第二章计算流体力学的基本知识
第二章计算流体力学的基本知识
![第二章计算流体力学的基本知识](https://img.taocdn.com/s3/m/cf68970da9114431b90d6c85ec3a87c240288a2d.png)
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1 计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解<。
第二讲 流体力学的基本知识
![第二讲 流体力学的基本知识](https://img.taocdn.com/s3/m/e8af960ca300a6c30c229fdd.png)
密闭容器内的流体的特点 密闭容器中液体各点的压力是相等的。 密闭液体可以用于管路中向各个方向传递动力。
2.如题图所示连通器,中间有一活动隔板T,已知活塞面 积A1=1×10-3 m2, A2=5×10-3 m2,F1=200N,G=2500N, 活塞自重不计,问: (1)当中间用隔板T隔断时,连通器两腔压力P1、P2各是 多少? (2)当把中间隔板抽去,使连通器连通时,两腔压力P1、 P2各是多少?力F1能否举起重物G? (3)当抽去中间隔板T后若要使两活塞保持平衡,F1应是 多少?
液压油
学习目标 1.理解掌握液压油的性质 2.掌握液压油的类型 3.能够选用正确的液压油 4.学会分析液压油的故障
液体是液压传动的工作介质。最常用的工作介 质是液压油。 ◆ 1.液压油的性质 ◆ 1)密度 M M-液体的质量; V V-液体的体积。 一般液压油的密度为:900kg/m3 ◆ 2)可压缩性 ◆ 指液体在外力作用下体积减小的特性; ◆ 一般认为油液是不可压缩的。
料脱落的颗粒和纤维剥落的油漆、碎渣等。
• • • •
2.油液污染的危害 污染物包括:金属材料75%、尘埃15%、其它10% 1)对油泵的危害:使油泵润滑部分磨损加剧。 2)对液压阀的危害:使阀心移动困难或卡住阀口 密封不严,使阀失去控制性能。 • 3)对油缸危害:加速密封的损坏,油缸内表面拉 伤,内外泄露增加。 • 4)对过滤器的危害:会使滤网阻塞,油泵吸油困 难,回油不畅。严重时击穿滤心。 • 5)油液变质降低油液原有的特性和使用期。
(完整版)流体力学重点概念总结
![(完整版)流体力学重点概念总结](https://img.taocdn.com/s3/m/1dbc962d960590c69fc37624.png)
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学基础知识
![流体力学基础知识](https://img.taocdn.com/s3/m/20435dc09ec3d5bbfd0a7448.png)
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
(完整版)流体力学知识点总结汇总
![(完整版)流体力学知识点总结汇总](https://img.taocdn.com/s3/m/2993b14a50e2524de4187e18.png)
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
气体动力学讲义吴子牛第二章流体力学问题模拟的基础知识
![气体动力学讲义吴子牛第二章流体力学问题模拟的基础知识](https://img.taocdn.com/s3/m/e6448025001ca300a6c30c22590102020740f295.png)
2 V
同理,紊动阻力也必须满足牛顿相似定律,于是得到:
于是得到:
L2
2 V
L2
2 V
1
2.2模型相似准则
上式表明,如果两个几何相似的水流是在紊动阻力 作用下达成动力相似,则它们的沿程阻力系数相等;反 之,如果两个水流的沿程阻力系数相等,则这两个水流 一定是早紊动阻力作用下动力相似的。对于气流流动, 结论也是相同的。这就是紊动阻力相似准则。
2.2模型相似准则
一、重力相似准则(佛汝德相似准则)
如果两个相似水流中起主导作用的是重力,作用于原型和模
型的相应部分的重力分别以Gy和Gm表示,由于 G gW,因 而重力的比尺为:
G
Gy Gm
y g yWy m g mWm
g
3 L
要使在重力作用下原型与模型相似,同样必须满足动力相似的
一般规律,而由于作用力F中仅考虑重力G,因而F=G,即。
2.2模型相似准则
在水力学中,根据重力相似准则设计的模型实验有堰流、 孔口管嘴泄流以及流过水工建筑物等以重力为主导的水流 运动。对于波浪运动、船舶和水上飞机浮筒等水上运动物 体的波浪阻力问题,也必须根据重力相似准则设计模型。 在空气动力学中,对于具有加速度的运动物体,例如飞机 的机动飞行,设计模型实验也要满足重力相似准则,才能 保证机动飞行姿态相似。
const.
W
Wy Wm
3 L
const.
