第九届小学“希望杯”全国数学邀请赛六年级第1试+答案

合集下载

希望杯第4-10届小学六年级全国数学竞赛题及解答

希望杯第4-10届小学六年级全国数学竞赛题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

第九届小学“希望杯”全国数学邀请赛六年级第1试 答案

第九届小学“希望杯”全国数学邀请赛六年级第1试 答案

x♦ y=x× y-x÷2, x⊕ y= x+ y÷ 2。
按此规则计算:3.6♦2=____________,
0. 12 ♦(7.5⊕4.8)=____________。
g g
4、在方框里分别填入两个相邻的自然数,使下式成立。 □<
1 1 1 1 ×3<□ 150 101 102 103
ห้องสมุดไป่ตู้
19、一批饲料可供 10 只鸭子和 10 只鸡共吃 6 天,或供 12 只鸭子和 6 只鸡共吃 7 天,则这批饲料可供 _________只鸭子吃 21 天。 20、小明从家出发去奶奶家,骑自行车每小时行 12 千米,他走后 2.5 小时,爸爸发现小明忘带作业,便 骑摩托车以每小时 36 千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了。小明家距离奶奶 家___________千米。
g
5、 在循环小数 0. 1 2345678 9 中, 将表示循环节的圆点移动到新的位置, 使新的循环小数的小数点后第 2011 位上的数字是 6,则新的循环小数是___________。 6、一条项链上共串有 99 颗珠子,如图 1,其中第 1 颗珠子是白色的,第 2、3 颗珠子是红色的,第 4 颗珠 子是白色的,第 5、6、7、8 颗珠子是红色的,第 9 颗珠子是白色的,„„。则这条项链中共有红色珠 子___________颗。
1
11、图 5 中一共有________个长方形(不包含正方形)。
12、图 6 中,每个圆圈内的汉字代表 1~9 中的一个数字,汉字不同,数字也不同,每个小三角形三个顶 点上的数字之和相等。若 7 个数字之和等于 12,则“杯”所代表的数字是____________。 13、如图 7,沿着圆周放置黑、白棋子各 100 枚,并且各自相邻排列。若将圆周上任意两枚棋子换位一次 称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻。 14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是 40 岁,您收养的三个孤儿的年龄各是多少岁?” 王阿姨说: “他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号。”普查员看了看门牌, 说:“我还是不能确定他们的年龄。”那么,王阿姨家的门牌号是____________。 15、196 名学生按编号从 1 到 196 顺次排成一列。令奇数号位(1,3,5…)上的同学离队,余下的同学顺 序不变,重新自 1 从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留 下一位同学。这位同学开始的编号是___________号。 16、 甲、 乙两人同时从 A 地出发到 B 地, 若两人都匀速行进,甲用 4 小时走完全程, 乙用 6 小时走完全程。 则当乙所剩路程是甲所剩路程的 4 倍时,他们已经出发了___________小时。 17、某电子表在 6 时 20 分 25 秒时,显示 6:20:25,那么从 5 时到 6 时这 1 个小时里,此表显示的 5 个 数字都不相同的情况共有__________种。 18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。根据图 8 中的信息计算,若甲、乙、丙三只蚂蚁 共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒。

