船舶操纵

船舶操纵
船舶操纵

4.4 船舶操纵控制

船舶操纵是指船舶驾驶员根据船舶操纵性能和风、浪、流等客观条件,按照有关法规要求,正确运用操纵设备,使船舶按照驾驶员的意图保持或改变船舶水平运动状态的操作。下面介绍现代船舶航向控制和船舶主机遥控操纵。

4.4.1 船舶操纵基本原理

船舶操纵是一个大系统,由人、船舶和操船环境三个小系统构成,如图4–24所示。该系统中,船舶驾引人员是主要组成部分,他们通过掌握和处理大量信息,将操船指令输人船

舶,使船舶保持或改变运动状态而达到预期的目的。图4–25为船

舶驾引人员操纵船舶流程。图中信息A 为本船运动状态,信息B

为自然环境,信息C 为航行环境,信息D 为操船手册。 操纵船舶运动的机构,主要有舵和推进动力装置。舵是船舶操纵的重要设备,操舵者通过操舵可以使船舶保持或改变其航向,达到控制船舶方向的目的。推进器是指把主机发出的功率转换为

推船运动的专用装置或系统,目前应用最广泛的推进器是螺旋桨。

螺旋桨分为等螺距螺旋桨、

变螺距螺旋桨、固定螺距螺旋桨(FPP )和可调螺距螺旋桨(CPP )等不同类型。

20世纪50年代以来,船舶自动化经历了单元自动化、机舱集中监测与控制以及主机驾驶室遥控等几个阶段。随后,由于计算机技术和自动化技术在实船上的应用,以及空间技术和通信技术的发展,使得船舶自动化由机舱自动化朝综合自动化和智能化方向发展。

螺旋桨转速舵 角锚的使用缆的使用

拖船的使用

图4–25 船舶操纵流程图

4.4.2 船舶航向控制

船舶航向控制的主要任务有二:一是保持航向;二是航向跟踪。航向操纵部分——自动操舵系统自1922年自动操舵仪(也称自动舵)问世到今天,已经历了机械式自动舵、PID 自动舵和自适应自动舵三个发展阶段,目前正处于第四个研究发展阶段——智能自动舵。

1. 自动操舵系统

1) 常规PID 自动舵

在航海自动化系统中,船舶是系统的调节对象,若略去动力装置的影响,船舶运动状态的调节,将由舵来实现,并从船首方向表现出来。自动舵在调节船舶状态的动作中,一般都是采用小舵角,在采用小舵角操舵时,船舶回转运动可以用一个二阶微分方程来描述:

22

2d d J K V t ψ

δ= (4–5) 式中:J ——船舶转动惯量;

ψ——船舶偏航角;

δ——偏舵角。

V ——船舶速度;

K ——与船舶结构有关的系数。

船舶是一个具有很大惯性的控制对象,所以早期的自动舵绝大多数都采用“比例–微分–积分(PID )”控制规律。为了了解PID 控制规律的作用,不妨看一看人工操舵过程。假定船舶原来航驶在某预定航向上,但由于某种外界因素(扰动)的作用,船舷向右偏离航向Ψ角,于是舵手操左舵角δ,船舶在左偏舵产生的转船力矩作用下,开始回航;船舶开始回航后,一般舵手将减小舵角,使船舶回航的角速度不会继续加大。在船舶回到正航向时,由于惯性作用,船舶必然还将向左偏航;为了克服这向另一方向继续偏航的现象,有经验的舵手将适当操出一个反方向的舵角(右舵),令舵产生一个向右的转船力矩,抑制船向左偏航。一般不可能恰好使船停在正航向上,而会出现左偏或右偏的现象,因而又重复上述过程,直到使船舶恢复到正航向上来。PID 舵事实上就是模拟上述人工操舵过程,但由仪器自动实现。

若按比例舵的控制规律,那么舵角的操舵规律将是:

P K δψ=- (4–6)

式中:p K ——比例系数。

将式(4–6)代入式(4–5),整理后得:

22P 2d 0d K V K t J ψ

ψ+= (4–7)

式(4–7)是一齐次二阶常系数微分方程,解此方程可得

2P 0co s K V K t J

ψψ= (4–8)

2P P 0co s K V K K t J δψ=- (4–9)

式(4–9)中,Ψ0是舵效开始起作用时的偏航角。船舶在受到风浪的作用后,偏航到Ψ0时自动舵投入工作,使船舶回航。偏航角Ψ和偏舵角δ分别以Ψ0和K P Ψ0为振幅,以余弦函数随时间变化。比例操舵,在船舶偏离预定航向后,无法重新稳定在正航向上航驶,而是在预定航向的两侧摆动,所以按比例规律设计的自动舵不能满足船舶航海需要。

但若令舵角按比例和微分(PD )规律控制,即偏舵角与偏航角之间符合下列关系:

p d d ()d K K t ψδψ=-+ (4–10)

式中:K p ——比例系数;K d ——微分系数。

同理将式(4–10)代入式(4–5),可得一齐次二阶常系数微分方程,求解后船舶回转运动将为:

22

d d 22A B K V K t K V K t J J

e te ψ--=+ (4–11)

式中A 、B 是由初始条件确定的常数,则幅值随时间按指数规律迅速衰减,t 趋于无限大,Ψ=0,船船具有航向保持功能。不论由于什么扰动,当船舶偏离预定航向时,只要K P 和K d 调节恰当,船首能够迅速返回原航向,显然可以基本满足自动操舵的要求。

当船舶航行在风平浪静的情况下,自动舵的灵敏度可以适当调得高些,对于微小的偏航信号产生偏舵,使船舶以较高的精度,在预定的航向上航行。但是在风浪很大的情况下,船舶摇摆,即所谓“高频”海浪干扰,如果对于微小偏航信号就进行操舵,则非但不能使船舶稳定航行,反而会使摇摆加大,航速降低,并由于频繁使用舵机,致使能源消耗增加,缩短舵机使用寿命。最好的办法是,在一定偏航角内不予操舵,降低操舵灵敏度,使偏航精度相应降低。随着气象、海况条件的变化相应的调整偏航精度和舵机动作的灵敏度,形成了一个可以调节的“死区”,在这个死区内,船舶离开了正航向,自动舵不工作,只有偏航超过“死区”时,才进行工作。因此,若有从一个方向持续作用的风浪,而使船舶改变航向,只要不超出“死区”范围,自动操舵仪不响应,船舶将从一个方向偏离预定航向,偏离角Ψ。若航速为V ,航行时间为?t ,那么船位离开给定航线的距离为?s = ΨV ?t 。尽管?s 可能不大,但时间长了,?s 也是个不可忽视的量。这个量显然与时间的积分成比例,即

d S V t ψ=? (4–12) 只要设计一个积分机构,规定一个值,偏离原航线达到此值时,由于时间、航速己知,则可求出Ψ,加以修正;亦就是在偏舵角中加人了积分项,从而使自动舵的功能更加完善。

根据以上所述,自动操舵仪偏舵角与偏航角之间关系已成为:

p d i d (d t )d K K K t ψδψψ=-+?+ (4–13)

式中,K i 为积分系数。负号表示偏舵角的方向总是与偏航量(包括偏航角及其微分、积分项)的方向相反。

PID 自动操舵系统具有反馈通道闭环系统,其原理方框图如图4–26。航向比较环节将给定的航向和反馈回来的船舶实际航向进行比较,得到偏航角,送给控制器,按PID 规律计算出舵令角δ,经放大器放大及限幅后,再经天气调节环节送到舵角伺服机构,控制舵机工作,操纵船舶调整航向。当船舶航驶在预定航向上时,航向比较环节输出为零,只要压舵角调整恰当,整个系统将处于平衡的伺服状态。

