流体力学流体运动学

合集下载

流体力学第2章流体运动学基本概念

流体力学第2章流体运动学基本概念
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10




对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t

v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t

第三章流体运动学

第三章流体运动学
第三章 流体运动学
机械工程学院
第三章 流体运动学
研究内容:流体运动的位移、速度、加速度和转速等随时间和 空间坐标的变化规律,不涉及力的具体作用问题。但从中得出 的结论,将作为流体动力学的研究奠定基础。
第1节 研究流体运动的两种方法
第2节 流体运动学的基本概念 第3节 流体运行的连续方程 第4节 相邻点运动描述――流体微团的运动分析
特点:流场内的速度、压强、密度等参量不仅是坐标的函数,而且 还与时间有关。
即:
() 0 t
3.2 基本概念
二、均匀流动与非均匀流动
1. 均匀流动
流场中各流动参量与空间无关,也即流场中沿流程的每一个断面 上的相应点的流速不变。位不变
v v ( x, y, z, t ) p p( x, y, z, t ) ( x, y, z, t )
由于空间观察点(x,y,z)是固定的,当某个质点
从一个观察点运动到另外一个观察点时,质点位移是 时间t的函数。故质点中的(x,y,z,t)中的x,y,z不是 独立的变量,是时间的函数:
x x (t ) y y (t ) z z (t )
所以,速度场的描述式:
u x u x {x(t) , y(t) , z(t) , t} u y u y {x(t) , y(t) , z(t) , t} u z u z {x(t) , y(t) , z(t) , t}
v2
s1
s2
v1
折点
v2
s
强调的是空间连续质点而不是某单个质点
1. 定义 流动参量是几个坐标变量的函数,即为几维流动。 v v ( x) 一维流动 v v ( x, y ) 二维流动 v v ( x, y , z ) 三维流动

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

流体运动学(课件)

流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。

流体力学第二章 流体运动学基础

流体力学第二章 流体运动学基础

整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章

工程流体力学 第4章 流体运动学

工程流体力学 第4章 流体运动学
质量表示时,为质量流量,以 qm 标记;以体积表示为体 积流量,以 qV 标记,可表示为
qV
vdA
A
断面平均流速:过流断面各点速度的断面平均值,以V标记,有
V
vdA
A
qV
AA
对任一点有
v V v
§4-2 描述流体运动的基本概念
四、一、二、三元流动
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动
v v (x, y, z) p p(x, y, z)
§4-2 描述流体运动的基本概念
三、流管、流束、流量与平均速度 流管:流场中过封闭曲线上各点作流线所围成的管状
曲面,见图。
流束:流管内所有流线的集合为流束。 微小流束:断面积无限小的流束。 总流:无数流束的总和。 注:(1)流束表面没有流体穿越;
间曲线,该瞬时位于曲线上各点的流体质点的速度与曲线在 该点相切,(如图示)。
§4-2 描述流体运动的基本概念
(2)流线的作法:欲作流场中某瞬时过A点的流线,可
在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v2;再在 v2上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当
工程流体力学 第四章 流体运动学
§4-1 描述流体运动的两种方法
流体运动学研究流体运动的规律,不追究导致运动的力 学因素。
研究流体运动的方法
一、拉格朗日法(Lagrange Method) 拉格朗日法又称随体法。它追踪研究每一个流体质点的
运动规律,综合所有的流体质点,从而得到整个流场的运动 规律,参见图。
a y

工程流体力学-第三章

工程流体力学-第三章

四、有效断面、流量和平均流速
1. 有效断面 流束中处处与速度方向相垂直的横截面称为该流束的有效断面, 又称过流断面。 说明:
(1)所有流体质点的
速度矢量都与有效断面 相垂直,沿有效断面切
向的流速为0。
(2)有效断面可能是 平面,也可能是曲面。
2. 流量
(1) 定义:单位时间内通过某一过流断面的流体量称为流量。
压强的拉格朗日描述是:p=p(a,b,c,t)
密度的格朗日描述是:
(a, b, c, t)
二、欧拉法(Euler)
1. 欧拉法:以数学场论为基础,着眼于任何时刻物理量在场上 的分布规律的流体运动描述方法。 2. 欧拉坐标(欧拉变数):欧拉法中用来表达流场中流体运动 规律的质点空间坐标(x,y,z)与时间t变量称为欧拉坐标或欧拉变 数。
(1)x,y,z固定t改变时, 各函数代表空间中某固
定点上各物理量随时间
的变化规律; (2)当t固定x,y,z改变 时,它代表的是某一时 刻各物理量在空间中的 分布规律。
密度场
压力场
( x, y , z , t )
p p ( x, y , z , t ) T T ( x, y , z , t )
u y du z du z ( x, y , z , t ) u z u z u z az ux uy uz dt dt t t t t du u a (u )u dt t
在同一空间上由于流动的不稳定性引起的加速度,称 为当地加速度或时变加速度。 在同一时刻由于流动的不均匀性引起的加 速度,称为迁移加速度或位变加速度。
一元流动
按照描述流动所需的空间坐标数目划分
二元流动
三元流动