第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、每题6分,共120分1.(6分)++++.2.(6分)将化成小数,小数部分第2015位上的数字是.3.(6分)若四位数能被13整除,则两位数的最大值为.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了%.5.(6分)若a<<a+1,则自然数a=.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}=.(结果用小数表示)7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了件.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z =.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是厘米.(π取3)14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是升.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是厘米.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有个.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是平方米.(π取3)18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了小时.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、每题6分,共120分1.(6分)++++.【解答】解:++++,=(1﹣)+()+(﹣)+(﹣)+(﹣),=1﹣++﹣+﹣+﹣,=1﹣,=.2.(6分)将化成小数,小数部分第2015位上的数字是 1 .【解答】解:=13÷999=0.013013013013013013013013013013013...2015÷3=671 (2)所以小数部分的第2015位置上的数字是:1.故答案为:1.3.(6分)若四位数能被13整除,则两位数的最大值为97 .【解答】解:要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,995÷13=76…7,所以995不合要求,则,985÷13=75…10,所以985不合要求,则,975÷13=75,能被13整除,所以,=2975,那么的最大值为97.答:的最大值为97.故答案为:97.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了37.5 %.【解答】解:设原分数为,则新分数为=×,所以新分数为原分数的,(1﹣)÷1==37.5%.故答案为:37.5.5.(6分)若a<<a+1,则自然数a=402 .【解答】解:因为<++++<,设++++=s,则<<,所以<s<,即402.2<s<403,因此a=402.故答案为:402.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}= 1.82 .(结果用小数表示)【解答】解:{}+{}+{}≈{671.66}+{78.75}+{82.4}=0.66+0.75+0.4=1.81故答案为:1.81.7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了15 件.【解答】解:20÷4×3=15(件)15+20=35(件)35÷(1﹣30%)=35÷70%=50(件)50×30%=15(件);答:甲制作了15件.故答案为:15.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z =21 .【解答】解:根据题意,可得××=则,xyz=9×15×14÷6=3×3×5×7,根据最简真分数的特征,可得x=5,y=7,z=9,所以x+y+z=5+7+9=21.故答案为:21.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?【解答】解:(1)最后一只老鼠取走1粒,最后一位老鼠取前有:1×3+1=4(粒);第二只老鼠取前有:4×3÷2+1=7(粒);第一只老鼠取前有:7×3÷2+1=12.5(粒)不能整除,舍去.(2)最后一只老鼠取走2粒,最后一位老鼠取前有:2×3+1=7(粒);第二只老鼠取前有:7×3÷2+1=12.5不能整除,舍去.(3)最后一只老鼠取走3粒,最后一位老鼠取前有:3×3+1=10(粒);第二只老鼠取前有:10×3÷2+1=16(粒);第一只老鼠取前有:16×3÷2+1=25(粒),符合题意.所以,最初这堆花生至少有25粒.答:这堆花生至少有25粒.10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.【解答】解:设长方形的长和宽分别为a和b,则×π×b2×2=abb=a所以=.答:长方形的长和宽的比值是.故答案为:.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.【解答】解:(×+1×)÷(1+)=()÷=×=答:参加演出的人数占全班人数的.故答案为:.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差 4 颗.【解答】解:设5年妹妹的年龄是x,那么:5年前今年妹妹x x+5姐姐x+2 x+75年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.那么x+2=4+2=6,即5年前按照4:6的比例分配,姐姐分到:80÷(4+6)×6=80÷10×6=48(颗);x+5=9,x+7=11,即今年按照9:11的比例分配,姐姐分到:80÷(9+11)×11=80÷20×11=4×11=44(颗);两次分配相差:48﹣44=4(颗).答:姐姐两次分到的珠子相差4颗.故答案为:4.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是 3 厘米.(π取3)【解答】解:连接BE、CE,则BE=CE=BC=1(厘米)故三角形BCE为等边三角形.于是∠EBC=∠ECB=60°于是弧BE=弧CE=3×1×=1(厘米)则阴影部分周长为1×2+1=3(厘米)答:阴影部分周长是3厘米.故答案为:3.14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是50 升.【解答】解:设第一次倒出的纯酒精是x升,则100﹣x﹣=×100整理得x2﹣200x+7500=0解得x1=150>100,舍去,x2=50,所以x=50答:第一次倒出的纯酒精是50升.故答案为:50.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是27 厘米.【解答】解:设容器的高为x厘米,则容器B中的水深就是(x﹣6)厘米,根据题意可得方程:3.14×22×x=3.14×32×(x﹣6)3.14×4×x=3.14×9×(x﹣6),4x=6x﹣542x=54x=27答:甲容器的高度是27厘米.故答案为:27.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有68 个.【解答】解:9+27+26+6=68(次).答:则这本书的页码中数字0共有68次.故答案为:68.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是0.84 平方米.(π取3)【解答】解:(3×72﹣3×62)+(3×52﹣3×42)+(3×32﹣3×22)+3×12=39+27+15+3=84(平方分米)84平方分米=0.84平方米答:图中阴影部分的面积是0.84平方分米.故答案为:0.84.18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是 3 .【解答】解:因为切一刀多两面;小正方体的表面积之和是切割前的大正方体的表面积的2倍;所以增加的面积等于原表面积;所以平行于三个面各切一刀;所以切割成的小正方体的棱长是:6÷2=3答:切割成的小正方体的棱长是3.故答案为:3.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?【解答】解:(1)1厘米,1厘米,1厘米;(2)1厘米,2厘米,2厘米;(3)1厘米,3厘米,3厘米;(4)1厘米,4厘米,4厘米;(5)1厘米,5厘米,5厘米;(6)5厘米,5厘米,5厘米;(7)2厘米,2厘米,2厘米;(8)2厘米,2厘米,3厘米;(9)2厘米,3厘米,3厘米;(10)2厘米,3厘米,4厘米;(11)2厘米,4厘米,4厘米;(12)2厘米,4厘米,5厘米;(13)2厘米,5厘米,5厘米;(14)3厘米,3厘米,3厘米;(15)3厘米,3厘米,4厘米;(16)3厘米,3厘米,5厘米;(17)3厘米,4厘米,4厘米;(18)3厘米,4厘米,5厘米;(19)3厘米,5厘米,5厘米;(20)4厘米,4厘米,4厘米;(21)4厘米,4厘米,5厘米;(22)4厘米,5厘米,5厘米.答:最多可以组成22个不同的三角形.20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了0.6 小时.【解答】解:1÷3=2÷4=3÷5=::=10:15:181小时26分=86分86×=86×=36(分)=0.6(小时);答:小羊经过下坡路用了0.6小时.故答案为:0.6.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:45:56;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=.2.计算:=.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2=,0.♦(7.5⊕4.8)=.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子颗.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是.8.根据图计算,每块巧克力元(□内是一位数字).9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是cm2.(π取3.14)10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于cm2.11.图中一共有个长方形.(不包含正方形)12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过次对换可使全部的黑棋子彼此不相邻.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是号.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了小时.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有种.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供只鸭子吃21天.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家千米.2011年第九届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、解答题(共20小题,满分0分)1.计算:7.625﹣6+5.75﹣1=5.【解答】解:7.625﹣6+5.75﹣1=﹣+5﹣1,=7﹣1+5﹣,=6+﹣6,=12﹣6,=5.2.计算:=.【解答】解:=====.故答案为:.3.对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y﹣x÷2,x⊕y=x+y÷2,按此规则计算,3.6♦2= 5.4 ,0.♦(7.5⊕4.8)=.【解答】解:(1)3.6♦2=3.6×2﹣3.6÷2=7.2﹣1.8=5.4,(2)7.5⊕4.8=7.5+4.8÷2=7.5+2.4=9.9,0.♦(7.5⊕4.8),=0.×9.9﹣0.÷2,=0.×9.4,=×9.4,=故答案为:5.4,.4.在方框里分别填入两个相邻的自然数,使下式成立.□<(+++…+)×3<□【解答】解:,,,…,,所以,×3<3<×3,整理,得这个值在1和1.5之间,所以填入的两个相邻的自然数是1和2.故答案为:1,2.5.在循环小数0.2345678中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是0.1234678.【解答】解:当循环小数为:0.1234678时,不循环的小数位数有4位,循环节的位数有5位,(2011﹣4)÷5=401…2,余数2表示循环节的第2位上的数字,即6,所以当循环小数为0.1234678时,小数点后第2011位上的数字是6.故答案为:0.1234678.6.一条项链上共有99颗珠子,如图,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,…则这条项链中共有红色的珠子90 颗.【解答】解:红珠子的数量是2,4,6,8,10这样的规律增加;它们的和在100之内求解.若有9组红珠子,它们的和是:2+4+…+16+18=90(颗);中间补上9个白珠子,正好是99颗珠子;所以红珠子有90颗.故答案为:90.7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是145 .【解答】解,由分析知:a和b其中一个是140,一个是5,所以:a+b的最大值就是5+140=145;故答案为:145.8.根据图计算,每块巧克力 5.11 元(□内是一位数字).【解答】解:72×5.11=367.92(元),故答案为:5.11.9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是157 cm2.(π取3.14)【解答】解:大圆的半径为:20÷2=10(厘米),小圆的半径为:10÷2=5(厘米),3.14×102﹣2×3.14×52,=314﹣175,=157(平方厘米),答:阴影部分的面积为157平方厘米.10.用若干棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于60 cm2.【解答】解:根据题干分析可得:(11×4+8×2)×1×1=60(平方厘米),答:这个立方体的表面积是60平方厘米.故答案为:60.11.图中一共有58 个长方形.(不包含正方形)【解答】解:因为图中长边有5个分点(包括端点),所以长边上不同的线段有:1+2+3+4=10(条);又因为宽边有4个分点(包括端点),所以宽边上不同的线段有:1+2+3=6(条),因此图中一共有长方形:10×6=60(个).由图知正方形个数只有边长为1和3两个,所以长方形个数60﹣2=58(个)答:图中一共有58个长方形(不包含正方形).故答案为:58.12.图中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等.若7个数字之和等于12,则“杯”所代表的数字是 3 .【解答】解:假设“杯”所代表的数字是a,每个小三角形三个顶点上的数字之和相等为k,由已知列式为:6k=12×2+4a,k==4+,k必须是自然数,a为1~9中一个自然数.当a=1、2、4、5、7、8时k都无解;a=6和9时,则7个数字和会大于12,所以不行.只有当a=3时,k=4+2=6;1+2+3=6,1+2+1+2+1+2+3=12,符合题意;答:则“杯”所代表的数字是 3.故答案为:3.13.如图,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列.若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过50 次对换可使全部的黑棋子彼此不相邻.【解答】解:从黑白珠子相交的地方为起点,分别数白棋子和黑棋子,只要交换偶数位置的棋子就可以;这样就需要交换:100÷2=50(次);故答案为:50.14.人口普查员站在王阿姨家门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”王阿姨说:“他们的年龄的乘积等于我的年龄,他们的年龄的和等于我们家的门牌号.”普查员看了看门牌,说:“我还是不能确定他们的年龄.”那么,王阿姨家的门牌号是14 .【解答】解:由40的约数可知,三个孤的年龄及相加的和为:40=1×1×40,1+1+40=42;40=1×2×20,1+2+20=23;40=1×4×10,1+4+10=15;40=1×5×8,1+5+8=14;40=2×2×10,2+2+10=14;40=2×4×5,2+4+5=11;通过这些因数的和可以发现,同时等于14的有两种情况.王阿姨家的门牌号普查员是知道的,但还是不能确定几个孩子的年龄,说明这几个孩子的年龄和有两种情况,并且和都等于门牌号.所以,此题的答案是14.答:王阿姨家的门牌号是14.故答案为:14.15.196名学生按编号从1到196顺次排成一列.令奇数号位(1,3,5…)上的同学离队,余下的同学顺序不变,重新自1从小到大编号,再令新编号中奇数上的同学离队,依次重复上面的做法,最后留下一位同学.这位同学开始的编号是128 号.【解答】解:据题意可知,剩下的同学的新编号就是上一次的编号除以2,因此含2因数最多的编号就是最后剩下的,196内的数中,27=128含因数2最多,所以这位同学的编号是128.故答案为:128.16.甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程.则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了 3.6 小时.【解答】解:甲乙两人的速度比是6:4=3:2;把全程看作10份,甲走了9份,则乙要走6份;9×4÷10,=36÷10,=3.6(小时).答:他们已经出发了3.6小时.故答案为:3.6.17.某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个数字都不相同的情况共有840 种.【解答】解:据题意可知,最高位为5一种情况;分钟和秒的十位数,只可能是0、1、2、3、4这几种情况,而且还不能相同,共有5×4=20种情况;分钟和秒的个位数,有7×6=42种情况,所以,此题的结论是:20×42=840(种).故答案为:840.18.有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞.根据图8中的信息计算,若甲、乙、丙三只蚂蚁共同搬运这堆粮食,那么,蚂蚁乙搬运粮食42 粒.【解答】解:①甲乙丙的效率之比是:(﹣):()=12:7:8;②24÷(12﹣8)×7,=6×7,=42(粒).答:蚂蚁乙搬运粮食42粒.19.一批饲料可供10只鸭子和15只鸡共吃6天,或供12只鸭子和6只鸡共吃7天.则这批饲料可供 5 只鸭子吃21天.【解答】解:设1只鸭子每天吃饲料x,1只鸡每天吃饲料y,根据题干可得:(10x+15y)×6=(12x+6y)×7,60x+90y=84x+42y,24x=48y,x=2y,把2y=x代入:(12x+6y)×7=(12x+3x)×7=105x,105x÷21x=5(只),答:这批饲料可供5只鸭子吃21天.故答案为:5.20.小明从家出发去奶奶家,骑自行车每小时12千米,他走后2.5小时,爸爸发现小明忘带作业,便骑摩托车以每小时36千米的速度去追.结果小明到奶奶家后半小时爸爸就到了.小明家距离奶奶家36 千米.【解答】解:设小明的爸爸行驶了x小时,可得方程:12×(2.5﹣0.5+x)=36x,24+12x=36x,24x=24,x=1;则小明家距奶奶家:36×1=36(千米).答:小明家距离奶奶家36千米.故答案为:36.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:49:27;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]