图4–26 PID 自动操舵系统原理方框图 PID 控制规律的自动操舵仪,是一种精确的航向保持自动控制系统。但常规PID 自动舵存在下列缺点:

(1) 它不能随着船舶动态特性和海况的变化而自动整定与调节PID 控制器参数;

(2) 控制器的性能准则不是最佳的,其设计只考虑了技术指标,而未顾及操舵的经济性;

(3) “高频”海浪干扰处理方法欠佳。PID自动舵是采用“天气调节”增大死区的办法来抑制“高频”海浪干扰,有一定的效果,但死区的增大同时导致“低频”特性的恶化,引

起持续的周期性的偏航,因而消耗额外的能源。再就是在大风浪中常常由于产生大角度转舵,

导致严重的偏航,这是相当危险的。因此几乎所有的航行法规都要求在大风浪和特殊环境下

禁止使用自动舵,而必须改用手动舵。

自适应自动舵能克服上述缺点,因此当前它正在逐渐替代常规自动舵。

2) 自适应自动舵

自适应控制的研究对象是具有不确定性的系统,所谓不确定性是指描述被控对象,例如

船舶数学模型不是完全确定的,或者模型的参数是随工况和时间而变化的。不确定性还包括

系统的外部扰动。自适应控制的研究内容为如何控制具有不确定性的对象,使其在指定性能

指标下达到并保持最优或次最优。

自适应控制系统的工作原理为在系统运行过程中,系统本身不断地测量被控对象或系统

的状态、参数或性能,从而“认

指标并与期望的指标相比较,进

而作出决策,改变控制器的结构

参数或根据自适应的规律来改

变控制作用,以保证系统运行在

某种意义下的最优或次优状态。

随着上述自适应理论的不

断发展和完善以及微机的广泛

应用,生产自动舵的厂商相继推

出多种型号的自适应舵,其共同

特点是在原有自动舵的基础上,

增加了具有自适应功能的模块

或附件而成为自适应舵,也有少

数是另行设计的自适应舵。

下面简单介绍NA VIPILOT

AD型自适应舵,其原理框图如

图4–27所示。

图4–27中的虚线框为自适应部分,其余部分为常规的自动舵,即基本的反馈控制回路。

自适应部分的船舶数学模型框和船舶参数判断框形成船舶参数辨识器。船舶模型和实际船舶

的输人为舵角δ。模型的输出和船舶的输出(包括转向速度)比较后得到模型误差e,该误

差输人船舶参数判断框,在框内进行船舶参数的估计。将得到的估计值反馈给模型并修改模

型参数使e值趋向极小值。参数的估计值输人控制器,按给定的性能指标设计最优或次优控

制规律参数并发出舵令信号δc。

海况框供驾驶员根据航区和海况选择三种使用条件之一,即狭水道、平静海区和大风浪

海区。船在狭小道航行时,保持航向精度是主要的而节能是次要的,宜用大舵角纠正航向误

差。在大风浪海区航行时,由于风浪的扰动大,允许较大的航向误差,同时从节能考虑,宜

用小舵角。在平静海区航行,则介于上述两种条件之间。

“船舶状态判断”框是根据输入量计算船舶操纵特性的稳定程度即稳定(Stable)和不

稳定(Unstable)。

2. 集成驾驶系统

1) 集成驾驶概述

集成驾驶台是综合导航系统(Integrated Navigation System,INS)、组合船桥系统(Integrated Bridge System,IBS)、一人驾驶台系统(One Man Bridge)、航行管理系统(V oyage Management System,VMS)等的统称。在这里,驾驶台已不再是单一的实施操船和发布指令的场所,它已变成了整个船舶监视控制中心。这种称为集成驾驶台的系统布局,看上去就象一个航天火箭发射控制中心,值班人员可以在任一时刻从各种显示仪表和显示屏幕上观察到全船设备的运行状态以及船舶航行的实际情况,实施对船舶的全面控制。

如上所述,未来船舶、智能化船舶的研究诱发了集成驾驶台观念的形成。然而,真正促进并能够检验它的是“一人值班”概念与规则的形成。因而,可以说集成驾驶台已成为船舶自动化的必然趋势,亦成为航海自动化的研究动向。关于集成驾驶台的主要特征,可归结如下:

(1) 集中集成控制是集成驾驶台的基本思想。即将全船所有监视、控制功能完全集中到驾驶台,将所有仪器设备全部网络化集成管理。这种思想,能够满足一人值班规则的要求。

(2) 模块化设计思想已普遍接受。各种功能部件经模块化设计集成,独立工作性能强且易于组合集成,可以依需要进入集成工作状态或独立状态,当其发生故障时,不影响系统中任何其他部件的操作和运行。

(3) 屏幕式显示方法能够直观、明显地提供船舶航行中各种相关的信息,适宜于值班人员观测、判断和操作。因此,它已成为集成驾驶台的核心方式、方法和目标。

(4) 工作台式布局便于监视、操作和适应一人值班的要求,已趋认可。目前有办公桌式组合结构、线性阵列式结构、圈椅式结构、航天控制中心式配置等布局。

(5) 电子海图作为集成驾驶台的核心内容,近年来的开发已使之具有了“真正海况”的船舶航行环境功能,从而可以把船在海上航行比照成船在海图上航行。

2) 集成驾驶台构成

集成驾驶台主要包括:主机监视控制显示系统、电子海图桌、航行显示工作台、航行监测装置、船舶状态监控工作台、海图显示装置、雷达、船舶控制工作台、通信工作台等等。

4.4.3 船舶主机遥控操纵

为了满足船舶在各种工况下的航行需要,将船舶主机的起动、换向和调速等各装置联结成一个统一整体,并可集中控制的所有机构、设备和管路,总称为柴油机推进装置的操纵系统。操作人员在驾驶室或集中控制室根据指令和主机运行状态对柴油机、汽轮机等主推进机械的运转进行顺序控制或闭环控制。这样可以减少人工操作的差错,实现对可调螺距桨主推进机械的最佳控制,提高推进效率。

1. 主机操纵系统类型及功能

近年来电子计算机技术和微处理机已用于主机遥控、巡回检测和工况监视等方面,不仅大大减轻了轮机人员的劳动强度,改善了工作条件,还可以避免人为的操作差错,提高船舶运行的安全性、操纵性和经济性。目前,主机遥控技术水平越来越高,船舶正朝着全面自动化和智能化的方向发展。

按操纵部位和操纵方式,操纵系统可以分为:

(1) 机旁手动操纵操纵台设置在柴油机旁边,使用相应的控制机构操纵柴油机,由轮机员直接手动操纵,使之满足各种工况下的需要。

(2) 机舱集中控制室控制操纵台设置在机舱适当部位的专用控制室内,由轮机员对柴油机实现操纵和监视。

(3) 驾驶室控制在船舶驾驶室内,专设主机遥控操纵台,由驾驶员直接操纵柴油机。

机旁手动操纵是操纵系统的基础,机舱集中控制和驾驶台控制均称为遥控,三者之间常设有转换装置以便随意转换。尽管目前主机遥控技术已经达到了相当高的水平,但系统中仍然必须保留机旁手动操纵系统,以保证对主机的可靠控制。

