流体力学基本概念和基础知识
流体力学基本概念和基础知识..
流体力学基本概念和基础知识(部分)1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体?流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质dydu A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。
水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。
(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。
2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。
连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)3.什么是理想流体?不考虑黏性作用的流体,称为无黏性流体(或理想流体)4.什么是实际流体? 考虑黏性流体作用的实际流体5.什么是不可压缩流体?流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。
6.为什么流体静压强的方向必垂直作用面的内法线?流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向7.为什么水平面必是等压面?由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。
8.什么是等压面?满足等压面的三个条件是什么?在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等压面的三个条件是同种液体连续液体静止液体。
9.什么是阿基米德原理?无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。
10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.等角速旋转运动液体的特征有那些?(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
第一章 流体力学基础(10)
Pa s
在物理单位制中: P,泊 SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 10P 第一章 流体力学基础
牛顿型流体和非流动流体
1)凡遵循牛顿粘性定义的流体称为牛顿型流体;否则 为非流动型流体。 牛顿型流体,如水、空气等; 2) 非流动型流体,如某些高分子溶液、悬浮液、泥浆 和血液等。 3) 本书所涉及的流体多为牛顿型流体。
第一章 流体力学基础
(2)通过喷嘴的流动
1 2
q+w=△h+ g△Z+
1 2 △ u 2
u2 2h1 h2
流体流过收缩喷嘴时获得的动能等于流体韩志的增加
第一章 流体力学基础
(3)通过节流阀的流动
q+w=△h+ g△Z+
1 2 △ u 2
h1 h2
流体截流前后的焓值不变
第一章 流体力学基础
在过程生产中,有些仪表是以静力学基本方程式为理论依
一、压强与压强差测量
1 U型管液柱压差计 指示液密度ρ0,被测流体密度为ρ,图中a、 b两点的压力是相等的,因为这两点都在同一 种静止液体(指示液)的同一水平面上。通 过这个关系,便可求出p1-p2的值。
指示剂的选择
@ 指示液必须与被测流体不 互容; @ 不起化学反应; @ 大于被测流体的密度。 指示液随被测流体的 不同而不同。
实际上流体都是可压缩的,一般把液体当作不可压缩流体; 气体应当属于可压缩流体。但是,如果压力或温度变化率很小 时,通常也可以当作不可压缩流体处理。
第一章 流体力学基础
稳定流动(定态流动)
稳定流动:流体在流动时,在任一点上的流速、压力等有关 物理参数仅随位置变化而不随时间改变。
流体力学基本知识
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律
工程流体力学知识点总结
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
第一章流体力学基本概念
分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
第一章 流体力学的基础知识
u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性
化工原理第一章流体力学
反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力
第1章 流体力学基本知识
数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
流体力学的基本概念与原理
流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。
本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。
一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。
相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。
2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。
3. 连续性:流体不存在间断,可以填充空间。
4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。
二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。
根据帕斯卡原理,流体中的压强在各个方向上都是相等的。
2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。