希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。

2.900000-9=________×99999。

3.=________。

4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。

希望杯六年级近五年真题大全

希望杯六年级近五年真题大全

希望杯目录真题希望杯简介 (Ⅰ)近三年真题分析 (Ⅱ)2014 第 12 届希望杯六年级第 1 试试题 (1)2013 第 11 届希望杯六年级第 1 试试题 (3)2012 第 10 届希望杯六年级第 1 试试题 (5)2011 第 9 届希望杯六年级第 1 试试题 (7)2010 第 8 届希望杯六年级第 1 试试题 (9)2014 第 12 届希望杯六年级第 2 试试题 (11)2013 第 11 届希望杯六年级第 2 试试题 (13)2012 第 10 届希望杯六年级第 2 试试题 (15)2011 第 9 届希望杯六年级第 2 试试题 (17)2010 第 8 届希望杯六年级第 2 试试题 (19)参考答案2014 第 12 届希望杯六年级第 1 试试题分析 (21)2013 第 11 届希望杯六年级第 1 试试题分析 (23)2012 第 10 届希望杯六年级第 1 试试题分析 (25)2011 第 9 届希望杯六年级第 1 试试题分析 (27)2010 第 8 届希望杯六年级第 1 试试题分析 (29)2014 第 12 届希望杯六年级第 2 试试题分析 (31)2013 第 11 届希望杯六年级第 2 试试题分析 (33)2012 第 10 届希望杯六年级第 2 试试题分析 (35)2011 第 9 届希望杯六年级第 2 试试题分析 (37)2010 第 8 届希望杯六年级第 2 试试题分析 (39)希望杯简介“希望杯”全国数学邀请赛的主办单位“希望杯”是由中国科学技术协会普及部、中国优选法统筹法与经济数学研究会、《数理天地》杂志社、中青在线、华罗庚实验室等主办的全国性数学竞赛.“希望杯”全国数学邀请赛的宗旨鼓励和引导中小学生学好数学课程中最主要的内容,适当地拓宽知识面;启发他们注意数学与其它课程的联系和数学在实际中的应用;激励他们去钻研和探究;培养他们科学的思维能力、创新能力和实践能力;树立他们为振兴中华而努力成才的自信.“希望杯”全国数学邀请赛的命题原则试题内容不超出现行数学教学大纲,不超出教学进度,贴近现行的数学课本,源于课本,高于课本.题目活而不难,巧而不偏;既大众化又富于思考性和启发性.力求体现科学思维之美,寓科学于趣味之中,将知识、能力的考察和思维能力的培养结合起来.“希望杯”全国数学邀请赛的参赛对象初、高中一、二年级学生和小学四、五、六年级学生.每年举行一次,为一届.每次举行两试,三月中旬第 1 试,考1.5小时;四月中旬第 2 试,考 2 小时.“希望杯”全国数学邀请赛的赛前准备杯赛的备考其实非常简单,做到以下两点,希望杯获奖轻松惬意:1.利用寒假做完希望杯 100 题和希望杯历年真题;2.春季再做一遍;3.结合一试的试题,有针对性的准备二试.希望杯全国数学邀请赛的评奖希望杯会设置全国奖项和深圳地区奖项其中含金量最高的是全国一二等奖,整个深圳市也就 20 个左右的名额;而全国三等奖就有好几百个,具体规则如下:根据希望杯的评奖规则,全国一二等奖在赛区内统一标准,按照初赛人数的约千分之三评定.全国三等奖按报名单位初赛人数和规定比例评定,由报名单位按照下述要求评定:1.各单位获奖总指标(一二三等奖):中学每满 30 人初赛给一个指标,不足 30 人不给;小学每满 20 人初赛给一个指标,不足 20 人不给.若评出人数多于计划指标,组委会将按照从后到前的顺序去掉多出指标.2.各单位评奖时应当按照复赛分数由高到低的原则,赛分数相同时按初赛成绩排序.3.各单位指标可在小学内部中学内部调剂使用,得在二者之间调剂.4.凡是列入全国一二等奖推荐名单的,提供该生的一试试卷和二试试卷,奖励等级由全国组委会统一确定.深圳地区奖项设置有特、一、二、三等奖,2014 年 2000 多名进入二试的学生中,有 120 个特等奖,400 个一等奖,所有进入二试的选手至少能获三等奖!!近三年真题分析“希望杯”题型涉及内容广泛,为了更好备战2015年“希望杯”,我们需要对历年考试情况有一个详细了解。

