数学竞赛-绝对值与二次根式
二次根式—2024全国初中数学重点高中自招竞赛试题精选精编
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2+2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a =2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a ,∴a =4,∴a b=412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23 B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a +aa b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab=-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.11。
人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)
人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)【例1】 化简(1(ba b ab b -÷--(2(3(4解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例2】 比6大的最小整数是多少?解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y ==想一想:设x =求432326218237515x x x x x x x --++-++的值.的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例3】 设实数x ,y 满足(1x y =,求x +y 的值.解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例4】 (1的最小值.(2的最小值.解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例5】 设2)m a =≤≤,求1098747m m mm m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.若满足0<x<y=x,y)是_______2.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>03)A.1B C. D. 54、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个5、化简:(1(2(3(4(56、设x =(1)(2)(3)(4)x x x x ++++的值.77x =,求x 的值.B 级1.已知3312________________x y x xy y ==++=则.2.已知42______1x x x ==++2x 那么.3.a =那么23331a a a++=_____.4. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 85. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b6.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 7. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 48. 把(1)a - )A .B C. D .9、化简:(110099+(2(310、设01,x << 1≤<.12、已知a, b, c为有理数,证明:222a b ca b c++++为整数.参考答案例1 (1)⎤(2)+5.(3)3-;(4-++=-.例2 x+y=,xy=1,于是x2+y2=(x+y)2-2xy=22,x3+y3=(x+y)(x2-xy+y2)=,x6+y6=(x3+y3)2-2x3y3=10582 .∵01,从而0<6<1,故10 581<6<10 582.例 3 x=-y…①;同理,y=x…②.由①+②得2x=-2y,x+y=0.例4 (1)构造如图所示图形,P A PB.作A关于l的对称点A',连A'B交l于P,则A'B13为所求代数式的最小值.(2)设yA(x,0),B(4,5),C(2,3).作C关于x轴对称点C1,连结BC1交x轴于A点.A即为所求,过B作BD⊥CC1于D点,∴AC+AB=C1B=例 5 m=+=.∵1≤a≤2,∴01,∴-11≤0,∴m=2.设S=m10+m9+m8+…+m-47=210+29+28+…+2-47 ①,2S=211+210+29+…+22-94 ②,由②-①,得S=211-2-94+47=1 999.A级1.(17,833),(68,612),( 153,420) 2.B 3.C4.A 5.(1)()2x yx y+-(2)22-(4) 6.48提示:由已知得x2+5x=2,原式=(x2+5x+4)(x2+5x+6).7.由题设知x>0,(+)(-)=14x.∴-=2,∴2=7x+2,∴21x2-8x-48=0.其正根为x=127.B级1.642.9553.1提示:∵-1)a=2-1,即1a-1.4.B提示:由条件得a+3+a=3,b=1,∴a+b=4.5.B提示:a-b-11=0.同理c-a>0 6.B 7.B 8.D提示:注意隐含条件a-1<0.9.(1)910提示:考虑一般情形=-(2)原式=8153+=2+(3)210.构造如图所示边长为1的正方形ANMD,BCMN.设MP=x,则CPAP,AC,AM AC≤PC+P A<AM+MC,,则≤+<1+11.设y=-=,设A(4,5),B(2,3),C(x,0),易求AB的解析式为y=x+1,易证当C在直线AB上时,y有最大值,即当y=0,x=-1,∴C(-1,0),∴y=12b c+-=)22233ab bc b acb c-+--为有理数,则b2 -ac=0.又a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=(a+b+c)2-2(ab+bc+b2)=()2cba++-2b(a+b+c)=(a+b+c)(a-b+c),∴原式=a-b+c为整数.。
解二次根式竞赛题的常用技巧
解二次根式竞赛题的常用技巧作者:许生友来源:《语数外学习·九年级》2007年第12期在数学竞赛中,经常出现与二次根式有关的竞赛题,这类题目有一定的难度,所以很多同学在遇到这类问题时感觉无从下手,或者由于解题过程过于繁琐而求不出结果.为此,本文给同学们介绍几种常用技巧.一、巧用因式分解例1计算 - ,最后得到__________.(第十七届“希望杯”全国数学邀请赛初二第2试)分析:通过仔细观察我们会发现,若将每个分母先分解因式,分子、分母有公因式,可以约分化简.解: -=-=-=+== =- .说明:解答本题时,若直接进行分母有理化会非常繁琐,甚至会求不出结果,所以当遇到类似的计算题时,先不要急着进行分母有理化,而应仔细观察,看能否对其进行因式分解.二、巧用字母代数例2计算-20062的结果是__________.(第十七届“希望杯”全国数学邀请赛初二第1试)分析:若直接计算此题,显然计算量大且过程很复杂,如果用字母代数,则可快速地解决问题.解:设2006=a,则2005=a-1,2007=a+1,2008=a+2.则有-20062=-a2= -a2= -a2= -a2= -a2=a2+a-1-a2=a-1=2006-1=2005.三、巧平方例3已知m=1+ ,n=1- ,且(7m2-14m+a)(3n2-6n-7)=8,则a的值等于().A.-5B.5C.-9D.9(2006年全国初中数学竞赛试题)分析:将已知条件变形后再平方,然后整体代入,就可快速地求出a的值.解:m=1+ 可变形为m-1= ,两边平方后整理,得m2-2m=1.同理,由n=1- 得n2-2n=1 .又∵(7m2-14m+a)(3n2-6n-7)=8,即[7(m2-2m)+a][3(n2-2n)-7]=8,∴(7+a)(3-7)=8.解得a=-9.故选C.四、巧用整体代入例4已知x= ,y= 则x2-xy+y2的值为_________.(2005年辽宁省八年级数学竞赛试题)分析:由于x、y的值互为倒数,故可先求出xy与x+y的值,再整体代入.解:∵ x= ,y= ,∴ xy=1,x+y=( -1)2+( +1)2=6.∴ x2-xy+y2=(x+y)2-3xy=62-3×1=33.说明:在解题时,若已知条件中的两式(如题中的x、y)互为倒数,且所求的代数式是对称的,这时可采用整体代入的方法来求解(如通常把x+y,xy,x2+y2的值先求出来,再代入代数式求值).五、巧用非负性例5若m满足关系式+ = ×,试确定m的值.(北京市初二数学竞赛题)分析:观察方程右边两个根式的被开方数,发现它们恰好互为相反数,这样就找到了解题的突破口.解:由题意可知x-199+y≥0及199-x-y≥0,得x+y≥199及x+y≤199.∴ x+y=199, × = 0.∴+ =0.∴ 3x+5y-2-m=0且2x+3y-2-m=0.由此可得方程组3x+5y-2-m=0 ,2x+3y-2-m=0,x+y=199.解得m=201.说明:若两个二次根式中的被开方数(式)互为相反数,则这两个二次根式都为零.注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
湖南省株洲市近年竞赛试题分类汇编
景弘中学初三数学竞赛讲义(第一讲——第十讲)本讲义共分两部分,第一部分围绕株洲市竞赛进行试题分类汇编和解读,习题全部由中考原题组成,考虑班级层次和更加灵活的处理讲义内容,第一部分共分十讲,内容不具体划分到课时,教师可根据班级具体情况进行选择和调整。
第二部分为综合模拟试卷(另行装订分发)。
解读株洲数学竞赛I、竞赛试题思想与原则1、强化主干知识,加强初高中衔接,从学科整体意义上设计试题根据各部分内容的教学内容和初高中衔接学生数学知识的要求,确定试卷中各部分知识内容的分数比例。
数学竞赛试题重视学科知识的内在联系,强调试题的综合性,喜欢在知识网络的交汇点设计试题。
试题有知识之间的交叉、渗透与综合,常以主干知识为载体,同时考查几个知识板块,如绝对值与不等式,函数与方程,方程与不等式,面积与方程,方程与代数式的运算等。
注重考查考生对数学知识的整体把握和理解。
2、注重通性通法,强调考查数学思想方法运用数学思想方法分析和解决问题,是反映数学水平高低的一个重要标志.新课程强调过程,突出思想,重视探究,竞赛对数学思想方法的考查渗透于数学解题之中。
竞赛要求掌握的数学思想有:函数与方程思想,数形结合思想,分类与整合思想,化归与转换思想,特殊与一般思想。
基本数学方法有:换元法,配方法等。
竞赛对数学思想方法的考查贯穿于整份试卷之中,重思维,淡计算,但要掌握基本的数学技能和技巧。
3、坚持数学应用,考查应用意识竞赛考查应用意识是设置应用性问题来实现的,要求考生依据现实生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题来解决.竞赛应用题的基本特点是:情境新颖,贴近生活;结合教材考查本学科重点内容;知识与方法有一定深度,突出数学在解决实际问题时的应用价值;背景公平,叙述简明易懂。
4、开放探索,考查探究精神,开拓展现创新意识的空间竞赛对创新意识的考查,主要是应用所学知识和方法解决数学中和现实生活中情境新颖,有一定深度和广度的数学的问题,通过对新概念、新符号等信息的接收、加工能力的考查来实现。
初中数学竞赛题中方程解的讨论问题解题策略
初中数学竞赛题中方程解的讨论问题解题策略(一)方程是一种重要的数学模型,也是重要的数学思想之一。