流体力学

流体力学
第四章 流体流体运动学和流体动 力学基础
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。

欧拉法


着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t

流体力学 3-1-2流体运动学

流体力学 3-1-2流体运动学
v y y 1

v x 1 x v y 1 t
其余各项的偏导数为零,所以加速度分布为:
ax x t 1
ay y t 1
az 0
(2)根据拉格朗日方法:
ax dvx dx 1 vx 1 x t 1 dt dt
dy ay 1 v y 1 y t 1 dt dt
dy
z z
dz
dz
ax
d x x x x y x z x dt t x y z
x y z dt t x y z d az z z x z y z z z dt t x y z ay
x ae2t , y bet , z cet
试求:用欧拉方法描述该流动的速度场是怎样的。
a xe2t , b yet , c zet
三、拉格朗日法和欧拉法的转化
(A)由拉格朗日法到欧拉法的转化思路
二、欧拉法
用欧拉法描述流体的运动时,运动要素是空间坐标x,y, z和时间变量t的连续可微函数。x,y,z,t 称为欧拉变量, t 时刻( x,y,z )处的速度场表示为:
u x u x ( x, y , z , t ) u y u y ( x, y , z , t ) u z u z ( x, y , z , t )
u x A. t
ux ux B. ux t x
ux ux ux C .ux uy uz x y z
ux ux ux ux D. ux uy uz t x y z
C 的变化情况 2.欧拉法研究_____ (A) 每个质点的速度 (C) 流经每个空间点的流速 (B) 每个质点的轨迹 (D) 流经每个空间点的质点轨迹

流体力学3-3-4流体运动学

流体力学3-3-4流体运动学

流体运动学的应用领域和发展趋势
能源
风力发电、水力发电等领域涉及到流体运动学的知识 ,用于提高能源转换效率和稳定性。
环境
流体运动学在气候变化研究、污染物扩散等领域有广 泛应用。
流体运动学的应用领域和发展趋势
1 2 3
跨学科融合
流体运动学与数学、物理、工程学等多个学科的 交叉融合,推动流体力学理论的创新与发展。
流体机械工作原理
泵的工作原理
通过叶轮旋转产生的离心力将流体吸入,在 叶轮出口处将流体以更高的压力排出。
风机的原理
利用叶轮旋转产生的空气动力学效应,将机 械能转换为空气的压力能和动能。
流体动力学在交通工程中的应用
要点一
车辆空气动力学
要点二
道路排水设计
车辆的外形设计、车速等都会影响空气对车辆的作用力, 进而影响车辆的行驶稳定性、燃油经济性等。
加强跨学科合作与交流是推动流体运动学发展的重要途径。
THANKS
感谢观看
流体力学3-3-4流体运动学
• 流体运动学概述 • 流体运动的分类与描述 • 流体运动的物理性质 • 流体动力学方程 • 流体运动的实例分析 • 总结与展望
01
流体运动学概述
流体运动学的定义与重要性
定义
流体运动学是研究流体运动的学科, 主要关注流体速度、方向和加速度等 物理量的变化规律。
重要性
层流与湍流
层流
流体在运动过程中,流层之间互不掺混,呈规则的层次流动 。
湍流
流体在运动过程中,流层之间相互掺混,流动呈现无规则的 紊乱状态。
定常流动与非定常流动
定常流动
流体在运动过程中,流场参数不随时 间变化而变化的流动。
非定常流动