遥控系统是用逻辑回路和自动化装置代替原有的各种手动操作程序。按遥控系统所使用的能源和工质,主机遥控系统可分为:

(1) 电动式遥控系统以电作为能源,通过电动遥控装置和电力驱动装置对主机进行远距离操纵。该类型系统控制性好,控制准确,遥控距离不受限制,有利于远距离控制,但管理水平要求高,故障不易发现,操作管理人员要具备一定的电子技术知识。

(2) 气动式遥控系统以压缩空气为能源,通过气动遥控装置和气动驱动装置对主机进行远距离操纵。遥控距离一般在100 m以内可满足系统的控制要求。该系统气源净化品质要求高,须除水、除油、除尘,否则易使气动元件失灵。

(3) 液力式遥控系统以油泵产生的压力油作为能源,通过液压阀件和液动机构进行控制。液力式遥控系统的主要优点是结构牢固、工作可靠、传递力较大。但由于液力传动易受惯性和液压油粘温特性的影响而降低传动的灵敏性和准确性,不适于远距离信号传递。

(4) 混合式遥控系统综合上述各种系统的优点,分段或分系统采用不同的遥控形式。远距离采用电传动,近距离则采用气力或液力。目前船舶上广泛采用电–气混合式和电–液混合式,即从驾驶台到机舱采用电传动,机舱系统采用气动或液动。

(5) 微型计算机遥控系统采用微机对主机进行遥控是通过专门的软件设计,给计算机一个执行程序来取代常规遥控系统的控制回路。微机执行遥控动作时能根据输入的指令和表征柴油机实际运行状态的各种信息进行综合判断和运算,得出需要的控制信息并经输出接口去控制操纵系统的执行元件,对柴油机进行正倒车换向、起动、调速和停车等操作。

主机遥控系统的功能除了完成主机起动、换向、调速和停车等程序操作外,还必须具有重复起动、慢转起动、负荷程序、应急停车、自动避开临界转速、故障自动减速或停车、紧急倒车等辅助功能。柴油机的备车系统状态检查等均由轮机人员在机舱内完成。

2. 典型船舶柴油主机操纵系统工作原理

MAN/B&W LMC/MCE型柴油机的操纵系统是一种电一气联合操纵系统。它具有以下三种控制方式:集控室控制、驾驶台控制和机旁应急控制。

为了保证控制部位的转换,在机旁应急操纵台上设有遥控/应急转换阀和手轮,用于集控室和机舱应急操纵台的控制部位转换。在集控室设有驾驶台/集控室控制转换阀,用于驾驶台和集控室的控制部位转换。

LMC/MCE型柴油机的操纵系统由下面几部分组成:

(1) 集控室操纵台与主控制阀箱在操纵台上有回令车钟、“停车–起动–供油调速”操纵手柄、驾驶室/集控室控制转换阀、主机或遥控系统中某些设备的工况显示、故障报警及安全保护的信息显示,以及若干应急操纵的指令按钮等。在主控制阀箱内有为实现上述主机遥控功能的既相互独立又密切相关的功能单元。

(2) 驾驶室控制台及控制阀箱主要有遥控发令车钟、集控室/驾驶室控制转换阀、电–气转换阀、主机工况显示、重要的故障报警信息,以及若干应急操纵的指令按钮等。

(3) 机旁应急操纵台主要有遥控/应急转换阀、起动阀、停车阀、正倒车控制阀、调速手轮,以及若干控制阀件等。主要用于当气动遥控系统、调速器或电子设备发生故障的情况下,在机旁应急操作主机。

在集控室手动控制期间,主机的起动、停车和调速由集控室操纵台上的操纵手柄以电动、气动或电–气联合进行。主机转速由气动设定或电子设定的调速器执行,换向操作由回令车钟手柄进行。

在驾驶室自动控制期间,主机完全由发令车钟手柄控制。

遥控系统使用单独的0.7 MPa压缩空气作为控制空气;系统的安全保护装置使用单独供应的0.55 MPa压缩空气并由单独的电子安全系统进行控制。

柴油机遥控系统的操纵设备有以下特点:

起动:使用单气路控制式气缸起动阀及空气分配器、球阀式主起动阀与慢转阀压缩空气(2.5~3.0)MPa起动系统。当主机停车超过30min需要重新起动时,必须经慢转阀使主机慢转一圈后,才能进行起动操纵。

换向:燃油凸轮和空气分配器凸轮采用单凸轮换向装置。燃油凸轮仍使用鸡心凸轮,换向时使用0.7 MPa控制空气拉动其滚轮连杆即可。

调速:使用Woodward PGA气动速度设定液压全制式调速器或电子式调速器,并酌情使用多种辅助装置,如扫气压力燃油限制器等。

安全保护系统:在下列情况下,安全系统触发相关电磁阀使柴油机停车。

(1) 主机超速、主滑油系统低压、凸轮轴滑油低压、推力轴承高温,以及控制室手动停车。

(2) 高压燃油管故障保护。当高压燃油管漏泄时,如其漏泄量大于专设节流孔的排放量,将推动相应的控制阀,使该缸喷油泵停油。

(3) 紧急倒车操纵中的安全措施。当在控制室进行紧急倒车操纵(crash astern)——主机在“港内全速”以上转速运转4 min以上而进行倒车操纵,30 s后,调速器扫气压力燃油限制器的限制作用自动取消,保证柴油机迅速倒车运转。

另外,在操纵台上亦设有“扫气限制”开关。当此开关转换至“切断”时,扫气压力燃油限制作用也可取消。

设有必需的连锁机构:

(1) 盘车机连锁盘车机未脱开时,柴油机不能起动。

(2) 换向连锁换向时,凸轮轴尚未移动到位时,操纵手轮不能“加油”。

(3) 车钟连锁只允许操纵手轮向车钟指令方向转动。

(4) 紧急停油装置当柴油机润滑油压力下降到某一低压力值时,能自动使油量调节轴减油至停油位置。

(5) 超速保护当转速超过标定转速10%时,极限调速器自动减少油量。

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

船舶操纵复习小知识

旋回圈:全速,满舵,重心; 90°降速25%~50%、65%; 旋回圈:进距、横距:纵/横向、90°;进距小航向稳定性好; 旋回初径:横向、180°、3~6备船长; 旋回直径:定长旋回、重心圆直径、0.9~1.2倍旋回初径; 滞距:操舵到进入旋回的滞后距离; 反移量:重心在旋回初始反向横移距离、一个罗经点最大;船尾甩开; 漂角:船首尾线上重心点的线速度与船首尾面的交角;船宽、速度大、漂角大、旋回直径小、旋回性能好; 转心:船舶自转中心;无横移速度、无漂角;首柱后1/3~1/5船长;旋回性能越好,漂角越大,转心偏前;后退时靠近船尾; 旋回橫倾:先内后外、先同侧后异侧、急舵大角、斜航阻力 90°; 旋回时间:360°、与排水量相关、6min,超大型船大一倍; 超大型船:漂角大、回旋性好,降速快,进距大、时间长,航向不稳定; 旋回圈大小:肥大旋回圈小、船首部水下面积大(船型、吃水差:首倾减小,尾倾增加,越肥大,影响越大0.8~10%,0.6~3%)、舵角大、操舵时间短、舵面积大(舵面积、吃水)、旋回圈小; 橫倾:一般船速范围内低舷侧阻力大,高舷侧旋回圈小; 螺旋桨转动方向:右旋单车,左旋回初径小; 浅水:阻力大,漂角小,舵力小,旋回圈大; 顶风,顶流,污底:旋回圈小;顺风,顺流:增大旋回圈; 舵效:K/T K/T大舵效好,K/T小舵效不好; 减小伴流(降低船速),加大排出流(提高车速),提高滑失比(降低桨的进速,增加桨的转速和螺距);舵角大,舵效好;舵速大,舵效好;排水大,吃水深,舵效差;尾倾,舵效好,首倾,舵效差; 橫倾,一般船速范围内低舷侧阻力大 舵机,越快越好; 迎风、顶流偏转舵效好,顺风、顺流偏转舵效差; 满载,高速首迎风;空船,低速尾迎风;浅水,舵效差; 舵力转船力矩:舵中心到船舶重心的距离*作用在舵上的垂直压力 静航向稳定性:重心仍在原航向。 不稳定:斜航。首倾 动航向稳定性: 稳定:正舵,外力偏转,稳定于新航向;