2.1 流动的力学相似
从理论上讲,最好能做到所有模型尺寸全按一个比尺 缩小或放大,这种长、宽、高比尺均一致的模型称为正 态模型。在流体力学模型实验中,通常遇到的是这类模 型。在有的情况下,不能做到这一点,例如进行天然河 道流动的模型实验,由于天然河道的长度比宽度和水深 要大得多,如果按照同一比例尺缩制模型,势必造成水 深太小甚至改变了模型中水流的性质。对于这种情况, 就要分别采用不同的长度比尺、宽度比尺和高度比尺, 因而这种模型就改变了原有的形状。这种比尺不一样的 模型称为变态模型。
流体力学基本知识
![流体力学基本知识](https://img.taocdn.com/s3/m/ed81c9ccdaef5ef7ba0d3cd4.png)
牛顿试验研究提出与粘滞性有关的内摩擦 定律为
李峥嵘 博士
9
2019/9/22
李峥嵘 博士
10
2019/9/22
李峥嵘 博士
11
பைடு நூலகம்
2019/9/22
四、计量单位
1、国际单位
1)基本单位:长度、质量、时间、热力
李峥嵘 博士
43
2019/9/22
3、沿程损失和局部损失 1)沿程损失
流体流动中为克服摩擦阻力而损耗的能量
称为沿程损失。沿程阻力损失与长度、粗糙 度及流速的平方成正比,而与管径成反比, 通常采用达西一维斯巴赫公式计算:
李峥嵘 博士
44
2019/9/22
2)局部损失 流体运动过程中,通过断面变化处、转向 处、分支或其他使流体流动情况改变时,
阻力损失值视流体的流行形态而 不同,因此计算流体的阻力损
失.应了解水流的形态。
李峥嵘 博士
40
2019/9/22
在一一端、装有流阀体门的的流长玻动璃形态
管放色中水水流充,流种体满 并 ,不在水 由 则同, 小 可流的稍 管 见动流开 注 管中动启 入 内,阀有颜形由门颜色态于—流—速层不流同和而紊呈流现。出两
传递的能量,是物体间(内)通过分子 运动相传递的能量。给物体加热,实
际就是增加使物体分子运动的能量,物 体的温度就将升高,反之使物体散热减 小分子运动的能量,物体温度降低。
李峥嵘 博士
49
3、温度
2019/9/22
李峥嵘 博士
50
4、热膨胀
2019/9/22
第二章--计算流体力学的基本知识
![第二章--计算流体力学的基本知识](https://img.taocdn.com/s3/m/ee69b2fa0d22590102020740be1e650e52eacff3.png)
第二章--计算流体力学的基本知识第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
*流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler 或Navier-Stokes方程)以发现各种流动现象规律的学科。
流体力学复习知识结构图
![流体力学复习知识结构图](https://img.taocdn.com/s3/m/ee72b6214b35eefdc8d333a2.png)
产生运动的原因: 产生运动的原因:
相对运动: 相对运动:剪切流
第九章 缝隙流动
1.两固定板间的层流流动:压差流 平行板:N-S方程 ∆p u= (h − z ) z 2µ L
Bh3∆p qv = B ∫ udz = 12µ L 0
h
12 µ Lqv ∆p = Bh3
倾斜板:
第九章 缝隙流动
2.具有相对运动两板间的缝隙流动: 剪切流
第五章 流体动力学
运动微分方程:
f 理想: x − ∂p 1 ∂u ∂u ∂u ∂u = +u +v +w ∂x ρ ∂t ∂x ∂y ∂z
1 ∂p ∂ 2u ∂ 2 u ∂ 2 u ∂ ∂u ∂v ∂w du f + )] = 实际:x − [ − µ ( 2 + 2 + 2 ) − µ ( + ρ ∂x ∂x ∂y ∂z ∂x ∂x ∂y ∂z dt
Cd =
qv A 2( gH +
∆p
ρ
)
理论流量(C处的面积没有收缩、出流 处没有局部阻力的影响时C处的流量)
0.60~0.62
Cd Cc = Cv
0.64
第九章 缝隙流动
各种缝隙的流动特性及其流量公式,作为分析 和计算元件泄漏的依据。
平面缝隙 缝隙 环形缝隙 特征: 特征: 小 摩阻大 压差: 压差: Re小 小 压差流 层流 混合流 平行 楔形
2.能量损失的原因(粘性、流体与管道的摩擦) 能量损失的两种方式(单位重量流体的能量损失) 沿程阻力损失 局部阻力损失
L v2 hλ = λ d 2g
v2 hζ = ζ 2g
第七章 流体在管道中的流动
3.圆管中的层流流动
计算流体力学简明讲义.