有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。
解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。
一、知识要点1.形如方程的解的讨论:⑴若=0,①当=0时,方程有无数个解;②当≠0时,方程无解;⑵若≠0,方程的解为=。
2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关知识。
⑴若,则它有一个实数根=1;若,则它有一个实数根=-1。
⑵运用数形结合思想将方程(≠0)根的讨论与二次函数(≠0)的图象结合起来考虑是常用方法。
3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。
4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。
5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。
二、例题选讲1.方程整数根的讨论例 1.已知,且方程的两个实数根都是整数,则其最大的根是。
解:设方程的两个实数根为、,则,所以。
因为、都是整数,且97是质数,若设<,则,,或,,因此最大的根是98。
评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。
这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数根,则-等于( )A.1;B.2;C.±1;D.±2.分析:依题意得⊿=,所以,由,为整数得,或,或,或,所以-=±1。
例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数有______个。
解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。
①当时,,符合题意;②当时,原方程是一元二次方程,易知是方程的一个整数根。
2001年第16届江苏省初中数学竞赛试卷(初三C卷)
2001年第16届江苏省初中数学竞赛试卷(初三C卷)一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.42.若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则()A.a=b B.a+b=0 C.a+b=1 D.a+b=﹣13.下列给出的4个命题:命题1 若|a|=|b|,则a|a|=b|b|;命题2 若a2﹣5a+5=0,则;命题3 若x的不等式(m+3)x>1的解集是x<,则m<﹣3;命题4 若方程x2+mx﹣1=0中m>0,则该方程有一正根和一负根,且负根的绝对值较大.其中正确的命题的个数是()A.1 B.2 C.3 D.44.如图,四边形ABCD中,∠BAD=90°,AB=BC=2,AC=6,AD=3,则CD的长为()A.4 B.4C.3D.35.已知三角形的每条边长的数值都是2001的质因数,那么这样的不同的三角形共有()A.6 B.7 C.5 D.96.12块规格完全相同的巧克力,每块至多被分为两小块(可以不相等),如果这12块巧克力可以平均分给n名同学,则n可以为()A.26 B.23 C.17 D.15二、填空题(共8小题,每小题5分,满分40分)7.若=3,=2,且ab<0,则a﹣b=_________.8.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥CA,(1)要使四边形AFDE是菱形,则要增加条件:_________;(2)要使四边形AFDE是矩形,则要增加条件:_________.9.方程的解是_________.10.要使26+210+2x为完全平方数,那么非负整数x可以是_________.(要求写出x的3个值)11.如图,直线y=﹣2x+6与x轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是_________.12.如图,已知八边形ABCDEFGH中4个正方形的面积分别为25,144,48,121个平方单位,PR=13(单位),则该八边形的面积=_________平方单位.13.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_________.14.如图,一个田字形的区域A、B、C、D栽种观赏植物,要求同一个区域中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,那么有_________种栽种方案.三、解答题(共4小题,满分64分)15.某商店有A种练习本出售,每本零售价为0.30元,1打(12本)售价为3.00元,买10打以上的,每打还可以按2.70付款.(1)初三(1)班共57人,每人需要1本A种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A种练习本,则该年级集体去买时,最少需付多少元?16.设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.17.(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>;(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.18.编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?2001年第16届江苏省初中数学竞赛试卷(初三C卷)参考答案与试题解析一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.4考点:二次根式的化简求值。
数学竞赛必考知识点总结
数学竞赛必考知识点总结一、基本概念与基本操作1. 整数2. 质数3. 最大公约数和最小公倍数4. 分数5. 百分数6. 有理数7. 实数8. 绝对值9. 分解质因数10. 基本运算11. 去分母12. 乘法公式、分配律、结合律、交换律13. 化简14.幂15.开方16.约分17. 合并同类项18. 海伦公式19. 二次根式20. 对数二、代数与方程式1. 代数式2. 一元一次方程3. 一元一次方程组4. 二元一次方程5. 一元二次方程6. 二元二次方程7. 一元一次不等式8. 解方程组的方法9. 分式方程10. 绝对值方程11. 方程的根与系数的关系12. 各类方程应用题13. 根据方程求解对应的函数表达式三、函数1. 函数的概念2. 函数的性质3. 一次函数4. 二次函数5. 幂函数6. 对数函数7. 指数函数8. 函数的求解9. 函数的图像和性质10. 函数的变化规律11. 函数的定义域和值域12. 函数的图像与特性13. 函数关系的应用题14. 不等式的解法四、三角函数1. 角的概念2. 三角函数的概念3. 正弦、余弦、正切、余切函数的性质4. 三角函数的图象及性质5. 角度制和弧度制的互换6. 锐角三角函数的定义7. 三角函数的基本关系8. 三角函数的图像与性质9. 三角函数的定积分10. 三角函数的方程11. 三角函数的不等式12. 三角函数的应用题五、平面向量与空间向量1. 向量的概念2. 向量的性质3. 向量的线性运算4. 向量的数量积5. 向量的夹角与垂直6. 向量的叉乘7. 平面向量的运算8. 空间向量的坐标表示9. 空间向量的数量积10. 空间向量的叉乘11. 平面与立体几何相关题目六、集合与函数1. 集合的概念2. 集合间的关系3. 集合的基本运算4. 集合的应用题5. 映射的概念6. 映射的类型7. 函数的概念8. 函数的性质9. 函数的图像与性质10. 函数的应用题七、数列与级数1. 递推数列2. 常数列3. 等差数列4. 等比数列5. 数列的性质6. 等差数列的和7. 等比数列的和8. 求和公式的应用9. 数列应用题10. 级数的性质11. 级数的求和八、概率与统计1. 随机事件与概率的概念2. 事件的概率3. 条件概率与事件的独立性4. 随机变量与概率分布5. 二项分布6. 正态分布7. 统计图表的绘制与分析8. 样本调查与结果的推论九、解析几何1. 点、直线、平面2. 直线与平面的位置关系3. 球面、圆柱面、圆锥面4. 圆锥曲线的方程与性质5. 空间曲线与曲面6. 几何方程应用题总结:数学竞赛知识点包括基本概念与基本操作、代数与方程式、函数、三角函数、平面向量与空间向量、集合与函数、数列与级数、概率与统计、解析几何等内容。
八年级数学竞赛题及答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
初中数学竞赛考点归纳
初中数学比赛考点归纳数学是人类对事物的抽象结构与模式进行严格描写的一种通用手段,可以运用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
数学属于情势科学,而不是自然科学。
今天作者在这给大家整理了一些初中数学比赛考点归纳,我们一起来看看吧!初中数学比赛考点归纳二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采取因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的根据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的情势(即一元二次方程的一样情势)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方情势(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一样情势,然后运算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初二数学竞赛试卷
初二数学竞赛试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .92.(2010•通化)用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( ) A .有一个内角大于60° B .有一个内角小于60° C .每一个内角都大于60° D .每一个内角都小于60°3.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( ) A .0 B .1 C .2 D .-14.顺次连接平行四边形四边的中点所得的四边形是( ) A .矩形 B .菱形 C .正方形 D .平行四边形5.(2003•江西)张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( ) A . B .C .D .6.(2012•无锡)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.若式子在实数范围内有意义,则x的取值范围是().A.x>1 B.x<1 C.x≥1 D.x≤18.甲、乙两人各自安装10台仪器,甲比乙每小时多安装2台,结果甲比乙少用1小时完成安装任务。
如果设乙每小时安装x台,根据题意得()A.; B.; C.; D.9.(2分)某鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关注的是()A.方差 B.众数 C.中位数 D.平均数10.(2014•抚州四校模拟)下列计算中,结果正确的是()A.(2a)•(3a)=6a B.a6÷a2=a3 C.(a2)3=a6 D.a2•a3=a6二、判断题11.判断正误并改正:()12.某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分A、B两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负)。