3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。
4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。
三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。
2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。
3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。
4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。
四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。
流体力学基础概念与定义
流体力学基础概念与定义流体力学是研究流体运动及其相关现象的科学领域,是力学的一个分支学科。
它以流体力学基础概念与定义为研究对象,包括流体、流速、密度、压力、流量等方面。
本文将重点介绍流体力学的基础概念与定义,以帮助读者更好地理解和应用流体力学知识。
第一部分:流体力学概述一、流体的定义流体是指能够流动的物质,包括液体和气体。
与固体相比,流体的分子之间的相互作用较弱,容易发生流动。
二、流体运动的描述流体运动包括径流和湍流,径流是指流体在光滑表面上的顺畅流动,湍流是指流体在粗糙表面上的混沌不规则流动。
三、重要性及应用领域流体力学在众多领域中都具有广泛的应用,例如工程领域的水力学、气动学、船舶设计等,医学领域的血液循环学等。
第二部分:流体力学基本量和概念一、流速流速是指单位时间内流体通过某一横截面积的体积。
它可以用于描述流体运动的快慢。
二、密度密度是指单位体积内流体所含的质量。
它与流体的压力和温度有关,可以用于描述流体的致密程度。
三、压力压力是指单位面积上施加的力。
流体中的压力可以通过定义流体的垂直压强来表示,是流体力学中的重要概念。
四、流量流量是指单位时间内通过某一横截面积的流体体积。
它可以用于描述流体运动的量。
第三部分:流体力学方程一、连续性方程连续性方程描述了流体在流动过程中质量守恒的原理,即在稳态条件下,流体在任何两个截面的流量相等。
二、动量方程动量方程描述了流体运动中的力学变化,它可以通过流体中的压力和流速的关系来表达。
三、能量方程能量方程描述了流体运动中能量守恒的原理,考虑了流体在运动中与外界的能量交换。
第四部分:流体力学的应用实例一、水流的行为通过分析水流的流速、流量和压力变化,可以更好地了解水力学,应用于水坝设计、水源利用等领域。
二、空气动力学空气动力学研究空气在运动中的力学行为,可以应用于飞机设计、汽车流体力学等领域。
三、血液循环学血液循环学研究血液在人体中的流动和压力变化,对于心血管疾病的治疗和预防具有重要意义。
流体力学基本知识
第二节 流体静力学的基本概念
▪ 2、压强的计量单位
▪ (1)定义式:
▪ 国际单位制(SI)制:1N/m2=1Pa;
1bar=105 Pa
▪ 工程制: 1kgf/cm2=1kg×9.8065[m/s2]/10–4[m2]
▪
=9.8065×104 Pa
第二节 流体静力学的基本概念
▪ (2)用大气压表示: ▪ 1atm(标准大气压)=1.033 kgf/cm2 ▪ =1.033×9.8065×104 Pa=1.0133×105 Pa ▪ =1.0133 bar
第二节 流体静力学的基本概念
(3)用液柱的高度表示: p=F/A=ρVg/A=ρ(AZ)g/A=ρZg
力增大,动力消耗增大,操作费用增大; 当V一定时,u减小,则d增大,管材费用增加,流动
阻力减小,动力消耗减小,操作费用减小;在允许 范围内,从长远利益考虑,一般选择管径较大者。
第三节 管内流体流动的基本方程式
二、流体运动的类型 1、有压流: 流体在压差作用下流动,流体各个过流断面的
整个周界都与固体壁相接触,没有自由表面,这种流体流 动为有压流。 2、无压流: 流体在重力作用下流动,流体各个过流断面的 部分周界与固体壁相接触,具有自由表面,这种流体流动 为无压流。 3、稳定流动:流体在管道中流动时,若任一点的流速、压 力等有关物理参数都不随时间改变,仅随位置改变,即 u=f(x,y,z),ut=ut+△t,则这样的流动为稳定流动。 4、不稳定流动:流体在管道中流动时,若任一点的流速、 压力等有关物理参数不仅随位置改变,而且随时间发生部 分或全部改变,即u=f(x,y,z,t),ut≠ut+△t,这样的流 动为不稳定流动
大学物理流体力学基础知识点梳理
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体力学相关知识点
流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。
以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。
2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。
3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。
4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。
5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。
6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。
7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。
8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。
9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。
10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。