船舶操纵题库3汇总

第一章船舶操纵性能 §1--1船速与冲程 1、影响船舶基本阻力的主要原因是: A、船速; B、推力; C、螺旋桨转数; D、排出流。 2、对给定的船舶,螺旋桨转数一定-----则滑失就越大。 A、船速越快; B、舵效越差; C、排出流流速越小; D、主机负荷越大。 3、某船宽为25.6米,满载吃水为10.0米时欲进行冲程测定,选择的水深应不小 于: A、16米; B、32米; C、48米; D、25.6米。 4、推力是由产生的力。 A、排出流 B、吸入流 C、伴流 D、以上都不是 5、船在航行中受到的基本阻力其大小与那些因素有关? A、吃水、航速有关 B、风、流影响有关 C、船底污底轻重、航道浅窄有关 D、A+B+C 6、超大型船舶其倒车拉力一般只有主机正车推力的: A、80% B、60-70% C、50-60% D、30-40% 7、关于滑失,下述叙述错误的是: A、船体污底越严重,滑失越大 B、海况越坏,滑失越大 C、船速越大,滑失越大 D、同样转速下船速越小,滑失越大 8、倒车拉力一般较主机正车推力低,其原因是: A、为了遵守港章的规定 B、主机结构上的原因 C、为了保护主机,便于避让 D、以上都是 9、港内全速时的转速比海上低,其原因是: A、为了遵守港章的规定 B、主机结构上的原因 C、为了保护主机,便于避让 D、以上都是 10、主机的启动与换向的快慢除与机器的类型、性能有关外,海与有关: A、操作人员的技术 B、风流的影响 C、航道的浅窄 D、以上都是 11、测定冲程时应选择无风流影响,且水深不小于。 A、3d B、3B C、3(Bd)1/2 D、3Bd 其中:d——吃水B——船宽 12、给定的船舶当转速一定时,螺旋桨给出推力大小与船速的关系是: A、船速越高推力越小 B、匀速前进时推力为零 C、船速越低推力越小 D、匀速前进时推力最大 13、某轮以相同的转速航行,下列有关推力的叙诉正确的是; A、随着船速的下降推力下降 B、随着船速的提高推力下降 C、当船速为零时推力为零 D、当船速恒定时推力为零

船舶舵机控制系统改进设计【文献综述】

文献综述 电气工程及其自动化 船舶舵机控制系统改进设计 引 言 设计船舶自动操舵系统首先要确定船舶舵机的数学模型和船舶航行动态模型。船舶舵机的传动机构主要有两类,机械传动和液压传动。随着船舶排水量和航速的增加,舵机上的转矩迅速增大。采用机械传动机构的舵机其重量和体积将变得很大,同时它的效率较低,电动机的容量势必很大。因而目前大型船舶均采用液压传动舵机,甚至中小型船舶也不例外。 船舶舵机 船舶舵机是能够转舵并保持舵位的装置。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。有两种类型:一种是往复柱塞式舵机,其原理是通过高低压油的转换而作工产生直线运动,并通过舵柄转换成旋转运动。另一种是转叶式舵机,其原理是高低压油直接作用于转子,体积小而高效,但成本较高。 船舶操舵系统是实现船舶操纵功能的一个自动控制系统。它把电罗经,舵角传感器等送来的船舶实际航向信号,预定航向信号,及给定的各种限束条件自动地按照一定的调节规律进行信号处理,从而控制舵机,使船舶沿着给定的航向航行。由此可见,该系统的性能直接影响着船舶航行的操纵性,经济性和安全性。因此,船舶操纵系统的性能,一直被当作是一个具有较高经济价值和社会效益的重要问题,引起人们的关注。并吸引着世界各国一代又一代的工程技术人员围绕着进一步改善该系统的性能这一课题而不断地进行研究和探索。

自动舵 自动舵是根据电罗经送来的船舶实际航向与给定航向信号的偏差进行控制的。在舵机投入自动工作时,如果船舶偏离了航向,不用人的干预,自动舵就能自动投入运行,转动舵叶,使船舶回到给定航向上来。 电动—液压式自动舵 国产“HD—5L型自动舵应用半导体无触点控制的比例-微分-积分控制系统。驾驶室具有自动、随动及应急操作三种操舵方式。两套参数相同的放大器互为备用,通过转换开关选择其中一套为自动、随动操舵时使用。应急操舵为随动控制方式,单独使用一套放大器。该型自动舵有A、B、C、D四种型式。A型为电液伺服阀变量泵系统;B型为电磁换向阀、伺服油缸、变量泵系统;C型为伺服马达变量系统;D型为地磁功率阀定量泵系统,它们的电气系统基本上是一致的。 液压伺服系统 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统﹑电液速度控制系统和电液力(或力矩)控制系统 发展现状 众所周知,自动控制系统是自动控制理论在工业生产中应用的产物。船舶操舵系统也不例外。在自动控制理论发展的不同历史阶段,取得了不同的研究成果,开发出一代又一代新型的自动舵产品,为航运业的发展作出了巨大的贡献。

船舶操纵知识点196

船舶操纵知识点196

船舶操纵 1.满载船舶满舵旋回时的最大反移量约为船长的1%左右,船尾约为船长的1/5至1/10 2. 船舶满舵旋回过程中,当转向角达到约1个罗经点左右时,反移量最大 3. 一般商船满舵旋回中,重心G处的漂角一般约在3°~15° 4. 船舶前进旋回过程中,转心位置约位于首柱后1/3~1/5船长处 5. 万吨船全速满舵旋回一周所用时间约需6分钟 6. 船舶全速满舵旋回一周所用时间与排水量有关,超大型船需时约比万吨船几乎增加1倍 7. 船舶尾倾,且尾倾每增加1%时,Dt/L将增加10%左右 8. 船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的 20倍,轻载时约为满载时的1/2~2/3 9. 排水量为1万吨的船舶,其减速常数为4分钟

大时,多的背流面容易出现空泡现象 32. 舵的背面吸入空气会产生涡流,降低舵效 33. 一般舵角为32~35度时的舵效最好 34. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为水中锚重的1.6倍 35. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为锚重的1.4倍 36. 一般情况下,万吨以下重载船拖锚制动时,出链长度应控制在2.5倍水深左右 37. 霍尔锚的抓力系数和链的抓力系数一般分别取为:3-5, 0.75-1.5 38. 满载万吨轮2kn余速拖单锚,淌航距离约为1.0倍船长 39. 满载万吨轮2kn余速拖双锚,淌航距离约为0.5倍船长 40. 满载万吨轮1.5kn余速拖单锚,淌航距离约为0.5倍船长 41. 满载万吨轮3kn余速拖双单锚,淌航距离约为1.0倍船长 42. 拖锚淌航距离计算:S=0.0135(△vk2/Pa) 43. 均匀底质中锚抓底后,若出链长度足够,则抓力随拖动距离将发生变化:一般拖动约5-6倍