八年级数学竞赛题
柳嘉镇初级中学校八年级数学竞赛练习题二次根式:区别)0()(2≥=a a a 和⎩⎨⎧<-≥==)0()0(2a a a a a a1. 判断下列等式是否成立(1)219()= (2)219()=-(3)19()=(4)2()a b=- ()a b=- (6)0)().a a =≤2. 已知a <0,化简二次根式b a 3-的正确结果是( ).A .ab a --B .ab a -C .ab aD .ab a - 3. 把mm 1-根号外的因式移到根号内,得( ). A .m B .m - C .m -- D .m -4. 已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______.5. 已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.6. 已知a ,b 均为正数,且a+b=2,求U=1422+++b a 的最小值.7. 设a 、b 、c 、d 为正实数,a<b ,c<d ,bc>ad ,有一个三角形的三边长分别为22c a +,22d b +,22)()(c d a b -+-,求此三角形的面积.8. 若41=+aa (0<a<1),则aa 1-= .练习(一)1. 12a =-,则( )A .a <12 B. a ≤12 C. a >12 D. a ≥122. <0)得( )AB C D 3. 设实数a ,b 在数轴上对应的位置如图所示,化简2a +|a +b |的结果是( )A.-2a +bB.2a +bC.-bD. b4. 已知实数x ,y 满足40x -+=,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C .16D .以上答案均不对5. 若a ,b ,满足=7,设S ,求S 的最大值和最小值.6. 如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .7. 若0<x <1 )A B C -2x D 2x 练习(二)1. 若1<a ,化简) A .()1-±a B .a -1 C .1-a D .()21-a2. k 、m 、n ===,则下列有关于k 、m 、n 的大小关系,何者正确?( )A .k <m =n B .m =n <k C .m <n <kD .m <k <n3.4. |x ﹣y ﹣3|互为相反数,则x +y 的值为( ) A . 3 B . 9 C . 12 D . 275.n 的最小值为 . 6. 已知实数a 、c2=,=a +c 的值.7.2210b b -+=,则221||a b a+-=_____ 2009年四川省初中数学联赛1. 下列名人中:①比尔·盖茨 ②高斯 ③袁隆平 ④诺贝尔 ⑤陈景润 ⑥华罗庚 ⑦高尔基⑧爱因斯坦,其中是数学家的是( )A .①④⑦ B.③④⑧ C.②⑥⑧ D.②⑤⑥ 2. 已知111,,bc a a b c a b c +=+=+≠≠则a 2b 2c 2=( )A.5B.3.5C.1D.0.53. 如图,边长为1的正方形ABCD 绕A 逆时针旋转300‘’‘)A.1-1-D.124. 已知()421M p p q =+,其中,p q 为质数,且满足29q p -=,则M =( )A.2009B.2005C.2003D.20005. 四边形ABCD 中0060,90,DAB B D ∠=∠=∠=BC =对角线AC 的长为( )6. 如果有2009名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1∙∙∙的规律报数,那么第2009名学生所报的数是 。
绝对值与二次根式-
第二讲 绝对值与二次根式【基础知识】 一、绝对值1、绝对值代数定义:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0。
有时也可以记为:(0)(___0)||(0)(___0)a a a a a a a a a ≥⎧⎧=⎨⎨-<-⎩⎩或者 2、绝对值几何定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,记作|a|.如:|-2|表示-2的点到原点的距离;|x|则是在数轴上表示x 的点到原点的距离。
那么|x-1|表示在数轴上(x-1)的点到原点的距离.显然绝对值是非负数,即||0a ≥ 3、绝对值的基本性质:(1)任何一个数的绝对值一定是非负数,即 |a|≥0;(2)若干个非负数的和为零,则每个非负数为零;|a|+|b|+|c|=0,则a=0且b=0且c=0 (3)互为相反数的绝对值相等,即|a|=|-a|(4)任何一个数的绝对值都大于或等于它本身,即|a|≥ a ;|x||-2||x-1|1O-1-2x-1x(5)任何一个数都有唯一的绝对值; (6)绝对值最小的数是零;(7)两个互为相反数的数的绝对值相等,即 |a|=|-a|;(8)绝对值为某一正数的数有两个,它们互为相反数。
绝对值为零的数只有一个零;(9)若两个数的绝对值相等,则这两个数相等或互为相反数.即||||0a b a b a b =⇒=+=或二、二次根式1、二次根式的定义:式子(0)a a ≥叫做二次根式。
2、二次根式的性质: (1)2(0)||(0)a a a a a a≥⎧==⎨-<⎩ (2)0a ≥(3)2()(0)a a a =≥(4)(0,0)ab a b a b =≥≥;(0,0)a a a b b b=≥> (5)0a b a b >⇔>≥ 【典型例题】 一、化简求值例1计算下列各式的值:①|3|π-;②02(1sin 60)-;③2|1|x x -+;解: ①∵3<π,即3-π<0,∴|3|π-=π-3;②02(1sin 60)-=033|1sin 60||1|122-=-=-.③22131()44x x x x -+=-++213()024x =-+> 所以22|1|1x x x x -+=-+注: ①化简主要是去绝对值符号, 要去绝对值符号,就得讨论绝对值里面的数或式是正还是负.②对于含有字母的代数式不一定要分类讨论,二次三项式往往采用“配方法”来判断是不是一个非负数. “配方法”是一种重要的数学方法. 例2 化简2||2x x +-解:当x<0时, 2||2x x +-=22x x -- 当x>0时, 2||2x x +-=22x x +-所以2222(0)||22(0)x x x x x x x x ⎧--<+-=⎨+-≥⎩注:x 的符号可“+”可“-”,还可以为“0”,因此,应该对x 进行分类讨论;最后应该有小结,就是把两种结果写在一起,使书写规范.例3 化简222692144x x x x x x +++-++-+ 解:原式=222(3)(1)(2)x x x +++--|3||1||2|x x x =++-+-以下利用零点区间讨论法,显然零值点有-3,1,2三点. 当x ≤-3时,原式=(-x-3)+(1-x)+(2-x)=-3x 当-3<x ≤1时, 原式=(x+3)+(1-x)+(2-x)=-x+6当1<x ≤2时, 原式=(x+3)+(x-1)+(2-x)=x+4 当x>2时, 原式=(x+3)+(x-1)+(x-2)=3x综上所述,原式= 3(3)6(31)4(12)3(2)x x x x x x x x -≤-⎧⎪-+-<≤⎪⎨+<≤⎪⎪>⎩注: 零点区间讨论法是一种重要的数学方法.例4 化简 ||x-1|-2|+|x+1|解:先找零点:|1|01 |1|201|1|01x xx xx x-==⎧⎧⎪⎪--=⇒=-⎨⎨⎪⎪+==-⎩⎩或3所以零值点有-1,1,3三点,因此,我们应将数轴分成4部分.当x<-1时,原式=|-(x-1)-2|+[-(x+1)]=|-x-1|-x-1=-x-1-x-1=-2x-2当-1≤x≤1时,原式=|-(x-1)-2|+x+1=|-x-1|+x+1=x+1+x+1=2x+2当1≤x<3时,原式=||x-1|-2|+x+1=|x-3|+ x+1=3-x+x+1=4 当x≥3时,原式=|x-1-2|+x+1=|x-3|+x+1=x-3+x+1=2x-2综上所述,原式=22(1) 22(11) 4(13) 22(3)x xx xxx x--<-⎧⎪+-≤<⎪⎨≤<⎪⎪-≥⎩注: ①本题条件没有给出绝对值符号内的代数式的正负性,应采用零点区间讨论法.须注意的是本题含双重绝对值,应注意考虑||x-1|-2|的零点.②“分类讨论”是一种非常重要的数学思想, 绝对值问题经常采用这种数学思想.二、条件化简求值例5 化简2(3)|4|(34) x x x-+-<<解:因为3<x<4,所以x-3>0,x-4<0,所以原式= x-3+4-x=1.例6已知x<-3,化简:|3+|2-|1+x|||.解 :原式=|3+|2+(1+x)|| (因为1+x<0)=|3+|3+x||=|3-(3+x)| (因为3+x<0)=|-x|=-x.注: ①这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号;②充分利用已知条件,是解决例5例6的关键,正确运用绝对值的概念是解决例5例6根本.例7 已知有理数a ,b ,c 在数轴上的对应点如图1-1所示,化简|b-a |+|a+c |+|c-b |.解:观察数轴得:a<0,b<0,c>0且|a|>|b|>|c|, 所以b-a>0,a+c<0,c-b>0 故|b-a |+|a+c |+|c-b | =(b-a)+(-a-c)+(c-b) =-2a注:解决本题充分利用了“数”与“形”的结合.“数形结合”又是数学中的重要数学思想. 例8 已知24|34|0:x x y x y -+-+=,求值.解:由非负数的意义得:2402:1:13402x x x y x y y -==⎧⎧⇒⇒=⎨⎨-+==⎩⎩.例9 已知212005|1|04x y x ++-+=,求2008200520052y x +⨯的值. 解: 212005|1|04x y x ++-+=20051()2005|1|02x y ⇒-++=10210x y ⎧-=⎪⇒⎨⎪+=⎩ 121x y ⎧=⎪⇒⎨⎪=-⎩20082005200520082005200512(1)2()1122y x ⇒+⨯=-+⨯=+=注:非负数的和为0,那么每个非负数都应为0,你能证明吗?初中常见的非负数有哪些?例10 方程|||1|0xy x y +-+=的图象是( )(A )三条直线:x=0,y=0,x-y+1=0 (B )两条直线: x=0,x-y+1=0 (C )一点和一条直线:(0,0),x-y+1=0 (D )两个点:(0,1),(-1,0)Ob ac解:由已知,根据非负数的性质,得010xy x y =⎧⎨-+=⎩即010x x y =⎧⎨-+=⎩或010y x y =⎧⎨-+=⎩解之得:01x y =⎧⎨=⎩或10x y =-⎧⎨=⎩故原方程的图象为两个点:(0,1),(-1,0).注:利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决.例11 实数a 满足||01a a a +=≠-,, 那么||1|1|a a -=+ .解:由||01a a a +=≠-,, 可得 0a ≤且1a ≠- 当1a <- 时,||111|1|(1)a a a a ---==+-+;当10a -<≤ 时,||111|1|1a a a a ---==-++.所以1(1)||11(10)|1|a a a a <-⎧-=⎨--<≤+⎩注: ①有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论.②若|a|=a ,则a 0;若|a|=-a,则a 0;如果2(2)2x x -=-,则x 0. ③在解决有关数学问题时,经常采用“逆向思维”. 三、求最大(小)值例12 式子|1||2||3|x x x ++-+-的最小值是_________。