第5—10届六年级希望杯试题

第5—10届六年级希望杯试题

第五届小学“希望杯”全国数学邀请赛六年级第1试(附答案)亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分。

1.已知2.3.在下面的算式□中填入四个运算符号、、、、(每个符号只填一次),则计算结果最大是_______.1□2□3□4□54. 在图1所示的和方格表中填入合适的数,使用权每行、每列以及每条对角线上的三个数的和相等。

那么标有“★”的方格内应填入的数是_______.5. 过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格。

6.如图2是2003年以来我国日石油需求量和石油供应量的统计图。

由图可知,我国日石油需求量和日石油需求量增长更______(填“大”或“小”),可见我国对进口石油的依赖程度不断定_______(填“增加”或“减小”)。

7.小红和小明帮刘老师修补一批破损图书。

根据图3中信息计算,小红和小时一共修补图书______本。

8.一项工程,甲单独完成需要10天,乙单独完成需要15天,丙单独完成需20天,三人合作3天后,甲有其它任务而退出,剩下乙、丙继续工作直至完工。

完成这项工程共用______天。

9.甲、乙两车分别从A、B两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A、B距离的1/3多50千米时,与乙车相遇.A、B两地相距______千米。

10.今年儿子的年龄是父亲年龄的1/4,15年后,儿子的年龄父亲年龄的5/11。

今年儿子______岁。

11.假设地球有两颗卫星A、B在各自固定的轨道上环绕地球运行,卫星A环绕地球一周用1.8小时,每过144小时,卫星A比卫星B多环绕地球35周。

卫星B环绕地球一周用_______小时。

12.三个数P,P+1,P+3都是质数,它们的倒数和的倒数是_______。

希望杯第届小学六年级全国数学竞赛题及解答

希望杯第届小学六年级全国数学竞赛题及解答

第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.∙2×1.∙2∙4+1927=________. 4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

第一届小学“希望杯”全国数学邀请赛六年级 第1试

第一届小学“希望杯”全国数学邀请赛六年级 第1试

第一届小学“希望杯”全国数学邀请赛六年级第1试1、一个最简分数,分母缩小3倍加1,分子扩大3倍加1,得7/10,则这个数是______。

2、黄金放水里重量减轻1/19,银减轻1/10,一块金和一块银,重770克,放水里减少50克,原来的金重多少克?3、三堆围棋子,数目一样多,第一堆黑子与第二堆白子一样多,第三堆黑子占全部的棋子的2/5,混合在一起白子占全部_______4、有一个六位数前三个是奇数,后三个是偶数,把后半部分移到前面,该数是原数五倍半,原数是_____。

5、早上水缸放满了水,白天用去了其中的20%,傍晚又用去了27升,晚上用去了剩下水的10%,最后剩下的水比半缸多1升。

早上放入____升水6、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?7. 三个数的和是 555 ,这三个数分别能被 3 , 5 , 7 整除,而且商都相同,求这三个数。

8.已知 A 是一个自然数,它是 15 的倍数,并且它的各个数位上的数字只有0 和 8 两种,问 A 最小是几?9.把自然数依次排成以下数阵:1 ,2 , 4 , 7 ,…3 , 5 , 8 ,…6 , 9 ,…10 ,……现规定横为行,纵为列。

求( 1 )第 10 行第 5 列排的是哪一个数?( 2 )第 5 行第 10 列排的是哪一个数?( 3 ) 2004排在第几行第几列?10. 三个质数的乘积恰好等于它们的和的 11 倍,求这三个质数。

11.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。

求这两个整数。

12.在 800 米的环岛上,每隔 50 米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有 4 根彩旗没动,问现在的彩旗间隔多少米?13.把 1296 分为甲、乙、丙、丁四个数,如果甲数加上 2 ,乙数减去 2 ,丙数乘以 2 ,丁数除以 2 ,则四个数相等。

第九届小学“希望杯”全国数学邀请赛六年级第1试+答案

第九届小学“希望杯”全国数学邀请赛六年级第1试+答案

第九届小学“希望杯”全国数学邀请赛六年级第1试2011年3月13日上午8:30至10:00 得分____________ 亲爱的小朋友,欢迎你参加第九届小学”希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数学天地,将会留下一个难忘的经历……以下每题6分,共120分。