11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。
12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。
13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。
14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。
以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。
大学物理学习指导第2章流体力学基础
⼤学物理学习指导第2章流体⼒学基础第2章流体⼒学基础2.1 内容提要(⼀)基本概念 1.流体:由许多彼此能够相对运动的流体元(物质微团)所组成的连续介质,具有流动性,常被称为流体。
流体是液体和⽓体的总称。
2.流体元:微团或流体质量元,它是由⼤量分⼦组成的集合体。
从宏观上看,流体质量元⾜够⼩,⼩到仅是⼀个⼏何点,只有这样才能确定流体中某点的某个物理量的⼤⼩;从微观上看,流体质量元⼜⾜够⼤,⼤到包含相当多的分⼦数,使描述流体元的宏观物理量有确定的值,⽽不受分⼦微观运动的影响。
因此,流体元具有微观⼤,宏观⼩的特点。
3.理想流体:指绝对不可压缩、完全没有黏滞性的流体。
它是实际流体的理想化模型。
4.定常流动:指流体的流动状态不随时间发⽣变化的流动。
流体做定常流动时,流体中各流体元在流经空间任⼀点的流速不随时间发⽣变化,但各点的流速可以不同。
5.流线:是分布在流体流经区域中的许多假想的曲线,曲线上每⼀点的切线⽅向和该点流体元的速度⽅向⼀致。
流线不可相交,且流速⼤的地⽅流线密,反之则稀。
6.流管:由⼀束流线围成的管状区域称为流管。
对于定常流动,流体只在管内流动。
流线是流管截⾯积为零的极限状态。
(⼆)两个基本原理 1.连续性原理:理想流体在同⼀细流管内,任意两个垂直于该流管的截⾯S 1、S 2,流速v 1、v 2,密度ρ1、ρ2,则有111211v v S S ρρ= (2.1a )它表明,在定常流动中,同⼀细流管任⼀截⾯处的质量密度、流速和截⾯⾯积的乘积是⼀个常数。
也叫质量守恒⽅程。
若ρ为常量,则有Q = S v = 常量(2.1b )它表明,对于理想流体的定常流动,同⼀细流管中任⼀截⾯处的流速与截⾯⾯积的乘积是⼀个常量。
也叫体积流量守恒定律或连续性⽅程。
2 伯努利⽅程:理想流体在同⼀细流管中任意两个截⾯处其截⾯积S ,流速v ,⾼度h ,压强p 之间有11222121gh p gh p ρρρρ++=++2122v v (2.2) 或写成常量=++gh p ρρ221v 。
第一节 流体力学基础知识
精品文档
3.密度与容重的关系
GMgg
VV
4.密度和容重与压力、温度的关系
❖ 压力升高
流体的密度和容重增加;
❖ 温度升高
流体的密度和容重减小。
精品文档
(二)流体的粘滞性
精品文档
1. 流体粘滞性的概念
流体内部质点间或流层间因相对运动而产生内摩
擦力(粘滞力)以反抗流体相对运动的性质。
精品文档
注意:自然界中都是非恒定流,工程中取为恒定流。
3、流线与迹线 (1)流线:同一时刻连续流体质点的流动方向线。 (2)迹线:同一质点在连续时间内的流动轨迹线。
精品文档
精品文档
4、均匀流与非均匀流 (1)均匀流:流体运动时,流线是平行直线的流 动。 (2)非均匀流:流体运动时,流线不是平行直线 的流动。
化时,迫使主流脱离边壁而形成漩涡,流体质点间产 生剧烈的碰撞,所形成的阻力。
局部水头损失 ------为了克服局部阻力而消耗的单
-68KN/m2;68KN/m2
2、绝对压力为0.4个大气压,其真空度为(D )。
A.0.4个大气压
B.0.6个大气压
C.—0.4个大气压
D.—0.6个大气压
精品文档
练习
3、油的密度为800kg/m3,油处于静止状态,油面与大气接触,
则油面下0.5m处的表压强为 kPDa。
(A)0.8 ;(B)0.5;(C)0.4;(D)3.9
精品文档
作业
• 水在粗细不均匀的水平管中作稳定流动。已知截面S1处 的压强为110Pa,流速为0.2m/s,截面S2处的压强为5Pa, 求S2处的流速(内摩擦不计)。
精品文档
(二)实际气体总流的能量方程式
流体力学基础知识
二、稳定流的连续方程
即质量守恒方程:
Q1 Q 2
1 v1 2 v 2 Q
v1 v2
常数
2
1
三、稳定
1
v
1
2
1
2g
2
2
v
2
2
2
2g
hw
适用条件:不可压缩稳定流,过流断面应 为均匀流或渐变流,无惯性力作用,流量 不变等。
V
其中ρ——㎏/m3;M——㎏;V——m3。
M lim 对非均质流体, V 0 V
其中ΔM——微小体积ΔV的流体质量; ΔV——包含该点在内的流体体积。 3.容重 (1)定义:单位体积的重量。 G (2)公式:
=
V
其中 ——N/m3,G——N,V——m3
4.ρ与γ的关系:
第四节
水流阻力和水头损失
一、水头损失的形式 1.产生水头损失的原因:流体流动时,由于 克服了流动阻力,一部分机械能不可逆转 地转化为热能散失而产生的损失。 2.沿程损失hf:受固体边界阻滞而产生。 3.局部损失hj:由于受到局部阻碍的影响, 流态急剧变化,形成涡旋而产生损失。 4.水头损失hw:
hw h f h j
一水箱,任取一截面,上部分作用其上 的力为ΔP,面积为ΔA,则ΔA上的平 均流体静压强
p
当ΔA缩小→a点时,比值趋于某一极 限值,称为a点的流体静压强:
p lim 0
•若P为常数,则
P p
流体静压力、静压强都是压力的一种量度, 其区别在于:前者是作用在某一面积上的 总压力,后者是作用在某一面积上的平均 压力或某一点的压力。
流体力学基础知识
一般来说,拖动泵和风机的电动机或者内燃
机的转速是恒定的,然后根据其特性曲线来选取 合适的泵和风机
*其他类型的泵与风机
轴流式水泵与风机 其流动特点是,流体沿叶轮的轴向流入
流出。其性能特点是,轴流式风机风压较 低,但风量较大。 贯流式风机
其流动特点是气流沿着径向流入又从 径向流出。这种风机的风量较小,但是噪 音很低,多用于室内空调。
三、绝对压力与表压力