流体力学的基本理论和应用

流体力学的基本理论和应用

流体力学的基本理论和应用流体力学是研究流体运动规律的一门学科,其范围涉及气体、液体和等离子体等。

流体力学的研究对象是流体运动中各种物理量的变化规律,如速度、密度、压力、温度等。

它的研究领域广泛,从天气预报到飞机设计、石油勘探,都离不开流体力学的理论和应用。

1. 流体力学的基本理论流体力学的基本理论包括流体的性质、流体方程、流体的运动学和动力学方程等。

1.1 流体的性质流体有四种基本性质,即密度、压力、温度和粘度。

密度是指单位体积内质量的大小,压力是单位面积受到的力的大小。

温度是流体内部分子热运动的平均程度,粘度是流体阻力大小的表征。

1.2 流体方程流体方程主要包括连续性方程和动量守恒方程。

连续性方程描述了质量守恒的规律,即在任何一个时间和空间点,通过一个截面进入的质量等于通过该截面流出的质量。

动量守恒方程描述了流体中动量守恒的规律。

1.3 流体的运动学流体的运动学研究的是流体在时间和空间上的运动规律。

就速度场而言,它可以用速度矢量场描述。

在三维空间中,一个流体速度场是指有三个分量的三维矢量场。

1.4 流体的动力学方程流体的动力学方程是研究流体运动的方程,包括质量守恒方程、动量守恒方程和能量守恒方程。

这些方程可以用于描述流体在空间中的各种运动方式。

2. 流体力学的应用流体力学的应用非常广泛,它不仅是科学研究领域中不可或缺的一部分,也是工程设计、生物医学和化学工程等领域必不可少的一门技术。

以下是几个流体力学应用领域:2.1 飞机设计飞机设计需要对空气流动进行深入研究。

流体动力学理论可以帮助设计人员优化飞机的翼型和发动机喷口设计,以减少空气阻力和提高飞机性能。

流体动力学还可以帮助研究飞行器的失速问题,并提出优质的控制方法。

2.2 汽车行驶汽车行驶的过程中,空气阻力会影响汽车的速度和燃油消耗。

通过流体力学研究,在设计汽车的外形和风阻系数时,可以优化方案以降低空气阻力。

2.3 气象预报气象预报是一项很重要的工作,流体力学理论可以用于研究气象现象,用以预测天气。

《流体力学》流体运动学

《流体力学》流体运动学

流体力学辅导材料3:第3章流体运动学【教学基本要求】1.了解描述流体运动的两种方法。

了解迹线与流线的概念。

掌握欧拉法质点加速度的表达式。

2.理解总流、过流断面、流量、断面平均流速的概念;理解定常流与非定常流、均匀流与非均匀流、渐变流与急变流、有压流与无压流。

3.熟练掌握总流的连续性方程。

4.理解无旋流与有旋流,掌握其判别方法。

5. 掌握流函数、速度势函数与速度的关系。

知道流网法、势流叠加法解平面势流的原理。

【学习重点】1.流线与迹线;质点加速度的欧拉表述法。

2.总流的连续性方程。

3.无旋流与有旋流的判别。

4.流函数、速度势与流速的关系。

【内容提要和学习指导】3.1 流动描述3.1.1 描述流动的两种方法描述流动的方法有拉格朗日法和欧拉法。

1. 拉格朗日(Lagrange)法:拉格朗日法以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体的运动规律。

这种方法又称为质点系法。

拉格朗日法的基本特点是追踪单个质点的运动。

此法概念明确,但复杂。

一般不采用拉格朗日法。

2. 欧拉(Euler)法:欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。

这种方法又叫做流场法。

欧拉法中,流场中任何一个运动要素可以表示为空间坐标和时间的函数。

例如,在直角坐标系中,流速v是随空间坐标)yx和时间t而变化的,称为流速场。

,(z,用欧拉法描述流体运动时,质点加速度等于时变加速度和位变加速度之和,表达式为:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==∂∂+∂∂+∂∂+∂∂==z u u yu u xu u tu dtdu a z u u y u u x u u t u dt du a z u u y u u x u u t u dt du a z z z yz xz zy y z y y y x y yy x zx y x x x xx (3-6)3.1.2 迹线与流线在研究流动时,常用某些线簇图像表示流动情况。