![计算流体力学简明讲义.](https://img.taocdn.com/s3/m/c6df6235195f312b3069a5a2.png)
第一章绪论第一节计算流体力学:概念与意义一、计算流体力学概述任何流体运动的规律都是由以下3个基本定律为基础的:1)质量守恒定律;2)牛顿第二定律(力=质量×加速度),或者与之等价的动量定理;3)能量守恒定律。
这些基本定律可由积分或者微分形式的数学方程(组)来描述。
把这些方程中的积分或者(偏)微分用离散的代数形式代替,使得积分或微分形式的方程变为代数方程(组);然后,通过电子计算机求解这些代数方程,从而得到流场在离散的时间/空间点上的数值解。
这样的学科称为计算流体(动)力学(Computational Fluid Dynamics,以下简称CFD)。
CFD有时也称流场的数值模拟,数值计算,或数值仿真。
在流体力学基本方程中的微分和积分项中包括时间/空间变量以及物理变量。
要把这些积分或者微分项用离散的代数形式代替,必须把时空变量和物理变量离散化。
空间变量的离散对应着把求解域划分为一系列的格子,称为单元体或控制体(mesh,cell,control volume)。
格子边界对应的曲线称为网格(grid),网格的交叉点称为网格点(grid point)。
对于微分型方程,离散的物理变量经常定义在网格点上。
某一个网格点上的微分运算可以近似表示为这个网格点和相邻的几个网格点上物理量和网格点坐标的代数关系(这时的数值方法称为有限差分方法)。
对于积分型方程,离散物理量可以定义在单元体的中心、边或者顶点上。
单元体上的积分运算通常表示为单元体的几何参数、物理变量以及相邻单元体中物理变量的代数关系(这时的数值方法称为有限体积方法和有限元方法)。
所谓数值解就是在这些离散点或控制体中流动物理变量的某种分布,他们对应着的流体力学方程的用数值表示的近似解。
由此可见,CFD得到的不是传统意义上的解析解,而是大量的离散数据。
这些数据对应着流体力学基本方程的近似的数值解。
对于给定的问题,CFD 研究的目的在于通过对这些数据的分析,得到问题的定量描述。
液压与气压传动知识要点第2章
![液压与气压传动知识要点第2章](https://img.taocdn.com/s3/m/a14ab1bec77da26925c5b08a.png)
液压与气压传动
第2章 流体力学基础
2.2
一、基本概念
液体动力学
1.理想液体、 1.理想液体、恒定流动 理想液体
液压与气压传动
第2章 流体力学基础
2.一维流动 2.一维流动 流场中流体的运动参数一般都随空间位置的 改变而不同。因此,严格地说,是三维的。 改变而不同。因此,严格地说,是三维的。但 在数学上相当复杂,有时甚至得不到方程的解。 在数学上相当复杂,有时甚至得不到方程的解。 在工程上,我们在满足工作性能要求的情况下, 在工程上,我们在满足工作性能要求的情况下, 抓住主要因素, 抓住主要因素,把三维问题化成二维甚至一维 问题来解决。 问题来解决。 图
液压与气压传动
第2章 流体力学基础
1.理想液体的伯努利方程 1.理想液体的伯努利方程 在流动过程中,外力对此段液体做了功,并引 在流动过程中,外力对此段液体做了功, 起其动能发生相应改变。根据功能原理, 起其动能发生相应改变。根据功能原理,外力所 做的功应该等于其动能的改变量。 做的功应该等于其动能的改变量。 (1)作用在液体段上的外力所做的功 外力有:重力和压力 外力有:重力和 ①液体段上重力所做的功 液体段上重力所做的功等于液体段位置势能的 变化量。 变化量。
液压与气压传动
第2章 流体力学基础
重力作用下静止液体的压力分布: 重力作用下静止液体的压力分布: (1)静止液体内任一点处的压力都由两部分组成: (1)静止液体内任一点处的压力都由两部分组成: 静止液体内任一点处的压力都由两部分组成 液面上的压力; 液面上的压力;该点以上液体自重所形成的压 的乘积。 力,即,ρg与该点离液面深度h的乘积。 (2)静止液体内的压力随液体深度呈直线规律分布 静止液体内的压力随液体深度呈直线规律分布。 (2)静止液体内的压力随液体深度呈直线规律分布。 (3)距液面深度相同的各点组成等压面 距液面深度相同的各点组成等压面, (3)距液面深度相同的各点组成等压面,等压面为 水平面。 水平面。
大学物理流体力学基础知识点梳理
![大学物理流体力学基础知识点梳理](https://img.taocdn.com/s3/m/fe9367dbc67da26925c52cc58bd63186bceb92e9.png)
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体力学相关知识点
![流体力学相关知识点](https://img.taocdn.com/s3/m/016fde58640e52ea551810a6f524ccbff121ca24.png)
流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。
以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。
2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。
3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。
4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。
5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。
6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。
7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。
8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。
9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。
10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。
11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。
12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。
13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。