初中数学竞赛模拟题50题-含答案
初中数学竞赛模拟题50题含答案一、单选题10,0)a b>>,分别作了如下变形:甲:()a b-====( )A .甲、乙都正确B .甲、乙都不正确C .只有甲正确D .只有乙正确2.若实数a ,b ,c 满足等式36b =,96b c =,则c 可能取的最大值为( ) A .0B .1C .2D .33.设a ,b ,c 的平均数是M ,a ,b 的平均数是N ,N 与c 的平均数是P .若a b c >>,则M 与P 的大小关系是( ). A .M P =B .M P >C .M P <D .不能确定4.1234x x x x -+-+-+-的最小值为( ) A .4B .5C .6D .105.A ,B ,C ,D ,E 五人参加“五羊杯”初中数学竞赛得分都超过91分,其中E 排第三,得96分.又已知A ,B ,C 平均95分,B ,C ,D 平均94分,若A 排第一,则D 得( )分. A .98B .97C .93D .926.如果21x x --是31ax bx ++的一个因式,则b 的值是( ). A .2-B .1-C .0D .27.如图,在ABC 中,过点C 作CD AB ⊥,垂足为点D ,过点D 分别作DE AC ⊥,DF BC ⊥,垂足分别为E ,F .连接EF 交线段CD 于点O ,若CO =CD =EO FO ⋅的值为( ).A .B .4C .D .68.已知3a b -=,则339a b ab --的值是( ). A .3B .9C .27D .819.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++=□□□的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项.使所得方程至少有一个整数根的a ,b ,c ( ). A .不存在B .有一组C .有两组D .多于两组10.已知a ,b 长,则这个三角形的面积是( ) A .32abB .abC .12abD .2ab11.定义:平面直角坐标系中,点(),P x y 的横坐标x 的绝对值表示为||x ,纵坐标y 的绝对值表示为||y ,我们把点(),P x y 的横坐标与纵坐标的绝对值之和叫做点(),P x y 的折线距离,记为||||||M x y =+(其中的“+”是四则运算中的加法),若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且2||4M ≤≤,令2242022t b a =-+,则t 的取值范围为( ) A .20182019t ≤≤ B .20192020t ≤≤ C .20202021t ≤≤D .20212022t ≤≤12.1991331991+的值用十进制表示时,末位数字是( ). A .8B .4C .2D .013.从正整数里取出k 个不同的数,使得这k 个数中任意两个数之差的绝对值是质数,则k 的最大值是( ). A .3B .4C .5D .614.满足等式2003的正整数对(),x y 的个数是( ).A .1B .2C .3D .415.1898年6月9日英国强迫清政府签约,将香港975.1平方公里土地租借给英国99年.1997年7月1日香港回归祖国,中国人民终于洗刷了百年耻辱,已知1997年7月1日是星期二,那么,1898年6月9日是星期( ).(注:公历纪年,凡年份为4的倍数但不是100的倍数的那年为闰年,年份为400的倍数的那年也为年,年的2月有29天,平年的2月有28天.) A .二B .三C .四D .五16.在实数范围内,设198851111a x a a ⎤⎥+=⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .617.已知a b c d ,,,都是实数,则下列命题中,错误的是( ). A .若222a b c ab bc ca ++=++,则a b c == B .若3333a b c abc ++=,则a b c ==C .若442242242()a b c d a b c d +++=+,则a b c d ===D .若44444a b c d abcd +++=,则a b c d ===18.从1分、2分、5分3种硬币中取出100枚,总计3元,其中2分硬币枚数的可能情况有( )种. A .13B .16C .17D .1919.使424m m -+为完全平方数的自然数m 有( )个. A .2B .3C .4D .无数20.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果()()()12233S a n b n c n =++++++,那么( ).A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定二、填空题21.若243k x -<是关于x 的一元一次不等式,则 k 的值为______. 22.已知(x -3)2+1m +=0,则mx =_______.23.已知:122334!99100a =⨯+⨯+⨯++⨯,243546!100102b =⨯+⨯+⨯++⨯,则a b -=______.24.设a ,b 是一元二次方程210x x --=的两根,则32234a b a ++的值为__________. 25.设n 是小于100的正整数且使2232n n --是6的倍数,则符合条件的所有正整数n 的和是______.26.如图,在Rt ABC 中,90BAC ∠=︒,分别以AB 、BC 、AC 为边向上作正方形,已知Rt ABC 的面积为5,则图中阴影部分面积之和为______.27.今天是星期日,从今天算起,200011111个天是星期________.28.一本书共有61页,顺次编号为1,2,…,61,某人将这些数相加时,有两个两位数的页码都错把个位数和十位数弄反了(形如ab 的两位数被当成了两位数ba ),结果得到总和是2008,那么书上这两个两位数页码之和的最大值是_________. 29.若实数,x y 满足333333331,134365456x y x y+=+=++++,则x y +=_____.30.若化简2x -25x -,则满足条件是x 的取值围是_________.31.使得521m ⨯+是完全平方数的整数m 的个数为__________.32.如图,以△ABC 的边AC 、BC 为边向外作正方形ACDE 和正方形BCGF ,连接AG 、BD 相交于点O ,连接CO 、DG ,取AB 中点M ,连接MC 并延长交DG 于点N .下列结论:①AG =BD ;①MN ①DG ;①CO 平分①DCG ;①S △ABC =S △CDG ;①①AOC =45°.其中正确的结论有______________(填写编号).33.从1,2,…,2008中,至少取________个偶数才能保证其中必定存在两个偶数之和为201234.某个两位自然数,它能被其各位数字之和整除,且除得的商恰好是7的倍数,写出符合条件的所有两位数是_________.35.关于,x y 的方程332232x y x y xy -+-=的正整数解的个数_____个. 36.方程13217219211211215217292x x x xx x x x----+=+----的解是______.37.方程22320060x xy x y --++=的正整数解(,)x y 共有__________对. 38.已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________.39.已知在正方形ABCD 中,5AB =,点N 在DC 的延长线上,过D 作BN 的垂线分别交BC 、BN 于点P 和点M ,点Q 在CD 边上且满足1010DQ BP BQBN --=,连接AE 、CE ,则)1CE AE +的最小值等于 __.40.如图所示,已知边长为2的正三角形ABC 中,P 0是BC 边的中点,一束光线自P 0发出射到AC 上的P 1后,依次反射到AB 、BC 上的点P 2和P 3,且1<BP 3<32(反射角等于入射角),则P 1C 的取值范围是_____.三、解答题41.戴高乐是二战期间领导法国人民赶走德国法西斯的英雄,也是法兰西第五共和国的总统.他去世后,根据他生前的意愿,他的墓前只立有一块小小的碑牌,一面刻着“查尔斯·戴高乐1890—1970”,另一面则刻着一个洛林十字架.洛林十字架由13块相同的小正方形组成,如图1所示.(1)你能否只用一把无刻度直尺画一条直线,使其等分洛林十字架.(面积等分,在图1中画出1种情形即可)(2)戴高乐还是第一个提出并且解决了下面一个非常有趣的有关洛林十字架的数学问题的人.问题如下:如图2,在洛林十字架的A 点处作一条直线,把洛林十字架严格地划分成面积相等的两部分.戴高乐利用圆规,直尺和铅笔解决了该问题,他的作法如下:如图3所示,①标记点D ,B ,M ,连接BM ,与AD 交于点F ;①以点F 为圆心,FD 长为半径作弧,与BF 交于点G ;①以点B 为圆心,BG 长为半径作弧,与BD 交于点C ;①连接CA 并延长,与洛林十字架边界交于点N ,则直线CN 即为所求.请根据戴高乐的作图步骤,证明直线CN 等分洛林十字架.小林同学的部分证明过程如下:标记点H ,P ,Q ,如图3所示.设洛林十字架中每个小正方形的边长为1. 易证BDF MAF ≌, ①FD FA =.由作图,可知1122FG FD FA AD ====.①BF .①12BG BC BF FG ==-=.①1CD BD BC =-==请补全小林同学的证明过程.42.如图1,ABC 中,AC =BC =4,①ACB =90°,过点C 任作一条直线CD ,将线段BC 沿直线CD 翻折得线段CE ,直线AE 交直线CD 于点F .直线BE 交直线CD 于G 点.(1)小智同学通过思考推得当点E 在AB 上方时,①AEB 的角度是不变的,请按小智的思路帮助小智完成以下推理过程: ①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB = ①ACB ,(填写数量关系) ①①AEB = °.(2)如图2,连接BF ,求证A 、B 、F 、C 四点共圆;(3)线段AE 最大值为 ,若取BC 的中点M ,则线段MF 的最小值为 .43.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.44.将平面直角坐标系中点集{}(,)1,2,3,4,5,1,2,3,4M x y x y ===内的11个点染成红色,其余点不染色.证明:存在一个矩形,它的边与坐标轴平行,顶点都在M 中,并且都是红色.45.求证:若()8216157|78+,则()8316357|78+.46.10个学生参加n 个课外活动小组,每一小组至多5个人;每两个学生至少参加一个小组;任意两个课外小组至少可找到两个学生,他们都不在这两个课外活动小组中.试求n 的最小值.47.在元旦晚会上,学校组织了一次关于语文、数学、外语、奥运及日常生活常识的知识竞赛,设定每科满分为40分,以下依次为30分、20分、10分和0分,共5个评分等级,每个小组分别回答这五个方面的问题.现将A 、B 、C 、D 、E 五个小组的部分得分列表1如下: 表1表1中,(1)每一竖行的得分均不相同(包括单科和总分);(2)C 组有4个单科得分相同.求B 、C 、D 、E 组的总分并填表进行检验. 48.a ,b 和c 都是两位数的自然数,a ,b 的个位分别是7与5,c 的十位是1.如果它们满足等式2005ab c +=,求a b c ++的值. 49.