1、计算:7.625-613+5.75-138=_______________。

2、计算:2 4.6949.2181 2.3 4.53 6.913.5⨯⨯+⨯⨯⨯⨯+⨯⨯=_______________。

3、对于任意两个数x,y定义新运算,运算规则如下:x♦y=x×y-x÷2,x⊕y=x+y÷2。

按此规则计算:3.6♦2=____________,0.12♦(7.5⊕4.8)=____________。

4、在方框里分别填入两个相邻的自然数,使下式成立。

□<1111 101102103150⎛⎫+++⋅⋅⋅⋅⋅⋅+⎪⎝⎭×3<□5、在循环小数0.123456789中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是___________。

6、一条项链上共串有99颗珠子,如图1,其中第1颗珠子是白色的,第2、3颗珠子是红色的,第4颗珠子是白色的,第5、6、7、8颗珠子是红色的,第9颗珠子是白色的,……。

则这条项链中共有红色珠子___________颗。

图17、自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是___________。

8、根据图2计算,每块巧克力___________元。

(□内是一位数字)9、手工课上,小红用一张直径是20㎝的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是___________cm2。

(π取3.14)10、用若干个棱长为1 cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面积)等于___________ cm2。

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(六年级第2试)

2020年第九届小学数学“梦想杯”全国数学邀请赛试卷(六年级第2试)

【解答】解:45m=4m+5;
第 5页(共 12页)
54n=5n+4; 那么: 4m+5=5n+4 即:4(m﹣1)=5(n﹣1), 如果 m﹣1=5,n﹣1=4,则 m=6,n=5,但此时 n 进制中不能出现数字 5; 如果 m﹣1=10,n﹣1=8,则 m=11,n=9,符合题意. 即 m 最小是 11,n 最小是 9. 故答案为:11,9. 6.(5 分)我国除了用公历纪年外,还采用干支纪年,根据图 2 中的信息回答:公历 1949 年按干支纪年法是 己丑 年.
第 3页(共 12页)
2011 年第九届小学“希望杯”全国数学邀请赛试卷(六
年级第 2 试)
参考答案与试题解析
一、填空题(5'×12=60')
1.(5 分)计算:3.625+
﹣=

【解答】解:3.625+
﹣,
=+﹣,
=+﹣,
= ﹣( ﹣ ),
=﹣,
=.
2.(5 分)对于任意两个数 x 和 y,定义新运算◆和⊗,规则如下:
头号新闻网:## 头号新闻网为您及时提供科技、互联网、房产、家居、美食等相关领域的新闻资讯,方便大家的生活。
金马医药招商网:## 金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或 医药火爆招商网这里提供专业的医药代理招商服务。
16.(15 分)将两个不同的自然数中较大的数换成他们的差,称为一次操作,如此继续下去, 直到这两个数相同为止.如对 20 和 26 进行这样的操作,过程如下: (20,26)→(20,6)→(14,6)→(8,6)→(2,6)→(2,4)→(2,2) (1)对 45 和 80 进行上述操作. (2)若对两个四位数进行上述操作,最后得到的相同数是 17.求这两个四位数的和的最 大值.

第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)