14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。
以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。
流体力学知识点大全
![流体力学知识点大全](https://img.taocdn.com/s3/m/f64c07275f0e7cd184253688.png)
流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ⇒⨯=迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。
流体力学-知识点
![流体力学-知识点](https://img.taocdn.com/s3/m/c8f6c12ce2bd960590c67719.png)
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
第二章 流体力学基础(1-6)知识讲解
![第二章 流体力学基础(1-6)知识讲解](https://img.taocdn.com/s3/m/2fe1b759c1c708a1294a4413.png)
34
2.2 液体静力学
2.2.3 压力表示方法和单位
压力有两种表示方法:绝对压力和相对压力。
以绝对真空为基准度量的压力叫做绝对 压力; 以大气压为基准度量的压力叫做相对压 力或表压。
这是因为大多数测量仪表都受大气 压作用,这些仪表指示的压力是相对压 力。
在液压与气压传动系统中,如不特别 说明,提到的压力均指相对压力。
液压油的粘度等级就是以其40ºC时运动粘度的某一平均 值来表示,
如L-HM32液压油(32号液压油)的粘度等级为32,则 40ºC时其运动粘度的平均值为32mm2/s 。
12
2.1 液压油
相对粘度 雷氏粘度〞R——英国、欧洲 赛氏粘度SSU——美国 恩氏粘度oE——俄国、德国、中国
oE=
t1
t2
单位:无量纲
(2)润滑性能好 (3)质地纯净,杂质少。 (4)具有良好的相容性。
(5)具有良好的稳定性。(氧化) (6)抗乳化性、抗泡沫性、防锈性、腐蚀性小。
(7)膨胀系数低、比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害,成本低。
18
2.1 液压油
2.1.4 液压油的选择
正确合理地选择液压油液,对保证液压传动系统正常工作、延 长液压传动系统和液压元件的使用寿命以及提高液压传动系统的工 作可靠性等都有重要影响。
计算流体力学基础
![计算流体力学基础](https://img.taocdn.com/s3/m/77c8e7fb84254b35eefd34f5.png)
For personal use only in study and research; not for commercial use一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。
实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。
通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程( N-S方程)。
N-S方程可以表示成许多不同形式,上面的N-S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N-S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1 计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。
广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。
自20世纪60年代以来,CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。
传统飞行器设计方法实验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机实验,缩短研发周期,节约研究经费。
四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。
如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物实验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞实验量。
目前在航空、航天、汽车等工业领域,利用CFD进行的反复设计、分析、优化己成为标准的必经步骤和手段。
当前CFD问题的规模为:机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。
与实验研究相比,理论计算具有花费少、速度快、信息完整、模拟能力强等优点,特别是大量的计算流体力学软件的出现,大大减少了计算流体力学研究的工作量,从而扩大了计算流体力学的应用范围,推动了流体力学更深入的发展。
计算流体力学还不是一项很成熟的技术,在用计算流体力学对流动现象进行预测的时候,需要对复杂的流动现象进行处理,然后用数学模型来描述它,计算的结果既取决于计算方法,也取决于数学模型本身,如果数学模型的描述不够精确,甚至不恰当,其计算结果也就没有任何价值可言。
尽管作为一门新兴的学科,计算流体力学还有缺陷,但它会随着技术的进步和发展而日趋成熟,并将在化工领域得到广泛的应用。
一个完整的计算流体力学模型应包含如下几个方面的内容: 本构方程,即流体力学基本方程:连续性方程(质量方程)、动量方程、能量方程、状态方程等。
湍流模型,不同于层流,必须考虑流体单元的脉动速度,脉动是湍流流动的基本特征。
从模型的建立及求解过程可以看出,其实质是寻找出由于脉动而起的运动粘度的表达式。
多相流模型,对于多相流模拟计算来说,基本的湍流模型还不够用,需要进一步寻找各相运动规律及相间作用力规律。
模型的求解数值方法,对模型进行计算时,需要选择好的差分格式、松弛因子、时间步长等,以使结果收敛尽量减少CPU运算时间。
2.1.2 计算流体力学的定义计算流体动力学(Computational Fluid Dynamics ,简称CFD)是建立在经典流体力学与数值计算方法基础上的新型独立的学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。
它兼有理论性和实践性的双重特点,建立了理论和方法,为现代科学中许多复杂流动和传热问题提供了有效的计算技术。