船舶操纵考试要点说明

船舶操纵 1.满载船舶满舵旋回时的最大反移量约为船长的1%左右,船尾约为船长的1/5至1/10 2.船舶满舵旋回过程中,当转向角达到约1个罗经点左右时,反移量最大 3.一般商船满舵旋回中,重心G处的漂角一般约在3°~15° 4.船舶前进旋回过程中,转心位置约位于首柱后1/3~1/5船长处 5.万吨船全速满舵旋回一周所用时间约需6分钟 6.船舶全速满舵旋回一周所用时间与排水量有关,超大型船需时约比万吨船几乎增加1倍 7.船舶尾倾,且尾倾每增加1%时,Dt/L将增加10%左右 8.船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的 20倍,轻载时约为满 载时的1/2~2/3 9.排水量为1万吨的船舶,其减速常数为4分钟 10.从前进三至后退三的主机换向所需时间不同,一般:燃机约需90~120s;汽轮机约需120~180s;而 蒸汽机约需60~90s 11.船舶航行中,进行突然倒车,通常在关闭油门后,要等船速降至全速的60%~70%,转速降至额定转 速的25%~35%时,降压缩空气通入汽缸,迫使主机停转后,再进行倒车启动 12.一般万吨级、5万吨级、10万吨级和15~20万吨级船舶的全速倒车冲程分别为:6~8L、8~10L、10~13L、 13~16L 13.CPP船比FPP船换向时间短,一般紧急停船距离将减为60%~80% 14.螺旋试验的滞后环宽度达到20度以上时,操纵时由显著的困难 15.IMO船舶操纵性衡准中要求旋回性能指标中的进距基准值为<4.5L 16.IMO船舶操纵性衡准中要求旋回性能指标中的旋回初径基准值为<5.0L 17.IMO船舶操纵性衡准中要求初始回转性能(操10度舵角,航向变化10度时船舶的前进距离)指标 的基准值为<2.5L 18.IMO船舶操纵性衡准中要求全速倒车冲程指标的基准值为<15L 19.为了留有一定的储备,主机的海上功率通常为额定功率的90% 20.船舶主机的传送效率的通常值为:0.95~0.98 21.船舶的推进器效率的通常值为:0.60~0.75 22.船舶的推进效率的通常值为:0.50~0.70 23.为了保护主机,一般港最高主机转速为海上常用住宿的70%~80% 24.为了留有一定的储备,主机的海上转速通常定为额定转速的96%~97% 25.为了保护主机,一般港倒车最高主机转速为海上常用转速的60%~70% 26.沉深比h/D在小于0.65~0.75的围,螺旋桨沉深横向力明显增大 27.侧推器的功率一般为主机额定功率的10% 28.当船速大于8kn时,侧推器的效率不明显 29.当船速小于4kn时,能有效发挥侧推器的效率 30.船舶操35度舵角旋回运动中,有效舵角通常会减小10—13度 31.使用大舵角、船舶高速前进、舵的前端曲率大时,多的背流面容易出现空泡现象 32.舵的背面吸入空气会产生涡流,降低舵效 33.一般舵角为32~35度时的舵效最好 34.当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为水中锚重的1.6倍 35.当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为锚重的1.4倍 36.一般情况下,万吨以下重载船拖锚制动时,出链长度应控制在2.5倍水深左右 37.霍尔锚的抓力系数和链的抓力系数一般分别取为:3-5, 0.75-1.5

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

嵌入式系统在船舶方面的应用

嵌入式系统在船舶方面的应用(温度、电站、变频) 唐涛 (学号:200810123062) 摘要:嵌入式系统具有体积小、功耗低、可靠性高等特点,非常适合船舶领 域的应用。本文总结了嵌入式系统的特点,介绍了嵌入式系统在船舶系统中电站、温度控制、变频控制的应用,并特别介绍了嵌入式系统在船舶变频技术中的应用。 关键词:自动监控;船舶;自动控制系统;计算机系统;变频技术;温度控制;船舶电站;船舶电力推动系统;嵌入式系统 1引言 在计算机技术高速发展的今天,利用先进的计算机与网络技术来实现船舶各系统监控的自动化已经成为可能。从上世纪80 年代起,船舶控制产品就开始由模拟式向数字式发展。1995 年9 月,由国内外150 多家生产控制设备的厂商组成了国际FF 协会,标志着船舶控制系统开始向全数字化方向发展。此后数年,以现场总线(fildbus) 及超大规模数字集成电路(VL SI) 嵌入式电子技术为基础的全数字式控制系统开始在世界范围内兴起,并迅速扩展到船舶工业领域,使船舶自动化控制技术获得了突破性的发展。 由于嵌入式技术在船舶应用领域尚处于发展阶段,在现有船舶数据监控系统中,主要仍以采用PLC(可程序设计逻辑控制器) 、工业控制计算机(以下简称工控机) ,甚至简单的单片机系统为主来实现船舶各系统的数据采集、监测及控制功能。然而,船舶空间狭小,航行环境多变,因此相对陆用设备而言,我们希望这类船用设备具有体积小、安装接线方便、便于维修、可靠性高,并能适应船上盐雾、油雾、霉菌、潮湿、高热、振动、冲击、电磁干扰大等恶劣条件的性能。对应用于船舶这一特殊控制环境,嵌入式系统比以往的各类控制系统具有明显的优点。可以预见,嵌入式系统将在船舶监控系统中得到广泛的应用。

