环境对人产生的生理、心理影响,多数属航空医学研究范畴——不利的因素•能使操作系统与人的能力、认知局限(理解、记忆)更好的相互适应的工作环境——有益的因素内在方面:不能把“人的因素”错误的理解为“人的差错”或“人为差错”。
需要区分的两组概念:•“人的因素”与“人为失误”、“人为差错”(Human Factors, Human failures & Human errors)•“差错”与“违规”(errors & violations)•“人的因素”与“人为失误”、“人为差错”的关系:人的因素人为失误人为差错•“差错”与“违规”的关系:有一种研究理论将“人为失误”分为两类:差错——产生失误,是对原本意愿的偏离,是无意的;违规——产生失误,是对标准或者程序的偏离,是有意的。
民航总局航空公司安全审计手册(第一版)
航空公司安全审计手册(第一版)民航总局飞行标准司编制二OO七年三月《航空公司安全审计手册》修订通告记录手册版本修订编号(格式:版本号-修订颁发年月日)修订主题 修订负责人2《航空公司安全审计手册》修订通告(插页)航空公司安全审计手册为强化民航政府主管部门对公共航空运输企业(以下简称运输航空公司)的运行安全监管,规范安全审计工作,根据《中国民用航空安全审计指南》(以下简称指南)的要求,制定本手册。
一、使用对象本手册为中国民航“航空公司安全审计小组”(以下简称“审计组”)审计员和被审计方的相关人员所使用。
审计组应当按照《中国民用航空安全审计指南》和本手册的要求对被审计方实施安全审计。
二、 审计目的本手册所指被审计方为运输航空公司,审计目的是检查运输航空公司就维持其安全运行所制定的相关政策、建立的组织管理体系和实施的工作流程及程序与法律、法规、规章及相关要求的符合性。
三、审计依据航空公司安全审计依据《中华人民共和国安全生产法》、《中华人民共和国民用航空法》、《国务院关于实施国家突发公共事件总体应急预案的决定》(国发[2005]11号)、《突发公共卫生事件民用航空应急控制预案》、《传染病防治法》、《公共场所卫生管理条例》、中国民航总局规章第61R2、63FS、65、67FS-R1、68SB、CCAR-121R2、252、271、275、276、396部等相关文件。
四、审计范围审计组应当按照《指南》规定的七类审计要素对被审计方实施以下九个方面的安全审计:(一)综合安全管理(二)飞行运行管理(三)客舱安全管理(四)维修管理(五)航务管理(六)旅客运输管理(七)货物运输管理(八)危险品运输管理(九)航空卫生管理五、审计方法审计组应当按照《指南》规定的审计方法及行为准则实施安全审计。
六、审计工作流程按照《指南》规定的安全审计工作程序的六个阶段,航空公司实施安全审计工作应当遵循以下流程:(一)依照民航总局年度安全审计计划,总局飞行标准司协调地区管理局组织审计组,召开审计准备会议,针对被审计方的实际情况,研究制定审计实施计划(方案),确定审计范围、日程和审计员分工等;(二)审计组在民航总局审计办公室向被审计方下发审计通知单后,指派专人在审计工作开始前1-2周,与被审计方建立联系,协调审计工作相关事宜;(三)审计组组织召开安全审计启动会,向被审计方递交本次审计工作计划(方案),协调审计工作相关事宜;(四)审计组按照审计计划(方案)和本手册的审计检查单,对被审计方实施安全审计;(五)审计组召开审计情况汇报会,总结、交流审计工作;(六)审计组组织召开审计情况通报会,向被审计方通报审计情况和审计结果意见,听取被审计方对有关问题说明;(七)审计组向被审计方下发《安全审计整改通知单》,并要求被审计方提交的整改计划;(八)审计组总结审计工作,编写《航空公司安全审计报告》,报总局安全审计办公室,同时抄报飞行标准司;(九)总局安全审计办公室将《航空公司安全审计报告》发给被审计方,并抄所在地管理局及监管办;(十)地区管理局及监管办根据《航空公司安全审计报告》整改要求对被审计方实施整改跟踪;(十一)地区管理局及监管办对被审计方已经达到要求的整改项进行整改关闭,并向飞行标准司提交整改跟踪报告;(十二)飞行标准司对管理局及监管办的整改跟踪报告进行审核,同意整改关闭的,报总局安全审计办公室归档;不同意整改关闭的,则另行组织对被审计方复审;复审通过的应当向总局安全审计办公室提交复审报告;(十三)经审计跟踪或复审不能达到安全运行要求的,地区管理局应当对其做出修改《运行规范》或限制运行项目的决定。
IOSA标准手册(检查单)
ⅰ)防止事故、事故症候和非法干扰事件的发生�
ⅱ)保持与法规和其他与运行安全相关的要求一致。�GM�
1.8 运行计划
ORG 1.8.1 营运人必须确保用于指导运行、维修和保安部门制定计划和做决策的管理系 统程序�
i�明确区分影响运行安全的外部因素�
ii�考虑相关外部因素的要求�包括管理当局和原设备制造商。�GM�
第一部分 ORG 1
责时必须符合运行实施所在国家的法律、规章和程序。
标准和建议规范
1.4 交流
ORG 1.4.1 营运人必须建立一套交流系统�以确保相关运行信息在管理系统和运行、维
修部门得以有效传递。�GM��
1.5 管理评审
ORG 1.5.1 营运人必须建立一套定期�时间间隔不应超过 1 年�对管理系统进行评审的 程序�以确保管理系统的持续适用性、充分性和有效性。该评审包括对管理系统完善时 机和变化必要性的评审�同时还包括�但不限于�对组织结构、报告途径、权限、职责、 政策、流程和程序的评审。�GM�
ORG 3.1.1 营运人应当建立一套风险管理系统�该系统必须适用于组织的运行、维修和 保安功能�同时还必须适用于影响运行、维修和保安的新事物。该系统应当�
i�对飞行事故、事故征候、非法干扰事件或来自于外部的潜在风险进行识别�
ii�确定已识别风险的根源�
iii�分析以确定已识别风险的等级�
iv�制定整改或预防措施以消除或缓和不可接受的风险�
1.3 权限和责任
ORG 1.3.1 营运人必须确保管理系统内的权限和责任能在组织内部得到明确划分和有效
交流。�GM��
ORG 1.3.2 营运人必须确保管理系统内的责任接替�以确保运行经理�如果适用�包括
指派的维修管理人员外出时的管理连续性。�GM��