在正2004边形122004A A A 的各个顶点上随意填上1,2,3,,501中一个数,证明:一定存在四个顶点满足如下条件: (1)这四个顶点构成的四边形是矩形; (2)此四边形相对两顶点所填数之和相等.50.对非负整数n ,满足方程2x y z n ++=的非负整数(),,x y z 的组数记为n a . (1)求3a 的值; (2)求2001a 的值.参考答案:1.D【分析】甲利用分母有理化的知识,可求得;乙先将分子因式分解,然后约分,即可求得.【详解】解:甲:当a b 时,()a b-==当a =b 时,无意义,==①甲错误,乙正确,选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法错误,不符合题意; 选项说法正确,符合题意; 故选D .【点睛】本题考查了分母有理化,因式分解,解题的关键是要全面考虑a 与b 之间的数量关系. 2.C【详解】解:由已知,()69315121512c b b b b ==-=-≤,①2≤c . 3.B【详解】解 依题意2,,3224a b c a b N c a b cM N P ++++++====,2()()1212a b c a c b c M P +--+--==. 因a b c >>,故0M P ->,即M P >.故应选B 4.A【详解】()()14143x x x x -+-≥---=,当14x ≤≤时取得等号;()()21233x x x x +-≥---=-,当23x ≤≤时取得等号;因此,1234314x x x x -+-+-+-≥+=,当23x ≤≤时取得等号.所以,1234x x x x -+-+-+-的最小值为4. 5.B【详解】设A ,B ,C ,D ,E 分别得a ,b ,c ,d ,e 分,则a ,b ,c ,d ,e 都是在92与100之间的正整数,其中a 最大,96e =排第三,且395285,394282a b c b c d ++=⨯=++=⨯=.两式相减得3a d -=.若b 排在第二,则197,97,2859192b e a b c a b ≥+=≥≥=--=<,矛盾. 若c 排第二,则97,97,2859192c a b a c ≥≥=--≤<,矛盾.若d 排第二,则97,3973100d a d ≥=+≥+=,故只可能100,97a d ==.所以选B . 6.D【详解】(解法一)依题意可设32321(1)()()()ax bx x x ax c ax c a x a c x c ++=--+=+--+-,比较系数得(),0,1,b a c c a c =-+⎧⎪-=⎨⎪-=⎩所以1,2c a b ==-=.故选D .(解法二)依题意21x x --是3221(1)()1ax bx ax x x ax b a x ++---=+++的因式, 所以1111a b a +==--, 解得1,2a b =-=.故选D .(解法三)用长除法可得321(1)()(2)(1)ax bx x x ax a a b x a ++=--+++++,所以20,10,a b a +=⎧⎨+=⎩得1,2a b =-=.故选D .7.B【分析】由题意易得出90DEC DFC ∠=∠=︒,即说明点C ,E ,D ,F 四点共圆,得出DEO FCO ∠=∠,从而易证DOE FOC ∽,得出EO DOCO FO=.由题意可求出DO CD CO =-4EO FO CO DO ⋅=⋅=.【详解】解:①DE AC ⊥,DF BC ⊥, ①90DEC DFC ∠=∠=︒, ①点C ,E ,D ,F 四点共圆,①DEF FCD ∠=∠,即DEO FCO ∠=∠.又①DOE FOC ∠=∠, ①DOE FOC ∽, ①EO DOCO FO=, ①EO FO CO DO ⋅=⋅. ①CO =CD = ①DO CD CO =-=①4EO FO CO DO ⋅=⋅==. 故选B .【点睛】本题考查相似三角形的判定和性质,四点共圆的知识,圆周角定理.确定点C ,E ,D ,F 四点共圆,从而可得出证明DOE FOC ∽的条件是解题关键. 8.C【详解】3322229()()93()9a b ab a b a ab b ab a ab b ab --=-++-=++-22223(2)3()3327a ab b a b =-⨯+=-==.故选C .9.C【详解】设三个连续的正整数分别为n 1-,n ,1n +(n 为大于1的整数).当一次项系数是n 1-或n 时,∆均小于零,方程无实数根;当一次项系数是1n +1时,22(1)4(1)3(1)4n n n n ∆=+--=--+.因为n 为大于1的整数,所以,要使0∆≥,n 只能取2.当2n =时,方程22320,2310x x x x ++=++=均有整数根,故满足要求的(a ,b ,c )只有两组:(1,3,2)、(2,3,1). 10.A【分析】构造矩形ABCD , E 、F 分别为AD 、AB 的中点,设2AD b =, 2AB a =,将所求三角形面积转化为△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 即可求解. 【详解】解:如图,在矩形ABCD 中, E 、F 分别为AD 、AB 的中点, 设2AD b =, 2AB a =, ①AF BF a ==,==AE DE b ,①在Rt AEF △、Rt BCF 、Rt CDE △中,依次可得到:EFCF==CE①△△△△矩形=---CEF AEF BCF CDE ABCD S S S S S 1112222222=⨯-⨯⨯-⨯⨯-⨯⨯a b a b a b a b142=---ab ab ab ab32ab =. 故选:A【点睛】本题考查二次根式的应用.能够通过构造矩形及直角三角形,利用等积变换将所求三角形的面积转化为矩形和几个直角三角形的面积之差.利用数形结合是解答本题的关键. 11.C【分析】联立方程组求得M 点坐标,并由只有一个交点条件求得a 、b 的关系式, 再由新定义和2||4M ≤≤列出b 的不等式,,求得b 的取值范围,由2242022t b a =-+,得出t 关于b 的二次函数解析式,再根据函数的性质求得t 的取值范围.【详解】解:①抛物线21y ax bx =++与直线y x =只有一个交点M ,①方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解, ①()2110ax b x +-+=,①()2140b a =--=△, ①()21b =-4a ,即()2114b =-a , ①方程()2110ax b x +-+=可以化为()()22111104b x b x -+-+=, 即()()2214140b x b x -+-+=, ①1221x x b ==-, ①1221y y b==- ①22,11M b b ⎛⎫ ⎪--⎝⎭, ①点M 在第一象限, ①10b ->, ①2||4M ≤≤, ①222||||411b b≤+≤--, ①2121b≤≤-, 解得:10b -≤≤, ①2242022t b a =-+,①()()22221202212020t b b b =--+=++, ①10b -≤≤,①t 随b 的增大而增大, ①1b时,2020t =,0b =时,2021t =,①t 的取值范围为20202021t ≤≤. 故选:C .【点睛】本题考查二次函数的性质、二元二次方程组、一元二次方程及其判别式、一元一次不等式组等知识.把问题转化为方程或方程组,构建二次函数并且利用二次函数的性质解决问题是解题的关键. 12.A【详解】123453,3,3,3,3,……的末位数字分别为3,9,7,1,3,……,它们是以3,9,7,1四个数为一个周期循环出现的.而199144973=⨯+,所以19913的末位数字与33的末位数字相同,都为7.因此,1991331991+的末位数字与71+的末位数字相同,都为8. 13.B【详解】解法一 首先4个数1,3,6,8满足题目要求,故所求k 的最大值4≥. 若5k ≥,记第n 个数为(1,2,,)n a n k =,且12 k a a a <<<,则分下列几种情形:(1)1a 为奇,2a 为奇,于是21a a -为偶数. 又21a a -为质数,故212a a -=,即212a a =+.若3a 为奇数,又32a a ≠,故31a a -为不等于2的偶数,即31a a -为不小于4的偶数,即31a a -为合数,矛盾.故3 a 为偶数,4a 也只能为偶数.那么,若5a 为奇,则51312a a a a ->-≥为偶数,即51a a -为不小于4的偶数,从而51a a -为合数,矛盾.若5a 为偶数,则53432a a a a ->-≥为偶数,从而53a a -为合数,矛盾. (2)1a 为奇,2a 为偶,于是21a a -为奇数,即213a a -≥. 若3a 为奇数,则31213a a a a ->-≥为偶数,故31a a -为合数,矛盾. 所以3a 为偶数,且322a a -=.若4a 为奇数,则41313a a a a ->-≥为不小于4的偶数,即41a a -为合数,矛盾. 若4a 为偶数,则42322a a a a -->=为不小于4的偶数,即42a a -为合数,矛盾. (3)1a 为偶,2a 为奇或偶,都类似于(1),(2)可导致矛盾. 综上得所求k 的最大值是4,故选B .解法二 同解法一得4k ≥.若5k ≥,则将全体正整数分为4个不相交的子集1M ,2M ,3M ,4M ,其中i M 由全体被4除余i 的正整数组成(0,1,2,3)i =于是任取5k ≥个数,其中必有2个数a ,b (a b >)属于同一个子集i M ,于是a b -被4整除,a b -不是质数,矛盾.故所求k 的最大值等于4. 14.B 【详解】原式0⇔==,0>0=,即2003 xy =.又2003是质数,所以1,2003x y =⎧⎨=⎩或2003,1.x y =⎧⎨=⎩故选B15.C【详解】选C .理由:已知1997年7月1日是星期二,则易推知1997年6月9日是星期一.而1898年6月9日至1997年6月9日共99年,其中闰年24次,所以 993652499244(mod7)⨯+≡+≡, 1434(mod7)-≡-≡.16.D【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a ⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D . 17.C【详解】对A ,因2222()2()0a b c ab bc ca +-++=+,即222()()()0a b b c c a -+-+-=,所以0a b b c c a -=-=-=,即a b c ==,故A 成立. 对B ,因3332223()()a b c abc a b c a b c ab bc ca ++-=+++++++ 2221()[]()()()02a b c a b b c c a =++-+-+-=, 所以0a b c ++=,或a b c ==,不一定有a b c ==,故B 不成立. 对C ,因44442222220a b c d a b c d +++--=,即222222()()0a b c d -+-=,所以2222,a b c d ==,即,a b c d =±=±,不一定有a b c d ===,故C 不成立. 对D ,因422442242222(2)(2)2240a a b b c c d d a b c d abcd -++-+++-=, 即2222222()()2()0a b c d ab cd -+-+-=,故2222,,a b c d ab cd ===,由此可推出a b c d ===或a b c d =-==-,不一定有a b c d ===成立,故D 不成立,所以本题应选B 、C 、D .(注:若限定a b c d ,,,都为正数,则B 和D 成立,答案应选C .) 