_船舶操纵与控制_精品课程建设的探索与研究_孙玉山

一、引言 “船舶操纵与控制”是船舶与海洋工程专业重要的研究生专业课,是从事船舶控制研究工作的基础,涉及到理论力学、水动力学、高等数学、自动控制原理、现代控制理论、船舶静力学、船舶操纵性、船舶推进与船舶耐波性等多学科,具有理论性强、知识点多的特点。该课程主要开展船舶操纵性与控制方面知识的探讨与学习。介绍国内外船舶操纵与控制领域的发展现状,分析未来该领域的发展趋势。学习水面船舶的动力学、运动学建模,包括作用在船上的环境载荷的情况掌握建立环境载荷的数学模型;熟悉船舶控制设备与传感器的原理与数据处理,通过控制基本理论与方法的学习,结合船舶操纵与控制的特点,掌握船舶运动控制的基本方法。 《船舶操纵与控制》源于上世纪80年代我校研究生培养初期,以往该课程注重教学内容和理论性的系统性,造成课程理论和实践脱节,教学相关内容受到教材的局限性跟不上相关专业知识理论的最新进展,教学内容侧重不突出,导致该课程教学内容单一、任课教师讲授费力、学生掌握吃力现象。从2013年开始孙玉山副教授负责该课程主讲与建设。经过梳理与相关教学专家研讨,该课程当年获得哈尔滨工程大学研究生精品课程建设立项。在该课程的实践教学与建设过程中,课程教师团队从顶层课程目标、教学大纲的重新修订,到具体教材的选定与更新、教学内容、教学方法的实施等多方面探索“船舶操纵与控制”精品课程的建设。 二、修订教学大纲,明确建设目标 “船舶操纵与控制”课程的主要内容讲授船舶操纵与控制方面相关理论与方法,不仅涉及船舶静力学、船舶操纵性、船舶推进与船舶耐波性等船舶类相关专业知识,还涵盖理论力学、水动力学、高等数学、 自动控制原理、现代控制理论等相关理论知识,因此, 该课程具有涉及多学科、知识点范围广等特点,相对教学内容而言,课程学时偏少。以往基于黑板的传统学方式无法传递更多的信息量,同时,课程的学习内容需紧跟科技进步与最新研究进展。因此,课程教师团队与相关专家经充分讨论与研讨,明确了课程建设目标(如图1所示),并对课程教学大纲进行了部分修正,更新了教学内容。 为此,我们在以下几个方面进行了探索: 1.理论教学内容侧重点、广度和深度的把握,将船舶操纵的特点与自动控制原理相结合,参照国内外相关课程设计,使该课程紧跟该领域最新发展进展,体现教学内容的前沿性与先进性。针对该课程主体研究生主要由海洋与船舶工程专业方向的本科毕业生考入,均学习过船舶类相关专业,因此,将课程中船舶动力学与数学模型的建立等相关知识课时缩短,并且主要讲解拓展部分,这一部分内容着重从深度及最新进展上着手。同时,课程设计中增加船舶控制传感器、设备的原理及数据处理的介绍,并深入分析与讲解代表 “船舶操纵与控制”精品课程建设的探索与研究 孙玉山,姜大鹏,李岳明,张国成 (哈尔滨工程大学水下机器人技术重点实验室,黑龙江 哈尔滨 150001) 摘要:船舶操纵与控制是船舶与海洋工程专业一门重要的专业课,具有涉及多学科、知识点范围广等特点,其教学理论专业性强,晦涩难懂。根据“船舶操纵与控制”课程的教学现状,结合哈尔滨工程大学建设“三海一核”特色专业精品课程的目标,深入开展“船舶操纵与控制”精品课程建设。注重师资队伍的建设与培养,探索教学形式与教学方法创新与改革,综合运用传统教学与多媒体等现代教学手段,开展互动式、启发式和讨论式教学。通过课程建设,教学方法、教学手段、师资水平等均显著提高。 关键词:船舶的操纵与控制;课程建设;教学方法;教学改革中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0106-02 图1“船舶操纵与控制” 课程建设目标

船舶操纵题库

《船舶操纵》题库 第一章 第一节 1.船舶旋回一周所用的时间与排水量关系密切()。 A.万吨船约需4min,超大型船则几乎增加一倍 B.万吨船约需10min,超大型船则几乎增加一半 C.万吨船约需6min,超大型船则几乎增加一倍 D.万吨船约需15min,超大型船则几乎增加一半 2.船舶做旋回运动时,下列正确的是()。 ①漂角增大,失速加剧;②漂角增大,转心前移;③漂角增大,旋回半径增大;④漂角增 大,横倾加大。 A.①② B.①③ C.①~③ D.①②④ 3.旋回中引起速度下降的首要原因是()。 A.用舵后舵阻力增加 B.斜航阻力增加 C.推进效率下降 D.船舶横倾 4.船舶旋回中的漂角β()。 A.在首尾线的各点处具有相同的值 B.在重心G处的值最大 C.在转心P处的值最大 D.以重心G处的首尾面迎流角来衡量,约为3°~15° 5.船舶旋回中出现的外倾角较大而危及船舶安全时,应()。 A.立即回至正舵 B.立即操相反的大舵角 C.逐步降速,逐步减小所用舵角 D.A、B、C项措施均正确 6.旋回要素的“纵距”是指()。 A.从船舶转舵开始瞬间的重心至旋回圈中心的纵向垂直距离 B.船舶自操舵起,至航向改变90°时止,其重心在原航向上的纵向移动距离 C.船舶旋回180°时其重心沿垂直于初始直航线方向上的横移距离 D.船舶的重心自初始直航线向旋回圈内侧横移的最大距离 7.尾倾越大,旋回圈越大,若尾倾吃水差增加船长的1%,旋回半径会增加()。 A.5% B.10% C.15% D.18% 8.一般商船旋回时其转心约在首柱后()船长处。 A.1/2~1/3 B.1/3~1/5 C.1/5~1/6 D.1/6~1/3 9.超大型船舶在旋回时,其速度下降较一般万吨级货船()。 A.大 B.小 C.相同 D.A、B、C都不对 10.反移量是指()向转舵相反一舷横移的距离。 A.船首 B.船尾

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

第二章 船舶操纵基本知识

第二章船舶操作基本知识 船舶操纵是指船舶驾驶人员根据船舶操纵性能和客观环境因素,正确地控制船舶以保持或改变船舶的运动状态,以达到船舶运行安全的目的。 船舶操纵是通过车、舵并借助锚、缆和拖船来实现的。要完成操纵任务,除保证所有操纵设备处于正常良好的技术状态外,操纵人员必须掌握船舶操纵性能(惯性和旋回性等)及对客观环境(风、流、水域的范围等)的正确估计。 第一节车的作用 推动船舶向前运动的工具叫船舶推进器,推进器的种类很多,目前常见的有明轮、喷水器推进器螺旋桨、平旋推进器、侧推器等。因为螺旋桨结构简单、性能可靠且推进效率高,所以被广泛应用于海上运输船舶。 一、螺旋桨的构造

1、螺旋桨的材料和组成 螺旋桨常用铸锰黄铜、青铜和不锈钢制作。现在也有采用玻璃制作的。 螺旋桨有桨叶和浆毂两部分组成,连接尾轴上。 (1)桨叶,一般为三片和四片,个别也有五片甚至六片的,低速船采用宽叶,高速船采用窄叶。 (2)桨毂,多数浆毂与桨叶铸成一体。浆毂中心又圆锥形空,用以套在尾轴后部。 (3)整流帽 (4)尾轴 2、螺旋桨的配置 一般海船都采用单螺旋桨,叫单车船。也有部分船舶(客船和军舰)采用双螺旋桨,叫双车船。 单桨船的螺旋桨通常是右旋转式的。右旋是指船舶在前进时,从船尾向船首看,螺旋桨在顺车时沿顺时针方向转动的称为右旋,沿逆时针方向转动的称为左旋。目前,大多数商船均采用右旋式。 双桨船的螺旋桨按其旋转方向可分为外旋式和内旋式两,对于双桨船,往舷外方向转动的称为外旋,反之称内旋。通常采用外旋,以防止水上浮物卷入而卡住桨叶。进车时,左舷螺旋桨左转,右舷螺旋桨右转,则称为外旋式;反之,称为内旋式。 二、推力、阻力和功率 1、船舶推力

船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能) 船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。 一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转 心、旋回时间、旋回中的降速和横倾等。这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用