2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=.2.(6分)计算:1+11+21+…+1991+2001+2011=.3.(6分)在小于30的质数中,加3以后是4的倍数的是.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的倍.5.既是6的倍数又是8的倍数的所有两位数的和是.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有人.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是分.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=,∠BOC=.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有个正方形,个等腰直角三角形.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水千克,桶重千克.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需分钟.17.(6分)图中“C”形图形的周长是厘米.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有种不同的填法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是.2011年第九届小学“希望杯”全国数学邀请赛试卷(四年级第1试)参考答案与试题解析一、解答题(共20小题,满分114分)1.(6分)计算:(7777+8888)÷5﹣(888﹣777)×3=3000 .【分析】把7777+8888与888﹣777,拆成两个数的乘积,再根据乘法分配律进行计算即可.【解答】解:(1111×7+1111×8)÷5﹣(111×8﹣111×7)×3,=1111×(7+8)÷5﹣111×(8﹣7)×3,=1111×(15÷5)﹣111×1×3,=1111×3﹣111×3,=(1111﹣111)×3,=1000×3,=3000.故答案为:3000.【点评】本题主要考查乘法分配律的灵活运用,根据数字特点找出巧算的方法进行计算即可.2.(6分)计算:1+11+21+…+1991+2001+2011=203212 .【分析】通过观察,相邻两个数的差是10,这是一个等差数列,可以用高斯求和公式进行简算.这一数列共有(2011﹣1)÷10+1=202个数,然后运用公式计算即可.【解答】解:1+11+21+…+1991+2001+2011,=(1+2011)×[(2011﹣1)÷10+1]÷2,=2012×202÷2,=203212.故答案为:203212.【点评】此题的关键是先探索出这是一个等差数列,运用“项数=(末项﹣首项)÷公差+1”算出项数.3.(6分)在小于30的质数中,加3以后是4的倍数的是5,13,17,29 .【分析】根据质数的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数.30以内的质数有:2,3,5,7,11,13,17,19,23,29;4的倍数特征是个位上的数是偶数;由此解答.【解答】解:5+3=8;13+3=16;17+3=20;29+3=32;8,16,20,32都是4的倍数;故答案为:5,13,17,29.【点评】此题的解答主要明确质数的意义,掌握30以内的10个质数,和4的倍数的特征.4.(6分)小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 2 倍.【分析】此题要找出小于100的最大自然数是99,大于300的最小自然数是301,不大于200(即小于或等于200)的最大自然数是200,由此本题可以看做是:“99和301的和是200的多少倍?”.【解答】解:(99+301)÷200,=400÷200,=2;答:是不大于200的最大的自然数的2倍.故答案为:2.【点评】解决此题的关键是,根据题干先得出“小于100的最大的自然数”是99、“大于300的最小的自然数”是301,“不大于200的最大的自然数”是200.5.既是6的倍数又是8的倍数的所有两位数的和是240 .【分析】既是6的倍数,又是8的倍数,先分解质因数,6分为2×3,8分为2×2×2,再找出最小公倍数,两位数的公倍数只有四个数:24,48,72,96,相加即得答案240.【解答】解:根据分析,先分解质因数6=2×3,8=2×2×2,则两者的最小公倍数即为24,符合条件的所有两位数公倍数为:24,48,72,96;所有这些两位数之和:24+48+72+96=240,故答案为:240.【点评】本题考查了公倍数和数的整除运算知识,本题突破点是:找出两者之间的最小公倍数.6.(6分)四年级一班第2小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这个小组中既不会打乒乓球又不会下象棋的有 2 人.【分析】只要从总人数12人中,把会打乒乓球和会下象棋的人数减掉,剩下的就是这个小组中既不会打乒乓球又不会下象棋的人数;此题可以画图分析:5+8=13人,这里重复加了一次既会打乒乓球有会下象棋的3人,所以会打乒乓球和会下象棋的人数为13﹣3=10人,则剩下的12=2人就是这个小组中既不会打乒乓球又不会下象棋的人数.【解答】解:12﹣(5+8﹣3)=2(人),答:这个小组中既不会打乒乓球又不会下象棋的有 2人.故答案为:2.【点评】此题考查了利用容斥原理解决实际问题的灵活应用.7.(6分)按照左侧四个图中数的规律,在第五个图中填上适当的数:【分析】(1)根据题干,图中1的位置变化规律是:按顺时针方向依次移动一个格;(2)数字排列规律是:分别按1、3、5、2、4、6的顺序排列的,而且第奇数幅是按顺时针排列,第偶数幅是按逆时针排列;第五幅图是第奇数幅,所以按顺时针排列.【解答】解:根据题干分析可得:(1)图中1的位置变化规律是:按顺时针方向依次移动一个格;所以先确定1的位置如下图所示;(2)第五幅图是第奇数幅,所以按顺时针排列,所以可以在图中添上正确的数字如下图所示:【点评】根据题干得出1的位置变化规律和图中数字1、3、5、2、4、6的排列特点是解决此题的关键.8.(6分)已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200,则这两个被改动的数以外的7个数的乘积是10 .【分析】只要求出被改动的两个数是多少,即能求出这两个被改动的数以外的7个数的乘积是多少.已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,积缩小了800÷200=4(倍),则这个被改动的数也被缩小了4倍,则被改动的这个数为:4×4=16;同理,1200÷200=6,积扩大了6倍,第二个被改动的数也被扩大了6倍,其原来应为:30÷6=5,所以则这两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.【解答】解:第一个数原来为:(800÷200)×4=16;第二个数原来为:30÷(1200÷200)=5;则两个被改动的数以外的7个数的乘积是:800÷(16×5)=10.故答案为:10.【点评】在乘法算式,其中一个因数扩大(或缩小)多少倍,积也相应的扩大(或缩小)多少倍.9.(6分)如图,△ABC的面积为36,点D在AB上,BD=2AD,点E在DC 上,DE=2EC,则△BEC的面积是8 .【分析】(1)△ABC的面积是36,BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,所以:△BDC的面积是:36×2÷3=24;(2)△BDC的面积是36×2÷3=24,DE=2EC,根据高一定时,三角形的面积与底成正比的性质即可得出:△BEC的面积:△BDC的面积=1:3,所以△BEC的面积是24÷3=8.【解答】解:因为BD=2AD,根据高一定时,三角形的面积与底成正比的性质即可得出:△ABC的面积:△BDC的面积=3:2,故△BDC的面积是36×2÷3=24;因为DE=2EC,同理可得:△BEC的面积:△BDC的面积=1:3,故△BEC的面积是24÷3=8.答:△BEC的面积是8.故答案为:8.【点评】此题反复考查了高一定时,三角形的面积与底成正比的性质的灵活应用.10.(6分)今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大28 岁.【分析】4年后,李林和他爸爸的年龄之和是50+4×2=58岁,设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据他们的年龄之和是58岁列出方程即可解决问题.【解答】解:设李林4年后的年龄为x岁,则爸爸的年龄是3x﹣2岁,根据题意可得方程:x+3x﹣2=50+4×2,4x=60,x=15,3×15﹣2=43(岁),43﹣15=28(岁),答:李林的爸爸比他大28岁.故答案为:28.【点评】此题也可以这样分析,4年后,李林和爸爸的年龄之和就是58岁,把李林的年龄看做1份,那么爸爸的年龄就是3份少2岁,由此可以求出1份即李林的年龄为:(58+2)÷4=15(岁),由此可得爸爸58﹣15=43岁,则爸爸比李林大28岁.11.(6分)某次考试,A、B、C、D、E五人的平均分是90分.若A、B、C 的平均分是86分,B、D、E的平均分是95分,则B的得分是93 分.【分析】根据“平均数×数量=总数”分别计算出A、B、C三个数的和与B、D、E三个数的和与这五个数的和,进而用“A、B、C三个数的和+B、D、E三个数的和﹣五个数的和”进行解答即可.【解答】解:(86×3+95×3)﹣(90×5),=543﹣450,=93(分);故答案为:93.【点评】解答此题的关键:根据平均数和数量、总量之间的关系进行分析解答.12.(6分)如图,已知直线AB和CD交于点O,若∠AOC=20°,∠EOD=60°,则∠AOE=100°,∠BOC=160°.【分析】由图可知,∠AOC=20°、∠EOD=60°与∠AOE相加等于180°,由此即可求得∠AOE的度数;∠BOC与∠AOC=20°互为补角,根据补角的定义即可解答.【解答】解:∠AOE=180°﹣∠AOC﹣∠EOD=180°﹣20°﹣60°=100°.∠BOC=180°﹣∠AOC=180°﹣20°=160°.故答案为:100°;160°.【点评】本题主要考查角的度量与补角的定义,根据几个角的和差关系进行计算是解题关键.13.(6分)如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G 在一条直线上,则图中共有 3 个正方形,22 个等腰直角三角形.【分析】根据图形可知,正方形有:ABCD、CEFG、BEGD三个;在正方形ABCD、CEFG和BEGD中,单一三角形是10个,有两个小三角形组成的是8个;由3个三角形组成的等腰直角三角形是4个;由此解答.【解答】解:图中共有正方形3个;等腰直角三角形有:10+8+4=22(个);故答案为:3;22【点评】此题主要考查通过分类、观察、思考探寻事物规律的能力.14.(6分)一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 3 千克,桶重 4 千克.【分析】根据题意知道,桶的重量不变,(22﹣16)千克的水就是水原来的(6﹣4)倍,由此即可求出原来的水的千克数,那桶的重量即可求出.【解答】解:桶内原有水:(22﹣16)÷(6﹣4),=6÷2,=3(千克),桶重:16﹣4×3,=16﹣12,=4(千克);答:桶内原有水3千克,桶重4千克.故答案为:3,4.【点评】解答此题的关键是,根据题意,找出对应的数和对应的倍数,由此列式解答即可.15.(6分)某个两位数的个位数字和十位数字的和是12,个位数和十位数字交换后所得两位数比原数小36,则原数是84 .【分析】设个位数字是x,则十位数字是12﹣x,所以可得:原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据新数比原数小36,列出方程即可解决问题.【解答】解:设个位数字是x,则十位数字是12﹣x,那么原来两位数是10(12﹣x)+x,交换位置后的新两位数是10x+12﹣x;根据题意可得方程:10(12﹣x)+x﹣(10x+12﹣x)=36,18x=72,x=4;12﹣4=8,答:原数是84.故答案为:84.【点评】此题设出个位数字和十位数字,从而得出原两位数和新两位数是解决本题的关键.16.(6分)王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么,他来回都坐车,则需30 分钟.【分析】来回都步行,需要2个半小时说明王强步行单程用:2.5÷2=1.25(小时),又因为步行去公园,回来时坐车,往返用了一个半小时,则坐车单程用:1.5﹣1.25=0.25(小时),则来回都坐车用时:0.25×2=0.5(小时).【解答】解:(1.5﹣2.5÷2)×2,=0.25×2,=0.5(小时);0.5小时=30分钟.故答案为:30.【点评】完成本题的关健是:在求出步行单程所用时间的基础上,求出坐车单程所用时间.17.(6分)图中“C”形图形的周长是32 厘米.【分析】如图,将内部的2厘米边平移到外面红色线段处,这样这个图形的周长就是这个边长为6厘米的正方形的边长与内部横着的两条长为6﹣2=4厘米的线段的长度之和,由此利用正方形周长公式代入数据即可解决问题.【解答】解:根据题干分析可得:6×4+(6﹣2)×2,=24+8,=32(厘米),答:这个图形的周长是32厘米.故答案为:32.【点评】借助平移的性质将图形中的某些线段移动到规则图形的边上,使求这个不规则图形的周长转化成求规则图形的周长是解决此类题目的主要解题思路.18.(6分)如图,从1,2,3,4,5,6中选出5个数填在图中空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有30 种不同的填法.【分析】此题根据乘法原理进行解答,从6个数中选出5个进行填空,共有6×5种.【解答】解:从6个数中选出5个进行填空,共有:6×5=30(种);故答案为:30.【点评】此题运用了乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法.19.(6分)三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是1488 .【分析】据题意可知,这是三个相连的自然数,又7、8、9也是相连的自然数,因此先找到7、8、9的最小公倍数:7×8×9=504,则减9是9的倍数,减8是8的倍数,减7是7的倍数,得到495、496、497是符合要求的.【解答】解:7、8、9的最小公倍数为:7×8×9=504;504﹣7=497,504﹣8=496,504﹣9=495;495+496+497=1488.故填:1488.【点评】任何三个连续自然数(零除外)的最小公倍分别减(或加)这三个数得到的三个连续的自然数分别是这三数的倍数.20.(6分)甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D,第五名是E.”乙:“第二名是A,第四名是C.”丙:“第三名是D,第四名是A”,丁:“第一名是C,第三名是B.”戊:“第二名是C,第四名是B.”若每个人都是只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是CADBE .【分析】本题可用假设法分两步进行推理:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B 是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.【解答】解:第一步:假设甲说的前半句是真的,那么D是第1名,那么此时丙说的前半句错,后半句对.则A是第4名.同理乙的后半句对,C是第4名.矛盾.由此可知甲的后半句对.即第五名是E;第二步:已知E是第5名,D不是第1名.和第一名有关的话只剩下丁说的,设C是第1名.则戊:“第2名是c,第4名是B”.可知前错后对,B是第4名.且有乙:“第二名是A,第四名是c”.可知,A是第2名.D是第3名.综上可知,第一、二、三、四、五名分别是CADBE.【点评】完成此类题目思路要清晰,根据所给条件中的逻辑关系细心推理,从而得出结论.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 16:49:14;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第4-12届小学“希望杯”全国数学邀请赛六年级1试