流体力学-第3章

流体力学-第3章

ux
uy
E
u x dx u x dy u x dz ux x 2 y 2 z 2 u x dx u x dy u x dz ux x 2 y 2 z 2 ux u x dx u x dy u x dz x 2 y 2 z 2
v1
v2
s1
s2
v1
折点
v2
s
注1:在非恒定流情况下,流线会随时间变化。在恒定流情况下, 流线不随时间变,流体质点将沿着流线走,迹线与流线重合。故: 恒定流中流线与迹线重合,非恒定流中流线与迹线不重合
流线动画
注2:迹线和流线最基本的差别是:迹线是同一流体质点在 不同时刻的位移曲线,与拉格朗日观点对应,而流线是同 一时刻、不同流体质点速度矢量与之相切的曲线,与欧拉 观点相对应。即使是在恒定流中,迹线与流线重合,两者 仍是完全不同的概念。
恒定流动 质量守恒定律
1v1 A1dt 2 v2 A2 dt 3v3 A3 dt vAdt
1v1 A1 2 v2 A2 3v3 A3 vA
不可压缩流体 1 2 3
v1 A1 v2 A2 v3 A3 vA Q
同理: 任一元流断面:dA1,d A2, …… 对应流速: u1, u2, ……
Qm
例6 如图气流压缩机用直径d1=76.2mm的管子吸入密度 ρ1=4kg/m3的氨气,经压缩后,由直径d2=38.1mm的管子以 v2=10m/s的速度流出 ,此时密度增至ρ2=20kg/m3 。求(1)质 量流量;(2)流入流速。 v
1
解:(1)质量流量为
Qm Q 2 v2 A2 20 10
一、流动的分类
1、恒定流和非恒定流(定常流和非定常流) 恒定流动:流动参量不随时间变化的流动。 u u ( x, y , z )

流体力学知识点

流体力学知识点

流体力学知识点流体力学是研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、化工、生物医学等。

下面我们来一起了解一些流体力学的重要知识点。

一、流体的性质流体具有易流动性,即它们在微小的切应力作用下就会发生连续的变形。

流体的密度和黏度是两个重要的物理性质。

密度是指单位体积流体的质量。

对于均质流体,密度是一个常数;对于非均质流体,密度会随位置而变化。

例如,空气在不同高度的密度不同。

黏度则反映了流体内部的内摩擦力。

黏度大的流体,如蜂蜜,流动起来比较困难;而黏度小的流体,如水,流动相对容易。

二、流体静力学流体静力学主要研究静止流体的压力分布规律。

帕斯卡定律指出,在密闭容器内,施加于静止液体上的压力将以等值传递到液体各点。

这在液压系统中有着重要的应用。

另一个重要的概念是浮力。

当物体浸没在流体中时,它受到的浮力等于排开流体的重量。

这就是阿基米德原理。

例如,船舶能够漂浮在水面上,就是因为受到的浮力等于其自身的重量。

三、流体运动学流体运动学关注流体的运动方式和描述方法。

流线是用来描述流体流动的重要概念。

流线是在某一瞬时,在流场中画出的一条空间曲线,在该曲线上,流体质点的速度方向与曲线相切。

流量是指单位时间内通过某一截面的流体体积或质量。

四、流体动力学流体动力学研究流体运动与受力之间的关系。

伯努利方程是流体动力学中的一个关键方程,它表明在理想流体的稳定流动中,沿着一条流线,总水头(位置水头、压力水头和速度水头之和)保持不变。

例如,在水平管道中,流速大的地方压力小,流速小的地方压力大。

这可以解释为什么飞机机翼上方的流速快、压力低,从而产生升力。

五、黏性流体的流动实际流体都具有黏性。

在黏性流体的流动中,会产生内摩擦力,导致能量损失。

层流和湍流是两种常见的流动状态。

层流时,流体的质点作有规则的平行运动,各层之间互不干扰;而湍流时,流体的质点作不规则的随机运动。

流体力学 3-3-4流体运动学讲解

流体力学 3-3-4流体运动学讲解

uxdt
)
dx
四 空间运动的连续性方程
流入与流出微元六面体 的质量——x方向
(d ydzuxdt)
x
dx

(ux
x
)
dxd
y d z dt
y方向
(
u
y
y
)
d
x
d
y
d
z
dt
z方向
(
uz
z
)
d
x
d
y
d
z
dt
dt时间内六面体 的净流量为
[(ux) (uy )
x
y

(2)对于不稳定流,经过同一点的流线其空间方位和形状 是随时间改变的。
(3)由于稳定流动的速度分布与时间无关,所以流线的形 状和位置不随时间变化。同时流体质点只能沿着流线运动, 否则将会有一个与流线相垂直的速度分量。所以稳定流动 的迹线与流线重合。
2.流线的性质
(4)不稳定流动包含两方面的含义:大小或方向随时间变化。
3.流线方程
设流线上一点的速度矢量为u,流线上的微元线段矢量dr
由流线定义,矢量表示的微分方程为
u
dr