反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水

船舶运动控制概述

船舶运动控制概述 随着经济全球化的加剧,现代物流业飞速发展,市场对进出口的需求越发的加大,造成了与之相应的航运自动化的繁荣发展,各种新的控制算法不断地应用于传播控制以提高营运的经济效益。作为大连海事大学自动化专业的学生,我们有必要了解船舶相关的知识,包括船舶运动控制,船舶控制系统,船舶导航等的相关知识。并将储备的知识运用到以后的学习与工作中。 一、欠驱动船舶的控制器设计 首先我们先来聊聊船舶的驱动。由于船舶动力驱动结构具有非完整约束和典型的欠驱动特性,而且航行条件的变化、环境参数的严重干扰和测量的不精确性等又使船舶运动呈现出大惯性、长时滞、非线性等特点,采用传统的船舶控制方法已经不能满足控制要求,必须探索新的船舶控制方法。 欠驱动系统是指由控制输入向量空间的维数小于系统广义坐标向量空间维数的系统,即控制输入数小于系统自由度的系统[1]。欠驱动船舶模型一般都具有非线性运动方程的形式,欠驱动船舶模型一般都具有非线性运动方程的形式,欠驱动船舶模型一般都具有非线性运动方程的形式,约束都是不可积的微分表达式,属于非完整系统。 研究欠驱动船舶的控制器设计也具有非常重要的现实意义。一个欠驱动船舶以较少数目的驱动器来完成航行任务,降低了系统的费用及重量,提高了营运效益,同时也会因控制设备的减少而降低船舶机械故障的发生率,使系统运行更加稳定而易于维护。更为重要的是,欠驱动控制同时对船舶完全驱动系统提供了一种备份控制技术。如果全驱动系统遇故障不能正常运行时,可采用欠驱动船舶控制策略,利用仍在工作的控制器对船舶进行有效控制,增大设备出现故障时系统的可靠性。 正是由于上述原因,对欠驱动船舶的控制研究得到了广泛重视并成为控制领域的研究热点之一[2]。作为一种特殊的非线性控制方法,欠驱动船舶控制技术的发展目前还存在着很多问题,有待于更多的科技工作者致力于深入的研究。为了促进欠驱动船舶控制技术的发展,本文在查阅有关资料的基础上,对欠驱动船舶数学模型、控制方法及其发展做了较为详细的综述,并对该领域存在的问题以及可能的发展方向进行了探讨。 如果把船舶作为一个刚体来研究,则船舶的运动有六个自由度,称之为横摇、纵摇、艏摇、横荡、纵荡和垂荡。考虑常规船舶水平面运动的控制,所关心的主要是船舶在水面上的位置和航向,而且就低重心的普通船舶而言,垂荡、纵摇和横摇对其水平面运动影响甚微,可以忽略。因此水面船舶的六自由度运动就可以简化为沿x方向前进、y方向横移及绕z轴旋转(艏摇)的三自由度运动。由于船舶的推进装置仅装备有螺旋桨推进器和船舵,也就是说系统只有2个控制输入(前向推力和旋转力矩),但需要同时控制船舶在水平面运动的3个自由度,因此对常规船舶平面运动的控制研究可归结为欠驱动控制问题。 上述的船舶的控制问题 ,船的质量和阻尼矩阵都假定为三角阵 ,船舶模型参数和环境干扰的不确定性也被忽略 ,都是在理想的条件下对船舶进行镇定Π跟踪控制。

(完整版)船舶操纵与避碰总结

船舶操纵与避碰 9101:3000总吨及以上船舶船长9102:500~3000总吨船舶船长9103:3000总吨及以上船舶大副9104:500~3000总吨船舶大副9105:3000总吨及以上船舶二/三副9106:500~3000总吨船舶二/三副9107:未满500总吨船舶船长9108:未满500总吨船舶大副9109:未满500总吨船舶二/三副 考试大纲 适用对象 9101 9102 9103 9104 9105 9106 9107 9108 9109 1 船舶操纵基础 1.1 船舶操纵性能 1.1.1 船舶变速性能 1.1.1.1 船舶启动性能√√√√√√ 1.1.1.2 船舶停车性能√√√√√√ 1.1.1.3 倒车停船性能及影响倒车冲程的因素√√√√√√ 1.1.1.4 船舶制动方法及其适用√√√√√√ 1.1.2 旋回性能 1.1. 2.1 船舶旋回运动三个阶段及其特征√√√√√√ 1.1. 2.2 旋回圈,旋回要素的概念(旋回反移量、滞距、 纵距、横距、旋回初径、旋回直径、转心、旋回 时间、旋回降速、横倾等) √√√√√√ 1.1. 2.3 影响旋回性的因素√√√√√√ 1.1. 2.4 旋回圈要素在实际操船中的应用(反移量、旋回 初径、进距、横距、旋回速率在实际操船中的应 用;舵让与车让的比较) √√√√√√√√√ 1.1.3 航向稳定性和保向性 1.1.3.1 航向稳定性的定义及直线与动航向稳定性√√√√√√

1.1.3.2 航向稳定性的判别方法√√√√√√ 1.1.3.3 影响航向稳定性的因素√√√√√√ 1.1.3.4 保向性与航向稳定性的关系;影响保向性的因素√√√√√√ 1.1.4 船舶操纵性指数(K、T指数)的物理意义及其与操纵性 √√ 能的关系 1.1.5 船舶操纵性试验 1.1.5.1 旋回试验的目的、测定条件、测定方法√√√√√√ 1.1.5.2 冲程试验的目的、测定条件、测定方法√√√√√√ 1.1.5.3 Z形试验的目的和试验方法√ 1.1.6 IMO船舶操纵性衡准的基本内容√√√ 1.2 船舶操纵设备及其运用 1.2.1 螺旋桨的运用 1.2.1.1 船舶阻力的组成:基本阻力和附加阻力√√√√√√ 1.2.1.2 吸入流与排出流的概念及其特点√√√√√√ 1.2.1.3 推力与船速之间的关系,推力与转数之间的关系√√√√√√ 1.2.1.4 滑失和滑失比的基本概念,滑失在操船中的应用√√√√√√ 1.2.1.5 功率的分类及其之间的关系√√√√√√ 1.2.1.6 船速的分类及与主机转速之间的关系√√√√√√ 1.2.1.7 沉深横向力产生的条件、机理及偏转效果√√√√√√ 1.2.1.8 伴流的概念,螺旋桨盘面处伴流的分布规律√√√√√√ 1.2.1.9 伴流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.10 排出流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.11 螺旋桨致偏效应的运用√√√√√√ 1.2.1.12 单、双螺旋桨船的综合作用√√√√√√ 1.2.1.13 侧推器的使用及注意事项√√√ 1.2.2 舵设备及其运用

船舶操纵题库6

四章一节 1、在大风浪中顺浪航行的条件是: I.波长小于船长时;II.波长大大长过船长时;III.波长与船长相近似,船速又与波速接近时 A、仅I对 B、仅II对 C、I、II对 D、仅III对 2、船舶横摇周期Tθ,波浪周期τ,当Tθ >τ时,则船舶横摇周期较 ,甲板上浪较 .。 A、慢;少 B、快;少 C、慢;多 D、快;多 3、在北半球台风的危险半圆是指台风的半圆。 A、左 B、右 C、前 D、后 4、在北半球可航半圆内避台操纵法是: I.以左首约15°~20°顶风全速驶离;II.使右首受风顶风滞航;III.使右尾受风驶离 A、仅I对 B、仅II对 C、仅III对 D、II、III对 5、船舶为避免卷入台风中心的操纵方法是: A、在北半球,船舶应以右首舷的15°~20°顶风全速航行 B、在南半球,船舶应以右尾受风全速航行 C、A、B都对 D、A、B都不对 6、船舶在海上航行时遇到大风浪,使该船剧烈摇摆,拍底和甲板大量上浪,螺旋桨打空车,该船应采取: A、滞航 B、顺浪航行 C、漂滞 D、顶风,顶浪航行 7、在大风浪中航行的船舶,为避免谐摇,改变波浪的遭遇周期,可采取下述那种措施? A、改变航向 B、即改变航向又变速 C、改变船速 D、A、B、C、均可采取 8、船舶在大风浪中掉头操纵,下述哪个是不正确的? A、利用海浪的三大八小变化规律,使船舶在风浪较平静是掉头 B、掉头过程中要快车满舵,以求尽快掉成 C、从顶浪转向顺浪时,转向应在较平静海面来到之前开始,以求在较平静海面时正好转到顺浪 D、从顺浪转到横浪较危险,必须降低惯性冲力,等待时机,以求在较平静的海面掉头完毕 9、有关大风浪中采取漂滞法的船,下述哪项不正确? A、保持舵效的最小速度并将风浪放在船首2~3个罗经点迎浪航行 B、船舶停止主机随风浪漂流 C、适用保向性差或衰老的船舶 D、可在船首抛出锚链或大缆使船首迎风浪 10、海上波浪周期为10秒,如本船横摇周期分别为下列所述,正确的船舶摇摆情况是: A、周期6秒时,横摇较快 B、周期10秒时,横摆最剧烈 C、周期14秒时,横摇较慢 D、A、B、C、都对 11、在大风浪中航行,为减轻拍底现象应保持首吃水大于满载吃水的多少? A、1/3 B、1/2 C、3/4 D、以上都可以 12、当船舶处于纵摇和垂荡都很严重时,为了减轻摇荡,须避开临界区域,采取最有效的措 施是: A、减速 B、改变航向 C、调整吃水差 D、以上都行 13、在大风浪中航行,船舶受波浪的作用,使其围绕着通过重心的X、Y、Z轴作线运动和 回转运动,过X轴的摇摆运动称为:

第一章 船舶操纵性能复习重点

第一章船舶操纵性能 说课笔记 知识与技能掌握要点: 通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用; 对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。 对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。 掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。 工学结合: 三副值班时,船舶操纵知识及能力要求与本次课的关联; 岗位与船舶操纵知识及能力要求实际应用; 测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色: 理论性较强,注意三校生与普高生的认知能力差别; 充分运用企业提供生产案例和影视资料,使内容贴近航运岗位; KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感; 在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。 第一节船舶旋回性能 在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。 一、船舶旋回运动的过程 船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。 1.第一阶段——转舵阶段 船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

船舶操纵系统图解

船舶操纵系统 第一节 操纵系统概述 为了满足船舶在各种工况下的航行需要,将船舶主机的起动、换向和调速等各装置联结成一个统一整体,并可集中控制的所有机构、设备和管路,总称为柴油机推进装置的操纵系统。 小型柴油机的推进装置,其起动、调速及换向系统的控制件距离近,通常分别设置,各自操纵。近年来不少船舶也通过机械、气动等型式传输集中至机舱集控台或驾驶室,对推进装置集中操纵。大、中型柴油机为操纵方便和工作可靠,都将各控制部分通过各种方式有机地联系以便集中控制和远程控制。 随着自动化技术和电子技术的发展,各种遥控技术已广泛地应用于柴油机的操纵机构。特别是近年来电子计算机技术和微处理机已用于主机遥控、巡回检测和工况监视等方面,不仅大大减轻了轮机人员的劳动强度,改善了工作条件,还可以避免人为的操作差错,提高船舶运行的安全性、操纵性和经济性。目前,主机遥控技术水平越来越高,船舶正朝着全面自动化和智能化的方向发展。 一、对操纵系统的要求 在船舶柴油机中,操纵部分是最复杂的一部分,其部件多、零件杂、相互牵连制约,近代自动化技术和遥控技术在操纵系统的应用,更增加了操纵系统的复杂程度。为了保证操纵系统能够可靠地工作,对船舶柴油机的操纵系统有下列基本要求: (1)必须能迅速而准确地执行起动、换向、变速和超速保护等动作,并能满足船舶规范上相应的要求。 (2)具有必要的连锁装置,以避免操作差错而造成事故。 起动连锁装置:盘车机未脱开不能起动,换向未到位不能起动。 换向连锁装置:转向与要求不符时不能起动,不允许在较高转速下换向,运转过程中不能自行换向。 滑油保安连锁装置:当滑油压力下降至许用下限值时,将油量调节杆推至零油位,使柴油机自行熄火停车。 (3)必须设有必要的监视仪表和安全保护、报警装置。在操纵台(或遥控操纵台)上有转速、转向、气压、油压、水温等醒目的仪表,并对直接影响安全运行的有关压力和温度等置有报警装置和安全保护装置。 (4)操纵机构中的零部件必须灵活、可靠、不易损坏。 (5)操作、调整方便、维护简单,便于实现遥控和自动控制。 二、操纵系统的组成 (1)换向部分:完成换向指令。当柴油机的转向与要求不符时通过移轴(双凸轮换向)、差动(单凸轮换向)或齿轮箱换向方式完成换向动作。 (2)起动部分:按指令打开主起动阀,使柴油机迅速起动,并在起动后迅速关闭主起动阀。 (3)调速部分:按指令要求压缩或放松调速弹簧,或直接移动油量调节杆,通过喷油泵增减油来满足柴油机加、减速的要求。

船舶操纵性总结汇总

操纵性 绪论 操纵性定义:船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。 操纵性内容: 1. 航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。 2.回转性:表示船舶在一定舵角作用下作圆弧运动的性能。 3.转首性和跟从性:表示船舶应舵转首及迅速进入新的稳定运动状态的性能。 4. 停船性能:船舶对惯性停船和盗车停船的相应性能。 附加质量和附加惯性矩: 作不定常运动(操纵和耐波运动)的船舶,除了船体本身受到愈加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度。根据作用力和反作用力,水对船体存在反作用力,这个反作用力称为附加惯性力。 附加惯性力是与船的加速度成比例的,其比例系数称为附加质量。船舶操纵 一、操纵运动方程

1.1坐标系 一、固定坐标系: 固定坐标系是固结在地球表面,不随时间而变化的,如图所示。 首向角ψ:X 0与X 的夹角(由X 0转向X ,顺时针为正)。 二、运动坐标系: 运动坐标系是固结在船体上的,随船一起运动的,如图所示。 重心坐标:X OG 、Y OG ; 船速:V 重心G 瞬时速度; 航速角ψ0:X0轴与船速V 夹角(顺时针为正); 漂角:β船速与X 轴夹角(顺时针为正); 回转角速度:γ= dψdt ; 回转曲率:R 右舷为正; 舵角:δ左舷为正。 三、枢心: 回转时漂角为零点、横向速度为零的点。 1.2线性运动方程 一、坐标转换 00cos sin sin cos ψψψψ =-=+G G x u v y u v

二、简化方程 当重心在原点处:X G =0 运动坐标系一般方程: 三、对于给定船型、给定流体中的运动情况 船型参数和流体特性为已知条件; 操纵运动为缓变过程,忽略高阶小量; 忽略推进器转速影响; 操舵过程短暂,忽略转舵加速度。 则可将给定船型流体中受力情况表示如下: 由泰勒展开式,用水动力导数表示如下: 四、简化后的操纵运动线性方程式: 2()()() ψψψψψψ=--=++=++G G Z G X m u v x Y m v u x N I mx v u 00cos sin ψψ =+G G X mx my 00cos sin ψψ =-G G Y my mx ()() ψψψ =-=+=z X m u v Y m v u N I (,,,,,,)(,,,,,,)(,,,,,,) X X u v r u v r Y Y u v r u v r N N u v r u v r δδδ== =v r v r v r v r Y Y v Y r Y v Y r Y N N v N r N v N r N δδδδ =++++=+++ +111()()v ur v u u r r v u r +=++?+?=+

相关文档
最新文档