计算流体动力学(CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。
它的基本思想是:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的几何来代替,通过一定的原则和方式建立起来的关于这些离散点上场变量之间关系的代数方程组,然后代数方程组获得场变量的近似值[5]。
CFD方法和传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系。
理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证数值计算方法的理论基础,但是它往往要求对计算进行抽象和简化,才可能得出理论解。
对于非线性情况,只有少数流动才能给出解析结果。
实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。
然而,实验往往受到模型尺寸、流场流动、人身安全和测量精度的限制,有时可能很难通过试验的方法得到满意的结果。
而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算,就好像在计算机上做一个物理实验。
例如,机翼的绕流,通过计算机并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。
数值模拟可以形象地再现流动情景,与做实验没有什么区别。
2.1.3 计算流体力学的计算步骤采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤:(1)建立反映工程问题或物理问题本质的数学模型。
具体的说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数学模型的出发点。
没有正确完善的数学模型,数值模拟就没有任何意义。
流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。
(2)寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。
这里的计算方法不仅包括微分方程的离散化方法及求解条件,还包括体坐标的建立,边界条件的处理等。
这些内容可以说是CFD的核心。
(3)编制程序和进行计算。
这部分工作包括计算网格划分、初始条件和边界条件的输入,控制参数的设定等。
这是整个工作中花时间最多的部分。
由于求解的问题比较的复杂,比如Navier-Stokes方程就是一个十分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。
正是从这个意义上讲,数值模拟又叫数值实验。
(4)显示实验的结果,计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要的意义。
2.1.4 计算流体力学的局限性虽然CFD具有许多的优点,但是也存在一定的局限性。
首先,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合在计算机上进行计算的离散的数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;第二,它不像物理模型试验一开始就能给出流动现象并定性的描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证;第三,程序的编制及资料的收集、整理与正确利用,在很大程度上取决于经验和技巧。
此外,因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值粘性和频散等伪物理效应。
当然,某些缺点或局限性可以通过某种方式克服或弥补。
最后,CFD因涉及大量的数值计算,因此,需要较高的计算机软硬件配置。
2.1.5 几种数值解法经过四十多年的发展,CFD出现了多种数值解法。
这些方法之间的主要区别在于对控制方程的离散方式。
根据离散的原理不同,大体上可以分为三个分支:有限差分法、有限元法、有限体积法。
有限差分法是运用最早、最经典的CFD方法,它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
求出差分方程组的解,就是微分方程定解问题的数值近似解。
它是一种直接将微分问题变成代数问题的近似数值解法。
这种方法发展较早,比较成熟,较多的用于求解双曲型和抛物型问题。
在此基础上发展起来的方法有PIC(Particle-in-Cell)法、MAC(Marker-and-Cell)法,以及由美籍华人学者陈景仁提出的有限分析法(Finite-Analytic-Method)等[6]。
有限元法是20世纪80年代开始应用的一种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。
有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是很广泛。
在有限元法的基础上,英国C.A.Brebbia等提出了边界元法和混合元法等方法。
有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积进行积分,得出离散方程。
有限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及导数的分布做出某种形式的假定。
用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。
它是目前CFD应用最广的一种方法。
当然这种方法的研究和扩展也在不断的进行,有的学者提出了适用于任意多边形非结构网格的扩展有限体积法[7]。
2.2 流体动力学控制方程2.2.1 流体的质量守恒方程任何流体问题都必须满足质量守恒定律。
该定律可表达为:单位时间内流体微元体中质量的增加,等于同一时间间隔内流入该微元的净质量。
按照这一定律,可以得出质量守恒方程(mass conservation equation )[9]:0)()()(=∂∂+∂∂+∂∂+∂∂tw t v t u t ρρρρ (2.2) 引入矢量符号div(a)=za y a x a z y x ∂∂+∂∂+∂∂,则上式写成: 0)(=+∂∂u div tρρ (2.3) 有的文献使用符号∇表示散度,即∇•a= div(a)=za y a x a z y x ∂∂+∂∂+∂∂,这样,上式又可以写成:0)(=∇+∂∂u tρρ (2.4)上式中:ρ是密度,t 是时间,u 是速度矢量,u 、v 、w 是速度矢量在x 、y 、z 方向的分量。