0
在直角坐标系中,依矢量运算法则可知u与dr成比例,即
ux
dx
x, y,
z,
t

uy
dy
x, y,
z,
t

uz
dz
x, y,
z,
t
式中的t代表的是同一瞬时,当作常数处理。
在不稳定流动中,流线微分方程积分的结果包括时间t,不
解:取控制面如图,设自由面上水位变化是均匀的,并设控制面A3上流 体的出流速度为v3,由不可压缩流体的连续方程可得

第三讲 流体运动学

第三讲 流体运动学

任一物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
3-2 物理量的质点导数
d (t t , x x, y y, z z ) (t , x, y, z ) lim dt t 0 t
与空间坐标无关,则称为均匀场(均匀流动)。
V V V p p p ... 0 x y z x y z
流动参数仅是时间t的函数,则用欧拉法可表示为:
V =V (t)
3-1 流体运动的描述
三、流场的两个特例
如图所示装置,将阀门A和B的开度调节到使水箱中的水 位保持不变。
二、欧拉法与控制体
速度场可表示为: 压强、密度和温度场表示为:
u u x, y , z , t v v x, y , z , t w w x, y , z , t
其中 x, y, z , t 为欧拉变数
p p ( x, y , z , t ) ( x, y , z , t ) T T ( x, y , z , t )
拉格朗日法
研究对象是一定质点 不能直接反映参数的空间分布 能直接反映质点的时变过程
表达式复杂 数学求解较困难 可直接应用牛二定律建立基本运动方程 (但对所考察物质体的可辨识性有要求)
欧拉法
研究对象是空间某固定点或断面
直接反映参数的空间分布 不能直接反映质点的时变过程
表达式相对 简单 数学求解相对简单 无法直接应用牛二定律建立 基本运动方程
当地(时变)加速度
dV V V V 矢量式为 a dt t
迁移(位变)加速度
3-2 物理量的质点导数

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

流体力学四章节流体运动学

流体力学四章节流体运动学

(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t

流体力学(流体运动学)

流体力学(流体运动学)

§3 -2
流场的基本概念
恒定流与非恒定流 迹线和流线 一维、二维、 一维、二维、三维流动 流管、 流管、流束及总流 过流断面、 过流断面、流量和平均流速 均匀流和非均匀流
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流) 恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
(3) (4)
将(3)、(4)式代入(1)式得 A′( x)e t + A( x)e t = A( x)e t + t
A′( x)e t = t
A′( x) = te − t