由p=p0+γh表示的流体静压力是流体的绝对压力, 它是以绝对真空为压力零点计算的流体静压力,代 表流体内部某一点的实际压力。
工程上使用的测压仪表自身也处于大气压力的作用 下,他们在当地大气压力下示数为零。用仪表测量 流体压力得到的读数只反应流体压力比当地大气压 力高或者低多少,其实是一个压力差,因此叫做表 压力。
一定量的流体所受外界压力增大的时 候,其体积将缩小,密度会增大,该性质 称为流体的压缩性。
一定量的流体受热温度升高的时候, 其体积将增大,密度会减小,该性质称为 流体的热胀性。
气体的压缩性必液体显著的多,一般 将液体视为不可压缩流体。在一些情况下 (如空气沿通风管道前进)也将气体视作 不可压缩流体。于此同时,我们对于液体 的热胀性要给予足够的认识和重视。如高 楼水系统种一般设置膨胀水箱。
六、泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述。需 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水。
水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力。
泵与风机的主要性能参数:流量、扬程和压 头、功率、效率、转速请同学们自行了解。
整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加。
流体力学的基本概念和原理
流体力学的基本概念和原理流体力学是物理学中研究流体运动以及其力学性质的学科。
在工程学、地球科学和生物学等领域中都有广泛的应用。
本文将介绍流体力学的基本概念和原理。
一、流体的定义和性质流体是指能够流动的物质,包括液体和气体。
相比固体,流体的特点是没有一定的形状和体积,能够适应所处容器的形状和体积。
流体的性质包括密度、压力、粘性等。
1. 密度:流体的密度定义为单位体积内的质量,通常用符号ρ表示。
密度越大,单位体积内的质量越多,流体的惯性越大。
2. 压力:流体由于自身重力和外界作用力而产生的分子间压力,即压强。
单位面积的压力常用符号p表示。
3. 粘性:流体的内部存在分子间的相互作用力,这种内部摩擦力使得流体具有黏性,即粘稠度。
二、流体流动的基本特征流体力学研究的核心是流体的运动问题。
流体的流动可以分为稳定流动和非稳定流动两种状态。
1. 稳定流动:当流体在一段时间内保持流速和流向不变时,称为稳定流动。
稳定流动的流速分布是均匀的,流体各处的速度相等。
2. 非稳定流动:当流体的流速和流向随时间变化时,称为非稳定流动。
非稳定流动的流速分布不均匀,流体各处的速度不等。
三、流体运动的描述为了更准确地描述流体的运动,流体力学引入了速度场和流线两个概念。
1. 速度场:速度场是指在流体中任意一点上的瞬时速度。
它可以用速度向量来表示,速度向量的大小表示速度的大小,方向表示速度的方向。
2. 流线:流线是指沿着流体的运动方向而形成的曲线。
流线上的任意一点的速度矢量和流线切线方向相同。
流线的密度越大,流体的速度越大。
四、流体运动的基本原理流体力学的研究依赖于一些基本原理,其中包括连续性方程、动量方程和能量方程。
1. 连续性方程:连续性方程表明流体在任意两个相邻截面上的质量流量相等。
它可以通过质量守恒定律推导得到。
2. 动量方程:动量方程用于描述流体中的力学行为。
根据牛顿第二定律,流体中单位体积的动量随时间的变化率等于由外力和压力产生的合力。
流体力学知识点总结
流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。
2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。
3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。
4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。
二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。
2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。
3、流体的流动受力不受力,受力的变化很小。
4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。
三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。
2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。
3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。
4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。
6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。
四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学基本概念和基础知识
流体力学基本概念和基础知识(部分)
1.什么是粘滞性?什么是牛顿摩擦定律?不满足牛顿摩擦定律的流体是牛顿流体还是非牛顿流体?
流体部质点间或流层间因相对运动而产生摩擦力以反抗相对运动的性质
dy
du A T μ= 满足牛顿摩擦定律的流体是牛顿流体请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。
水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。
(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。
2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。
连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)
3.什么是理想流体?