18.C【详解】设1分、2分和5分的硬币分别取了x 枚、y 枚和z 枚,依题意得10025300x y z x y z ++=⎧⎨++=⎩①②,②-①得4200y z +=,可见y 是4的倍数,设4y k =,则100453008x z k x z k +=-⎧⎨+=-⎩,解得503450x k y k z k=-⎧⎪=⎨⎪=-⎩. 因为x 为非负整数,故5030k -≥,即016,k k ≤≤可取0,1,2,,16中任何一个,有17种取法,从而y 可取0,4,8,,64中任何一个,也有17种取法,故选C .19.B【详解】理由:当0,1,2m =时,424m m -+都是完全平方数.当3m ≥时,()()22242214m m m m -<-+<,故424m m -+都不是完全平方数.所以,符合条件的自然数m 只有3个. 故选:B 20.A【详解】选A .理由:考察S 的三个因数和的奇偶性. 21.1或3##3或1【分析】一元一次不等式即为含有一个未知数,且未知数的次数是1的不等式,据此即可确定k 的值.【详解】①|2| 43k x -<是关于x 的一元一次方程, ①21k -=,即21k -=±, 解得:k =1或3,故答案为:1或3.【点睛】本题考查了一元一次不等式的定义,准确理解定义中“一元”与“一次”的含义是解题的关键. 22.-1【分析】根据偶数次幂和绝对值的非负性,求出x ,m 的值,进而即可求解. 【详解】解:①(x ﹣3)2+|m +1|=0,且(x ﹣3)2≥0,|m +1|≥0, ①(x ﹣3)2=0,|m +1|=0, ①x =3,m =-1, ①()311x m =-=-. 故答案是:-1.【点睛】本题主要考查非负数和的性质,代数式求值,掌握偶数次幂和绝对值的非负性,是解题的关键. 23.-15147【详解】323334!3100a b -=-⨯-⨯-⨯--⨯ 3(23!100)3995115147=-⨯+++-⨯⨯=-24.11【详解】①a ,b 是一元二次方程210x x --=的两根,①1ab =-,1a b +=,21a a =+,21bb =+.①332222343423(1)42(1)3362a b a b b a a b b a a b a++=++=++++=+++ 3(1)3626()511a a b a b =++++=++=.25.1634【详解】①2232n n --是6的倍数,①()22232n n --,①23n ,①2n ,设2n m =(m 是正整数),则()22228626612232m m m m m n n =--=-+---.①2232n n --是6的倍数,①21m -是3的倍数,①31m k =+或32m k =+,其中k 是非负整数.①()23162n k k =+=+或()23264n k k =+=+,其中k 是非负整数. ①符合条件的所有正整数n 的和是()()2814869298410168288941634+++⋅⋅⋅+++++++⋅⋅⋅+++=.26.10【分析】利用勾股定理和正方形的面积公式可得+=四边形四边形四边形ABHL ACMN BCEG S S S ,利用正方形的性质证明()Rt ABC Rt HBG HL ≌和()DBC FCE ASA ≌,根据全等三角形的面积相等,从而得出5=△HBG S ,5=四边形ADEF S ,再根据三个正方形面积的关系可得出5+=△四边形FGL DCMN S S ,从而可得阴影面积之和.【详解】解:如图,设AC a =,AB b =,BC c =, ①在Rt ABC 中,90BAC ∠=︒,5ABCS =①222+=a b c ,①四边形BCEG ,四边形ABHL 和四边形ACMN 都是正方形,①2=四边形BCEG S c ,2=四边形ABHL S b ,2=四边形ACMN S a ,①+=四边形四边形四边形ABHL ACMN BCEG S S S , ①四边形BCEG 和四边形ABHL 是正方形, ①BC BG =,BA BH =,90H ∠=︒, ①HBG 是直角三角形, 在Rt ABC 和Rt HBG △中,BC BGBA BH=⎧⎨=⎩, ①()Rt ABC Rt HBG HL ≌ ①5==△△HBG ABC S S ,①四边形BCEG 和四边形ABHL 是正方形, ①BC CE =,90∠=∠=︒BCD CEF ,①90∠+∠=︒DBC BCA ,90∠+∠=︒FCE BCA , ①∠=∠DBC FCE , 在在DBC △和FCE △中,DBC FCE BC CEBCD CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,①()DBC FCE ASA ≌, ①=△△DBC FCE S S ,①+=+△△△四边形ABC ACD ACD ADEF S S S S , ①5==△四边形ABC ADEF S S ,①+=四边形四边形四边形ABHL ACMN BCEG S S S ,又①5=++=++△△△四边形四边形四边形HBG FGL FGL ABHL ABGF ABGF S S S S S S , =+△四边形四边形ACD ACMN DCMN S S S ,=+++△△四边形四边形四边形ABC ACD BCEG ADEF ABGF S S S S S 55=+++△四边形ACD ABGF S S10=++△四边形ACD ABGF S S ,①5+=△四边形FGL DCMN S S ,①5510++=+=△△四边形HBG FGL DCMN S S S , ①图中阴影部分面积之和为10. 故答案为:10.【点睛】本题考查正方形的性质,勾股定理,全等三角形的判定和性质,等角的余角相等等知识,运用了等积变换的思想方法.运用等积变换是解题的关键. 27.三【详解】111111158737,200033362=⨯=⨯+,所以200011111个被7除的余数与11被7除的余数相同.因为11714=⨯+,所以从今天算起的第200011111个天是星期三.28.68【详解】解:注意到12361++++616218912⨯==,20081891117-=.因为形如ab 的页码被当成ba 后,加得的和将相差|(10)(10)|9||b a a b b a +-+=-,并且a ,b 只能在1,2,…,9中取值,||8b a -≤,9||72b a -≤.设弄错的两数是ab 和cd ,则9||9||117b a d c -+-=,而将117写成两个正整数之和,其中每个数既要不大于72,又要是9的倍数,只有下列两种可能:11772456354=+=+.当9||72b a -=,9||45d c -=时,||8b a -=,||5d c -=,则只有19ab =,而cd 可取16,27,38,49,此时ab cd +的最大值是194968+=.当9||63b a -=,9||54d c -=,即||7b a -=,||6d c -=,此时ab 可取18,29,cd 可取17,28,39,则ab cd +的最大值是293968+=. 综上所述,ab cd +的最大值是68,故应填68. 29.432【详解】解 因题目中条件去分母整理后可写为:()()()223323333346364460x y x y -+--⋅-+-⋅=,(()()()223323333546564460x y x y -+--⋅-+-⋅=,故依题目条件知33t =或35t =是关于t 的方程()()23333334664460t x y t x y -+---+-⋅=的两根.由韦达定理,得33333546x y +=+--, 所以33333456432x y +=+++=. 30.23x ≤≤【详解】由22232(3)25x x x x x x x -=----=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.31.1【详解】解:设2521m n ⨯+=(其中n 为正整数), 则2521(1)(1)m n n n ⨯=-=+-,①52m ⨯是偶数,①n 为奇数,设21n k =-(其中k 是正整数),则524(1)m k k ⨯=-,即()2521m k k -⨯=-,显然1k >,①k 和1k -互质,①25211m k k -⎧=⨯⎨-=⎩或2512m k k -=⎧⎨-=⎩或2215m k k -⎧=⎨-=⎩, 解得:5k =,4m =.因此,满足要求的整数m 只有1个.故答案为:1.32.①①①①【分析】利用正方形的性质,通过证明三角形全等以及利用四点共圆的判定和圆周角定理逐一判断即可得出正确答案.【详解】解:①正方形ACDE 和正方形BCGF ,①CB CG =,AC CD =,ACD BCG ∠=∠;①ACD DCG BCG DCG +=+∠∠∠∠,即ACG BCD =∠∠,①()ACG DCB SAS △≌△,①AG BD =,CAG CDB =∠∠①①正确;①CAG CDB =∠∠,①点A 、D 、O 、C 四点共圆,如图,连接AD ,①°=45AOC ADC =∠∠,故①正确;同理可证°=45BOC ∠,①°=45AGC OCG BDC OCD +=+∠∠∠∠,由()ACG DCB SAS △≌△知=AGC DBC ∠∠,而DBC ∠与BDC ∠不一定相等,①OCG ∠与OCD ∠不一定相等,因此①不一定成立;如图,延长CM 至H ,使MH =CM ,连接AH ,①M 点是AB 的中点,①AM =BM ,又①=AMH BMC ∠∠,①()AMH BMC SAS △≌△,①AMH BMC S S =△△,①AHC ABC S S =△△①AH =BC ,=MAH MBC ∠∠①AH =CG ,=CAH CAM MAH CAM MBC +=+∠∠∠∠∠,①°=180CAM MBC ACB ++∠∠∠,°°°°=3609090=180DCG ACB +--∠∠,①=CAM MBC DCG +∠∠∠,即CAH DCG =∠∠,①()AHC CGD SAS △≌△,①AHC CGD S S =△△,①ABC CGD S S =△△,故①正确;由()AHC CGD SAS △≌△,①ACH CDN =∠∠,①°°==180=90CDN DCN ACM DCN ACD ++-∠∠∠∠∠,①°=90CND ∠,故①正确;因此①①①正确;故答案为:①①①①.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四点共圆的判定、圆周角定理、倍长中线法构造全等三角形等内容,本题综合性较强、需要学生熟练掌握相关知识并进行灵活运用,本题蕴含了数形结合的思想方法等.33.504【详解】解 填504,理由:从1,2,…,2008中选出两个偶数,和为2012的共有501组,即42008+,62006+,…,10041008+.由于2或1006与其中的任意一个偶数之和均不等于2012,因此,至少取出50121504++=个偶数,才能保证其中一定有两个偶数之和为2012.34.21,42,63,84 【详解】设所有两位数是xy ,则10()x y k x y +=+.其中k 是正整数,且为7的倍数.当7k =时,107()x y x y +=+,即2x y =.当1y =时,2x =;2y =时,4x =;3y =时,6x =;4y =时,8x =.当14k =时,1014()x y x y +=+,即4130x y +=.此方程无正整数解.当21,28,k =⋅⋅⋅⋅⋅⋅,方程均无正整数解.所以满足条件的两位数是:21,42,63,84.35.1【分析】先将原方程等号左边部分因式分解,可得2()()32x y x y +-=,根据题意列举出两个正整数乘积为32的情况,考虑到因式分解后含有2()x y +,在保证正整数集的条件下,可列出三个二元一次方程组,分别解方程组即可获得答案.