第4-12届小学“希望杯”全国数学邀请赛六年级1试

第四届小学“希望杯”全国数学邀请赛六年级第1试1.1120062008()2006200720072008⨯⨯+=⨯⨯________。

2.900000-9=________×99999。

3.=________。

4.如果a=20052006,b=20062007,c=20072008,那么a,b,c中最大的是________,最小的是________。

5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A的小数点向右移动两位,得到数B。

那么B+A是B-A的________倍。

(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。

则三个面涂漆的小正方体有________块。

13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。

14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。

第九届小学“希望杯”全国数学邀请赛四年级第1试+答案

第九届小学“希望杯”全国数学邀请赛四年级第1试+答案

第九届小学“希望杯”全国数学邀请赛四年级 第1试2011年3月13日 上午8:30至10:00 得分____________亲爱的小朋友,欢迎你参加第九届小学”希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数学天地,将会留下一个难忘的经历……以下每题6分,共120分。

1. 计算:(7777+8888)÷5—(888—777)×3= . 2. 计算:1+11+21+…+1991+2001+2011= .3. 在小于30的质数中,加3以后是4的倍数的是 .4. 小于100的最大的自然数与大于300的最小的自然数的和,是不大于200的最大的自然数的 倍. 5. 既是6的倍数又是8的倍数的所有两位数的和是 .6. 四年级一班2个小组共12人,其中5人会打乒乓球,8人会下象棋,3人既会打乒乓球又会下象棋,那么这两个小组中既不会打乒乓球又不会下象棋的有 人. 7. 按照左侧四个图中数的规律,在第五个图中填上适当的数:6135241642534253161642538. 已知9个数的乘积是800,将其中一个数改为4,这9个数的乘积是200,若再将另外一个数改为30,则这9个数的乘积变为1200.则这两个被改动的数以外的7个数的乘积是 .9. 如图1,△ABC 的面积为36,点D 在AB 上,BD=2AD ,点E 在DC 上,DE=2EC ,则△BEC 的面积是 .EDCBAO60︒20︒ED C BAFB图1 图2 图310.今年,李林和他爸爸的年龄的和是50岁,4年后,他爸爸的年龄比他的年龄的3倍小2岁,则李林的爸爸比他大 岁.11.某次考试,A 、B 、C 、D 、E 五人的平均分是90分.若A 、B 、C 的平均分是86分,B 、D 、E 的平均分是95分,则B 的得分是 .12.如图2,已知直线AB 和CD 交于点O ,若∠AOC=20°,∠EOD=60°,则∠AOE= °,∠BOC= °.13.如图3,四边形ABCD 与CEFG 是边长相等的正方形,且B 、C 、G 在一条直线上,则图中共有 个正方形, 个等腰直角三角形.14.一个水桶里有水,若将水加到原来的4倍,桶和水共重16千克;若将水加到原来的6倍,桶和水共重22千克.则桶内原有水 千克,桶重 千克.15.某个两位数的个位数字和十位数字的和是12,个位数字和十位数字交换后所得两位数比原数小36,则原数是 .16.王强步行去公园,回来时坐车,往返用了一个半小时,如果他来回都步行,则需要2个半小时,那么他来回都坐车,则需 分钟.17.图4中“C ”形图形的周长是 厘米.图418.如图5,从1,2,3,4,5,6,中选出5个数填在图中的空格内,使填好的格内的数右边的比左边的大,下边的比上边的大,则共有 种不同的填法.图519.三个连续自然数中最小的数是9的倍数,中间的数是8的倍数,最大的数是7的倍数,则这三个数的和最小是 .20.甲、乙、丙、丁、戊五人猜测全班个人学科总成绩的前五名:甲:“第一名是D ,第五名是E .” 乙:“第二名是A ,第四名是C .” 丙:“第三名是D ,第四名是A .” 丁:“第一名是C ,第三名是B .” 戊:“第二名是C ,第四名是B .”若每个人都只猜对一个人的名次,且每个名次只有一个人猜对,则第一、二、三、四、五名分别是 .7第九届小学“希望杯”全国数学邀请赛答案四年级第1试1.30002.3.5,13,17,294. 25.2406. 27.8.109.810.2811.9312.100;16013.3;2214.3;415.8416.3017.3218.3019.148820.C、A、D、B、E。