不考虑黏性作用的流体,称为无黏性流体(或理想流体)
4.什么是实际流体?考虑黏性流体作用的实际流体
5.什么是不可压缩流体?
流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。
6.为什么流体静压强的方向必垂直作用面的法线?
流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的法线方向
7.为什么水平面必是等压面?
由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。
8.什么是等压面?满足等压面的三个条件是什么?
在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等压面的三个条件是同种液体连续液体静止液体。
9.什么是阿基米德原理?
无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。
10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?
重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.等角速旋转运动液体的特征有那些?
(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。
12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少?
绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。
相对压强:当地同高程的大气压强ap为零点起算的压强。
压力表的度数是相对压强,通常说的也是相对压强。
1atm=101325pa=10.33mH2O=760mmHg.
13.什么叫自由表面?和大气相通的表面叫自由表面。
14.什么是流线?什么是迹线?流线与迹线的区别是什么?
流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。
区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。
流线是由无究多个质点组成的,它是表示这无究多个流
体质点在某一固定瞬间运动方向的曲线。
而迹线则是在时间过程中表示同一流体质点运动的曲线。
15.什么是流场?我们把流体流动占据的空间称为流场
16.什么是欧拉法?什么是拉格朗日法?
欧拉法:通过描述物理量在空间的分布来研究流体运动的方法。
拉格朗日法:通过描述每一质点的运动达到了解流体运动的方法。
17.什么是恒定流动?什么是非恒定流动?什么是均匀流?什么是非均匀流?什么是急变流?什么是渐变流?
运动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,这种流动称之为恒定流动反之为非恒定流动。
质点流速的大小和方向均不变的流动叫均匀流动,反之为非均匀流动。
不均匀流动又按流速随流向变化的缓急,分为渐变流和急变流
18.应用恒定总统能量方程时,为什么把过流断面选在渐变流段或均匀流段?
19.因为建立恒定总流的伯努利方程时,把(z+P/pg)作为常熟提到积分号外面,只有渐变流断面或均匀流断面的(Z+P/pg)=C。
19.在写总流能量方程时,过流断面上的代表点、基准面是否可以任意选取?为什么?
可以,因为渐变流断面或均匀流断面上(Z+P/pg)=C
20.动能修正系数?动量修正系数?二者的大小和速度分布有何关系?
动能修正系数:总流有效断面上的实际动能对按平均流速算出假象动能的比值,流速分布越不均匀,值越大。
动量修正系数:实际动量和按照平均流速计算的动量的比值,流速分布越不均匀,值越大。
21.什么是沿程损失?什么是局部损失?紊流流态下,管沿程阻力系数的变化规律?
在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。
在边壁急剧变化的区域,阻力主要地集中在该
区域中及其附近,这种集中分布的阻力称为局部阻力。
克服局部阻力的能量损失为局部损失。
紊流光滑区(Re ≥4000)(Re)f =λ
22.雷诺实验揭示了流体存在两种流态,它们是如何定义的?判别流态的准则是什么?并阐述其物理意义。
对有压圆管流,判别准则的临界值为多少?
层流:各液层间毫不相混,分层有规则的流动状态。
紊流:液体质点的运动轨迹是极不规则的,各部分流体相互剧烈掺混。
用临界雷诺数作为判断准则,圆管流临界雷诺数等于2000
23.圆管层流流速分布规律?切应力的分布规律?
)(420r r J u -=μ
γ γ——容重;J ——水力坡度;μ——动力黏度;0r ——管半径J R g '=ρτ R '——对应的水力半径
24.尼古拉兹实验中,沿程阻力系数的变化曲线分为哪几个区域?请分别阐述其变化规律?湍流三个不同流区沿程阻力系数的影响因素以及形成不同流区的根本原因。
层流区;层,紊流过渡区;紊流光滑区;紊流过渡区;紊流粗糙区
25.相同的水力条件下,孔口自由出流的流量与管嘴出流的流量相比较,哪一个大?为什么会产生这种现象?管嘴正常工作的条件是什么?
在相同条件下,管嘴的过流能力是孔口的1.32倍。
收缩断面处真空起的作用。
圆柱形外管嘴的正常工作条件:作用水头H0≤9.3m,管嘴长度l=(3~4)d.
26.什么叫孔口自由出流和淹没出流?
在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。
如出流到充满液体的空间,则称为淹没出流。