【详解】解:3322x y x y xy -+-22()()x x y y x y =+-+22()()x y x y =+-()()()x y x y x y =++-2()()x y x y =+-,由题意可知2()()32x y x y +-=,列举出两个正整数乘积为32的情况,可以有以下三种(只是因数位置不同的算一种), 13232⨯=,21632⨯=,4832⨯=,①因式分解后含有2()x y +,在保证正整数集的条件下,则有0x y +>,又①211=,224=,2416=,①根据题意可列出方程组为132x y x y +=⎧⎨-=⎩或28x y x y +=⎧⎨-=⎩或42x y x y +=⎧⎨-=⎩, 解第一个方程组,可得16.515.5x y =⎧⎨=-⎩, 解第二个方程组,可得53x y =⎧⎨=-⎩, 解第三个方程组,可得31x y =⎧⎨=⎩, 只有第三个方程组的解均为正整数,因此原方程的正整数解得个数为1个.故答案为:1.【点睛】本题主要考查了因式分解的应用以及解二元一次方程组,灵活运用相关知识,正确进行因式分解是解题关键.36.132x = 【详解】解 原方程化为2222111111215217292x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭, 即111111215217292x x x x+=+----, 即111111292172152x x x x-=-----, 通分得22(112)(92)(172)(152)x x x x --=----, 去分母(172)(152)(112)(92)x x x x --=--,即2225564499404x x x x -+=-+. 解之得132x =.经检验132x =是原方程的根. 故填132x =. 37.4【详解】理由:22(1)320060x x y x ---+=,即2(1)232006x y x x -=-+.显然1x =不满足方程,故1x ≠. 因此22320061x x y x -+=- (1)(21)20051x x x --+=- 2005211x x =-+-. 从而12005x -.由于20054015=⨯,故取2,6,402,2006x =,分别可得相应的正整数y ,故共有4对正整数解.38. 329 335或334【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334.39 【分析】先根据条件证明()ASA BCN DCP ≌△△,再由1010DQ BP BQ BN --=得出120BED ∠=︒,进而有E 在以O 为圆心,BO 为半径的圆上,再延长CA 至F 使得,)1OF OE =,构造AOE EOF ∽△△,从而有)1CE AE CE EF CF +=+≥,再由勾股定理求出CF 即可.【详解】解:四边形ABCD 是正方形,BC CD ∴=,BCN DCP ∠=∠,DM BN ⊥,NBC PDC ∴∠=∠,(ASA)BCN DCP ∴△≌△,CP CN ∴=,5AB =, ∴1010DQ BP BQ BN --=可以变形为552DQ BP BQ BN AB -+-=, ∴2CQ CP BQ BN AB +=, ∴2CQ CN BQ BN AB +=, ∴2QN BQ BN AB=, 在BQN △中,由正弦定理得到sin sin QN BN QBN BQN=∠∠,∴sin 1sin 22QBN QN BQ BQ BQN BN AB BC∠===⋅∠, 在Rt BQC △中,sin BC BQC BQ ∠=, ∴sin 111sin 22sin QBN BQ BQN BC BQC∠=⋅=⋅∠∠, BQC BQN ∠=∠,1sin 2QBN ∴∠=, 30QBN ∴∠=︒,120QBC BCD PCQ BED ∴∠+∠+∠=∠=︒,连接BD ,AC 交于G 点,在BD 上取一点O ,连接BO 、CO ,使得120BQD ∠=︒,则在以O 为圆心,BO 为半径的圆上,延长CA 至F 使得,)1OF OE =,如图所示:5AB =,BD AC ∴==BO OE ∴==,12AG GC AC ===, 30OBG ∠=︒,12OG OB ∴==,OA ∴=∴1OEOA=,∴OE OFOA OE=,AOE EOF∠=∠,AOE EOF∴△∽△,)1EF AE∴=,)1CE AE CE EF CF∴+=+≥,CF OF OC=+,)1CF OE OC∴=+=)1CE AE∴+,.【点睛】本题主要考查了全等三角形的判定与性质、正弦定理、圆周角定理、相似三角形的判定与性质、勾股定理,解决此题的关键是根据正弦定理将1010DQ BP BQBN--=转化为120BED∠=︒,判断出E在以O为圆心,BO为半径的圆上,构造AOE EOF△∽△将)1CE AE+最小值转化为CF.40.1716PC<<【分析】首先利用光的反射定律及等边三角形的性质证明①P0P1C①①P2P1A①①P2P3B,再根据相似三角形对应边成比例得到用含P3B的代数式表示P1C的式子,然后由1<BP3<32,即可求出P1C长的取值范围.【详解】解:①反射角等于入射角,①①P0P1C=①P2P1A=①P2P3B,又①①C=①A=①B=60°,①①P0P1C①①P2P1A①①P2P3B,①01P CPC=21P AP A=23P BP B,设P1C=x,P2A=y,则P1A=2﹣x,P2B=2﹣y.①1x =2y x-=32y P B -, ①322xy x x xy P B =-⎧⎨-=⎩, ①x =13(2+P 3B ). 又①1<BP 3<32, ①1<x <76, 即P 1C 长的取值范围是:1<P 1C <76. 故答案为:1<P 1C 76<. 【点睛】此题考查了等边三角形的性质,解题的关键是根据等边三角形的性质找出对应点是解此题的关键,难度较大.41.(1)见解析(2)见解析【分析】(1)应用作矩形的对角线的方法;(2)因为ACD APH ≅,求出PH 的值,然后求出PQ 的值,根据相似三角形的性质2NPQ APH SPQ S PH ⎛⎫= ⎪⎝⎭,求出NPQ ∆的面积,计算右部分面积之和. (1)解:答案不唯一,合理即可,以下画法仅供参考.(2),,CDA PHA AD AH CAD PAH ∠=∠=∠=∠,∴ACD APH ≅,ACD APH S S ∴=,PH CD ==,1PQ HQ PH ∴=-==, ,APH NPQ AHP NQP ∠=∠∠=∠,∴APH NPQ ~,2NPQ APH SPQ S PH ⎛⎫∴= ⎪⎝⎭, 221•••12NPQ APH PQ PQ S S CD PH CD ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 22PQ CD=, 22⎛=÷ ⎝⎭⎝⎭,12=, ①在直线CN 右侧部分的面积=6个小正方形的面积+NPQ △的面积113622=+=, ①直线CN 等分洛林十字架. 【点睛】本题考查图形面积的等积变化,涉及知识点:全等三角形的判定及性质、相似三角形的判定及性质(相似三角形面积的比等于相似比的平方),解题关键应用相似三角形面积的比等于相似比的平方.42.(1)12,45;(2)见解析;(3)8,2【分析】(1)根据同弧所对的圆周角等于圆心角的一半解答;(2)由题意知,CD 垂直平分BE ,连接BF ,则BF=EF ,求得①EBF =①AEB =45°,利用外角的性质得到①AFB =①EBF +①AEB =90°,即可得到结论;(3)当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8,当MF ①BC 时线段MF 最小,根据BC 的中点M ,得到CF=BF ,设BG=FG=x ,则x ,CG+1)x ,由勾股定理得222CG BG BC +=,求出28x =-222BM MF BF +=,即可求出2MF =.【详解】(1)解:①AC =BC =EC ,①A 、B 、E 三点在以C 为圆心以AC 为半径的圆上, ①①AEB =12①ACB , ①①AEB =45°. 故答案为:12,45;(2)解:由题意知,CD 垂直平分BE , 连接BF ,则BF=EF , ①①EBF =①AEB =45°. ①①AFB =①EBF +①AEB =90°. ①①ACB =90°,①A 、B 、F 、C 在以AB 为直径的圆上,即A 、B 、F 、C 四点共圆;(3)解:当点A 、C 、E 在一条直线上时,线段AE 最大,最大值为4+4=8, 当MF ①BC 时线段MF 最小, ①BC 的中点M , ①CF=BF ,设BG=FG=x ,则,CG x , ①222CG BG BC +=,①2221)4x x ⎡⎤+=⎣⎦,得28x =- ①222BM MF BF +=,①2222)MF +=,得2MF =,故答案为:8,2 ..【点睛】此题考查了圆周角定理,四点共圆的判定及性质,线段垂直平分线的性质,勾股定理,等腰直角三角形的性质,熟记各知识点并熟练应用解决问题是解题的关键. 43.见解析【分析】利用三角形的中线将三角形分为面积相等的两个三角形,将三角形空地分成面积相等的四块.【详解】解:划分方案如图所示【点睛】本题考查了与三角形中线有关的等面积问题,解决本题的关键是构造三角形的中线. 44.见解析【详解】证明 将M 分为下列4个点集: {}(,)1,2,3,4,5,(1,2,3,4)i M x y x y i i ====.则由第二抽屉原理知1234,,,M M M M 必有一个集合内至多有1124⎡⎤=⎢⎥⎣⎦个红色点,不妨设4M ,内至多有2个红色点,从而123M M M 内至少有1129-=个红色点.再将123M M M 分成下列5个点集:{}(,),1,2,3(1,2,3,4,5)i N x y x i y i ====.由第二抽屉原理,12345,,,,N N N N N 必有一个集合内至多有915⎡⎤=⎢⎥⎣⎦个红色点,不妨设5N 内至多有1个红色点,从而1234N N N N 内至少有918-=个红色点,又将1234N N N N 分成下列3个点集:{}(,)1,2,3,4,(1,2,3)j M x y x y j j '====.由第二抽屉原理知123,,M M M '''中必有一个集合内至多有823⎡⎤=⎢⎥⎣⎦个红点,不妨设3M '内至多有2个红色点,从而{}12(,)1,2,3,4,1,2M M x y x y ''⋃===内至少有826-=个红色点,又将12M M '',分为4个集合:{}(,),1,2(1,2,3,4)i N x y x i y i '====.因为这4个集合内一共至少有6个红色点,且每个集合内只有2点,故必有2个集合内有2个红色点(否则这4个集合内一共至多只有11125+++=个红色点,矛盾).不妨设13,N N ''内4个点都为红色点,这4点即为一个矩形的4个顶点,且矩形的边与坐标轴平行,从而完成了题目的证明. 45.见解析【详解】由8316378+=()82161161778578++⨯及()8216157|78+,得()8316357|78+.46.6【详解】设10个学生为1210,,,a a a ,n 个课外活动小组为12,,,n B B B .首先,每个学生至少参加了两个课外活动小组,否则,若有某个学生只参加一个课外活动小组,不妨设这个学生为1a ,他参加的小组为1B ,则由于每两个学生都至少参加一个小组,所以1B 内就有10个人了,于是对1B ,2B 不存在两人,他们都不在1B 、2B 内.矛盾. 若有一个学生恰参加两个课外活动小组,不妨设1a 恰参加1B 和2B ,由题设,至少有两个学生,他们没有参加这两组,于是,他们与1a 没有参加同一个小组,矛盾. 所以,每个学生至少参加三个课外活动小组. 于是参加n 个课外活动小组1120,,,B B B 的人数之和不小于31030⨯=.另一方面,每个课外活动小组至多有5人参加,所以n 个小组12,,,n B B B 至多有5n 人参加,故530n ≥,6n ≥. 下面例子说明6n =可以达到.。
二次根式与绝对值综合专题训练(有解析)
C.2a﹣1
D.
1﹣2a
5、已知实数 m、n 在数轴上的对应点的位置如图,则|m﹣n|+=( Nhomakorabea)
A.
m﹣1
B.m+1
C.2n﹣m+1
D.