dA( x) = te − t dt
(分部积分公式:∫ uv ′dx = uv − ∫ vu ′dx )
用分部积分得
A( x ) = −(te − t − ∫ e − t dt ) = −te − t − e − t + A
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
ds u= dt
z u c ds
速度的分量为
dx ux = dt
dy uy = dt
第三章
流体运动学
流体运动的描述方法 流场的基本概念 流体微团的运动 连续性方程
引言
静止(包括相对静止) 静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动) 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言, 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 具有更加深刻的意义。这也为流体动力学 研 究在外力作用下流体的运动规律, 究在外力作用下流体的运动规律,打下了理论的 基础。 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u z u z ( x, y, z)
p p( x, y, z )
若流场的流动参数的全部或其中之一与时间变化有关,即随时 间变化而改变,则这类流场的流动称为非恒定流,其速度和压强的 描述为
u x u x ( x, y, z, t )
u y u y ( x, y, z, t )
p p( x, y, z, t )
欧拉法不是跟踪个别质点,而是在同一时间研究流场中各质点的流速、压力
的变化。质点的流速、压力和密度均是空间坐标(x,y,z)和时间 t 的函数, 变量 x,y,z,t 统称为欧拉变量。即
u x u x ( x, y, z, t ) u y u y ( x, y, z, t )
u z u z ( x, y, z, t ) p p( x, y, z, t )
ds u dt
z
速度的分量为
dx ux dt
引言
静止(包括相对静止)是流体的一种特殊的 存在形态,运动(或流动)才是流体更普遍的存 在形态,也更能反映流体的本质特征。因此相对 流体静力学而言,研究流体的运动规律及其特征 具有更加深刻的意义。这也为流体动力学——研 究在外力作用下流体的运动规律,打下了理论的 基础。
§3-l
流体运动的描述方法
把流体流动占据的空间称为流场。 在流场中,每个质点均有确定的速度和压力,都是空间坐标和时间的连续函 数。流场也可以理解为速度场和压力场的综合。 表征流体运动的量,如速度、压力等统称为运动要素。
x( a, b, c, t ) ux t y ( a, b, c, t ) uy t z ( a, b, c, t ) uz t
流体质点的加速度
2 x(a, b, c, t ) ax t 2
2 y (a, b, c, t ) ay t 2
2 z (a, b, c, t ) az t 2 流体质点的压力p和密度ρ也同样是(a,b,c)和的函数
运动开始前,质点的起始坐标为(a,b,c),经过时间t,它运动到(x,y, z)。x、y、z表示任一流体质点经过时间t的位置,是(a,b,c)及t的函数,即
x x(a, b, c, t ) y y(a, b, c, t ) z z (a, b, c, t )
这种通过描述每一质点的运动达到了解流体运动的方法,称为拉格朗日法。 表达式中的自变量(a,b,c),称为拉格朗日变量。 流体质点的速度为
p p(a, b, c, t )
(a, b, c, t )
二、欧拉法
物理学中场定义为物理量在空间的分布,如速度场、压力场等。流体力学 中,流场是指流体质点运动经过的全部空间。欧拉法以流场为研究对象,以空间 点为着眼点,研究空间点上各质点的运动要素及其变化规律,来获得整个流场的 运动特性。
( x, y, z, t )
加速度可用速度对时间的导数来表示,由全导数公式有
dux u x u x dx u x dy u x dz ax dt t x dt y dt z dt
dx,dy,dz表示在无穷小一段时间内流体质点的位移分量,由
位移分量对时间的导数得出速度分量表达式
u z u z (绝对的恒定流是不存在的。本课 程主要研究恒定流动问题。
二、迹线和流线
1、迹线
迹线是流体质点在一段时间过程中运动的轨迹线。 迹线的特点是:对于每一个质点都有一个运动轨迹,所以迹线 是一族曲线。 如图所示AB曲线是质点M的迹线,在这一迹线上取微元长度ds 表示该质点M在dt时间内的微小位移,则其速度为
u a (u )u t
式中
a ax i a y j az k
哈密尔顿算子(Hamiton)
u uxi u y j uz k
i j k x y z
对比拉格朗日法和欧拉法的不同变量,就可以看出两者的区别:

dx dy dz ux uy uz dt dt dt dux u x u x u x u x ax ux uy uz dt t x y z
式中,右边第一项表示流体质点在某一点(x,y,z)的速度
随时间的变化率,称为当地加速度(时变加速度)。后三项之和 称为位变加速度(迁移加速度)。
前者以a、b、c为变量,是以一定质点为对象;后者以x、y、z为变
量,是以固定空间点为对象。
只要对流动的描述是以固定空间,固定断面,或固定点为对象,
应采用欧拉法,而不是拉格朗日法。
§ 3- 2
流场的基本概念
恒定流与非恒定流
迹线和流线
一维、二维、三维流动
流管、流束及总流
过流断面、流量和平均流速
均匀流和非均匀流
一、拉格朗日法
拉格朗日法研究对象是单个流体质点,研究其运动要素(位置、速度)等的
变化过程,显然是一种质点系法。拉格朗日法着眼于流体各质点本身的运动情况 ,也就是要表示出每个流体质点自始自终的运动过程。
把任一流体质点在初始时刻 t0 时的坐标(a,b,c)作为该质点的标志,则
不同的(a,b,c)就表示流动空间的不同质点。这样,不同的(a,b,c)变数 表示流场中的不同质点。
则表示流体质点在同一时间内,因坐标位置变化而形成的加速度,
同理可得:
ay
az
duy dt

u y t
ux
u y x
uy
u y y
uz
u y z
duz u z u u u ux z u y z uz z dt t x y z
用矢量表示
§3-2
流场的基本概念
一、恒定流与非恒定流(定常流与非定常流)
恒定流动是指流场中流动参数不随时间变化而改变的流动。 它满足下列条件:
u x 0 t
u y t
0
u z 0 t
p 0 t
其速度和压强表示为:
u x u x ( x, y, z) u y u y ( x, y, z)
相关文档
最新文档