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

完整word版,六年级“希望杯”全国数学邀请赛答案详细解析

第十五届小学六年级“希望杯”全国数学邀请赛1.计算:=+⨯20161201620152017( ) 2.计算:=⨯-⨯321128574.03.6742851.0&&&&( ) 3.定义:a ☆b=b 1a -,则2☆(3☆4)=( ) 4.如图1所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有( )个点① ② ③④5.已知A 是B 的21,B 是C 的43。

若A+C=55,则A=( )6.如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如195793.1&&,357919.3&&。

在所有这样只有一位整数的循环小数中,最大的是( )7.甲,乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5。

两人共有的邮票张数是( )张8.从1,2,3,........,2016中任意取出n 个数,若取出的数中至少有两个数互质,则n的最小是( )9.等腰∆ABC 中,有两个内角的度数比是1:2,则∆ABC 的内角中,角度最大的可以是( )度10.能被5和6整除,并且数字中至少有一个6的三位数有( )个11.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的415与每支钢笔的售价相等,则一支钢笔的售价是( )元12.已知x 是最简真分数,若它的分子加a ,化简得31,若它的分母加a ,化简得41,则x=( )13.a ,b ,c 是三个互不相等的自然数,且a+b+c=48,那么a ,b ,c 的乘积最大是( )14.小丽做一份希望杯练习题,第一小时做完了全部的51,第二小时做完了余下的41,第三小时做完了余下的31,这时,余下24题没有做,则这份练习题共有( )道15.如图3,将正方形纸片ABCD 折叠,使点A 、B 重合于O 点,则EFO ∠=( )度16.如图4,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是( )平方厘米17.如图5,将一根10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是( )立方分米18.将浓度为40%的100克糖水倒入浓度为20%的a 克糖水中,得到的浓度为25%的糖水,则a=( )19.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110度;回家时还未到7点,此时时针和分针的夹角仍是110度,则张强外出锻炼身体用了( )分钟20.甲、乙两人分别从A 、B 两地同时出发,相向而行,在c 点相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九届小学“希望杯”全国数学邀请赛
六年级 第1试
2011年3月13日 上午8:30至10:00 得分____________
以下每题6分,共120分。

1、计算:7.625-613+5.75-138
=_______________。

2、计算:2 4.6949.2181 2.3 4.53 6.913.5
⨯⨯+⨯⨯⨯⨯+⨯⨯=_______________。

3、对于任意两个数x ,y 定义新运算,运算规则如下:
x ♦y =x ×y -x ÷2,x ⊕y =x +y÷2。

按此规则计算:3.6♦2=____________, 0.12g g
♦(7.5⊕4.8)=____________。

4、在方框里分别填入两个相邻的自然数,使下式成立。

□<1111101102103150⎛⎫+++⋅⋅⋅⋅⋅⋅+ ⎪⎝⎭
×3<□ 5、在循环小数0.1g 23456789g
中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第2011位上的数字是6,则新的循环小数是___________。

6、一条项链上共串有99颗珠子,如图1,其中第1颗珠子是白色的,第2、3颗珠子是红色的,第4颗珠子是白色的,第5、6、
7、8颗珠子是红色的,第9颗珠子是白色的,……。

则这条项链中共有红色珠子___________颗。

图1
7、自然数a 和b 的最小公倍数是140,最大公约数是5,则a +b 的最大值是___________。

8、根据图2计算,每块巧克力___________元。

(□内是一位数字)
9、手工课上,小红用一张直径是20㎝的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是___________cm 2。

(π取3.14)
10、用若干个棱长为1 cm 的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面积)等于___________ cm 2。

11、图5中一共有________个长方形(不包含正方形)。

12、图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶
点上的数字之和相等。

若7个数字之和等于12,则“杯”所代表的数字是____________。

13、如图7,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列。

若将圆周上任意两枚棋子换位一次
称为一次交换,则最少经过____________次对换可使全部的黑棋子彼此不相邻。

14、人口普查员站在王阿姨门前问王阿姨:“您的年龄是40岁,您收养的三个孤儿的年龄各是多少岁?”
王阿姨说:“他们年龄的乘积等于我的年龄,他们年龄的和等于我家的门牌号。

”普查员看了看门牌,说:“我还是不能确定他们的年龄。

”那么,王阿姨家的门牌号是____________。

15、196名学生按编号从1到196顺次排成一列。

令奇数号位(1,3,5…)上的同学离队,余下的同学顺
序不变,重新自1从小到大编号,再令新编号中奇数位上的同学离队,依次重复上面的做法,最后留下一位同学。

这位同学开始的编号是___________号。

16、甲、乙两人同时从A地出发到B地,若两人都匀速行进,甲用4小时走完全程,乙用6小时走完全程。

则当乙所剩路程是甲所剩路程的4倍时,他们已经出发了___________小时。

17、某电子表在6时20分25秒时,显示6:20:25,那么从5时到6时这1个小时里,此表显示的5个
数字都不相同的情况共有__________种。

18、有三只蚂蚁外出觅食,发现一堆粮食,要运到蚁洞。

根据图8中的信息计算,若甲、乙、丙三只蚂蚁
共同搬运这堆粮食,那么,蚂蚁乙搬运粮食__________粒。

19、一批饲料可供10只鸭子和10只鸡共吃6天,或供12只鸭子和6只鸡共吃7天,则这批饲料可供
_________只鸭子吃21天。

20、小明从家出发去奶奶家,骑自行车每小时行12千米,他走后2.5小时,爸爸发现小明忘带作业,便
骑摩托车以每小时36千米的速度去追,结果小明到奶奶家后半小时爸爸就赶到了。

小明家距离奶奶家___________千米。

相关文档
最新文档