2n﹣m﹣1
【解答】解:原式= m n n 1 =n﹣m+n﹣1 =2n﹣m﹣1, 故选:D. 6、若 a、b、c 是 ABC的三 边,化简:
(a b c)2 (a b c)2 (b a c)2 (c b a )2
M+n=1+(-2) =-1 故选:A 2、若 x 2 y
x 2 0 ,则 ( x y ) 2017 =
;
【解答】解:由题意得:
x 2 y 0 x 2 0
解得:
x 2 y 1
( x y ) 2017 (2 1) 2017 (1) 2017 1
2
( a 1) 2 1 a a 1 a 1 2a 2
例 2、已知 x 2017 2016 x 2018 x ,求 x 【解答】解:由题意得: 2016 x 0, x 2017 2017 x;
2017 x 2016 x 2018 x 2016 x 1 2016 x 1 x 2015
【解答】解:由数轴可得:a﹣5<0,a﹣2>0, 则 +|a﹣2|
= a 5 a 2
=5﹣a+a﹣2 =3. 故答案为:3. 2、已知:1<x<3,则 A.﹣3 B. 3 【解答】解:∵1<x<3, ∴x﹣1>0,3﹣x>0, ∴4﹣x>1>0, ∴原式= C.2x﹣5 =( D.5﹣2x )
八年级数学竞赛题及其规范标准答案解析
八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
初一数学竞赛知识点全集
第一讲 和绝对值有关的问题一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数二、 典型例题 例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数 B .是负数 C .是零 D .不能确定符号 例3.(整体思想)方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例4.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________. (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ .第二讲:代数式的化简求值问题一、知识链接 1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容.2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
八年级数学竞赛题二次根式(含答案)
二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数围成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+xx 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
13.计算的值是( ) . (A) 1 (B) 5 (C) (D) 514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c (B) b<a<c (C) c<b<a(D)c<a<b16.等于( )A.5-1 C.5 D.117.满足等式2003的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算2003++19.已知x 为非零实数,且1212x xa -+=,则 21x x +=______________。
(完整版)初二数学竞赛题-二次根式(含答案)
二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+xx 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
13.计算的值是( ) . (A) 1 (B) 5 (C)(D) 514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c(B) b<a<c(C) c<b<a(D)c<a<b16.232217122--等于( )A.542- B.421 C.5 D.1 17.满足等式2003200320032003x y xy x y xy 的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算12233420032004+++++L .19.已知x 为非零实数,且1212x xa -+=,则 21x x +=______________。
初二数学-绝对值与二次根式经典例题汇总
初二数学-绝对值与二次根式经典例题汇总1. 绝对值例1 (1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p <15.对于满足p≤x ≤15的x 的来说,T 的最小值是多少?解由已知条件可得T=(x-p )+(15-x )+(p+15-x )=30-x.∵当p ≤x ≤15时,上式中在x 取最大值时T 最小;当x=15时,T=30-15=15,故T 的最小值是15.例2 若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.证 设两数为a 、b ,则|a|+|b|=|a||b|.∴|b|=|a||b|-|a|=|a|(|b|-1).∵ab ≠0,∴|a|>0,|b|>0.∴|b|-1=a b >0,∴|b|>1.同理可证|a|>1.∴a 、b 都不在-1与1之间.例3 设a 、b 是实数,证明|a|-|b|≤|a+b|≤|a|+|b|.证明 当|a|-|b|≤0时,|a|-|b|≤|a+b|成立.当|a|-|b|>0时,由于(|a|-|b|)2-|a+b|2=(a 2+b 2-2|ab|)-(a 2+b 2+2ab )=-2(|ab|-ab )≤0,∴|a|-|b|≤|a+b|.同理可证|a+b|≤|a|+|b|.2. 根式在根式进行化简、求值和证明的过程中,常采用配方法、乘方法、比较系数法、设参法、公式法等等,现举例如下:(1)配方法:将二次根号内的式子配成完全平方式,将三次根号下的式子配成完全立方式.例4 (1981年宁波初中竞赛题)设3819 的整数部分为x,小数部分为y,试求y y x 1的值. 解 38192)34( =4-3=2+(2-3),故x=2,y=2-3,∴x+y+3213221 y=4-3+2+3=6.例5 化简.441296222 x x x x x x解 原式=222)2()1()3( x x x=|x+3|+|x-1|-|x-2|.令x+3=0,x-1=0,x-2=0.得x=-3,x=1,x=2,这些点把数轴划分成四个部分:当x <-3时原式=-(x+3)-(x-1)+(x-2)=-x-4;当-3≤x <1时,原式=(x+3)-(x-1)+(x-2)=x+2;当1≤x ≤2时,原式=(x+3)+(x-1)+(x-2)=3x ;当x >2时,原式=(x+3)+(x-1)-(x-2)=x+4.说明:将根号下含字母的式子化为带绝对值的式子来讨论,是解这类问题的一般技巧. 例6 化简2222222222b a b a b a a b a (a >b 2>0).解原式=222222)(a b a a b a222222)(b b a b b a =222222)()(b b a a b a =.||2222b b a a b a∵a >b 2>0. ∴a 2>2b 2,∴原式=.2222b a b b a a b a例7 求证:.4214202142033 证明:∵321420 =,221221283,2221420,22)22(333∴原式=4.(2)乘方法:由于乘方与开方互为逆运算,顺理成章地可以用乘方的方法去根号例8 已知,0313131 z y x 求证:(x+y+z)3=27xyz.证明:∵,0313131 z y x ∴.313131z y x 两边立方,)()(33133131z y x x+y+,)(331313131z y x y x 即).()(331313131z y x y x y x再边再立方得(x+y+z )3=27xyz.例9 已知.34223242a y x y y x x求证 .323232a y x证明 设,3242A y x x 则,23242A y x x即 .)(,2323234232342A y x x A y x x 同理可设,3422B y x y 则.)(2323234B y x y∴A+B=2132323221323232)()(y x y y x x =)()(3232213232y x y x =.)(233232y x由 A+B=a ,得 ,)(233232a y x ∴.322332a y x(2) 比较系数法例10 求满足条件y x a 62的自然数a 、x 、y.解 将等式两边平方得xy y x a 262∵x 、y 、a 都是自然数. ∴xy 只能是无理数,否则与等式左边是无理数相矛盾.∴x+y=a ,xy=6.由条件可知 x >y 且x 、y 是自然数.当x=6时,y=1,得a=7.当x=3时,y=2,得a=5.故x=6,y=1,a=7.或x=3,y=2,a=5.例11 化简).71)(51(211分析 被开方式展开后得13+2352725 ,含有三个不同的根式,且系数都是2,可看成是将z y x平方得来的.解 设 )71)(51(211 =z y x ,两边平方得 13+2352725 =x+y+z+2.22yz xz xy比较系数,得.35,7,5,13yz xz xy z y x 由②有y x 5 ,代入③,得y z z y 57,75 代入④,得y 2=52,∴y=5(x 、y 、z 非负), ∴y x 5 =1,,757 y z ∴原式=1+.75(4)设参法例12 (1986年数理化接力赛题) 设nn b a b a b a b a 332211(a 1,a 2,…,a n ,b 1,b 2,…,b n 都是正数).求证: ① ② ③ ④n n b a b a b a b a 332211 =,)()(32121n n b b b b a a a 证明 设,2211k b a b a b a nn且a 1=b 1k,a 2=b 2k,…,a n =b n k. 左边=k b k b k b n 22221 =),(21n b b b k右边=)(21k b k b k b n ·)(21n b b b =),(21n b b b k∴左边=右边(5)公式法、代数变换及其他 例13 已知x=,)15(4)15(433 求x 3+12x 的值. 解 由公式(a-b )3=a 3-b 3-3ab (a-b )可得 )15(4)15(43 x 3)15(4)15(43 · 33)15(4)15(4 =8-3334x=8-12x.∴x 3+12x=8.例14 设.3737,3737 y x求x 4+y 4+(x+y )4.解 由条件知,2215,2215 y x∴x+y=5,xy=1.∴原式=(x 2+y 2)2-2x 2y 2+(x+y)4 =[(x+y)2-2xy]2-2x 2y 2+(x+y)4=(25-2)2-2+54。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· =8-3
=8-12x. ∴x3+12x=8. 例 14 设 求 x4+y4+(x+y)4. 解 由条件知 ∴x+y=5,xy=1. ∴原式=(x2+y2)2-2x2y2+(x+y)4 =[(x+y)2-2xy]2-2x2y2+(x+y)4 =(25-2)2-2+54 =1152. 例 15 (1978 年罗马尼亚竞赛题)对于 a∈R,确定的所有可能的值. 解 记 y=. ① 先假定 a≥0,这时 y≥0,把①两边平方得 ② 即③ 再平方,整理后得
8.当 b≥0 时,原式值为 b, 当 0<b<1 时,原式值为
= = ∵a>>0. ∴a2>2b2, ∴原式= 例 7 求证: 证明:∵ =
∴原式=4. (2)乘方法:由于乘方与开方互为逆运算,顺理成章地可以用乘方的方法去根号 例 8 已知求证: (x+y+z)3=27xyz. 证明:∵ ∴ 两边立方 x+y+ 即 再边再立方得(x+y+z)3=27xyz. 例 9 已知 求证 证明 设则
④ 从而 ≥0. 由②知 y2<2a2+2-2=2. 再由⑤知 y2≤1,∴0≤y<1. 反过来,对于[0,1]中的每一个 y 值,由⑤可以定出 a,并且这时 2a2+2-y2>0,故可由 ⑤逆推出②和①,因而在 a≥0 时,的值域为(0,1). 同样在 a<0 时,的值域为(-1,0),综上的值域是(-1,1). 练习十七 1. 选择题 (1)若实数 x 满足方程|1-x|=1+|x|,那么等于( ). (A)x-1(B)1-x(C)±(x-1)(D)1(E)-1 (2)方程 x|x|-5|x|+6=0 的最大根和最小根的积为( ). (A)-6 (B)3 (C)-3 (D)6 (E)-18 (3)已知最简根式与是同类根式,则满足条件的 a、b 的值( ). (A) 不存在 (B)有一组 (C)有二组 (D)多于二组 2. 空题 (1) 已知|x-8y|+(4y-1)2+则 x+y+z=_________. (2) 若 a>b>c>0,l1=乘积中最小的一个是__________. (3) 已知 0<x<1,化简
的最小值是 15. 例 2 若两数绝对值之和等于绝对值之积,且这两数都不等于 0.试证这两个数都
不在-1 与-之间. 证 设两数为 a、b,则|a|+|b|=|a||b|. ∴|b|=|a||b|-|a|=|a|(|b|-1). ∵ab≠0,∴|a|>0,|b|>0. ∴|b|-1=>0,∴|b|>1. 同理可证|a|>1. ∴a、b 都不在-1 与 1 之间. 例 3 设 a、b 是实数,证明
|a|-|b|≤|a+b|≤|a|+|b|. 证明 当|a|-|b|≤0 时,|a|-|b|≤|a+b|成立. 当|a|-|b|>0 时,由于 (|a|-|b|)2-|a+b|2 =(a2+b2-2|ab|)-(a2+b2+2ab) =-2(|ab|-ab)≤0, ∴|a|-|b|≤|a+b|. 同理可证|a+b|≤|a|+|b|. 2. 根式 在根式进行化简、求值和证明的过程中,常采用配方法、乘方法、比较系数法、设 参法、公式法等等,现举例如下: (1) 配方法:将二次根号内的式子配成完全平方式,将三次根号下的式子配成 完全立方式. 例 4 (1981 年宁波初中竞赛题)设的整数部分为 x,小数部分为 y,试求的值. 解
=, 两边平方得 13+2 =x+y+z+2 比较系数,得
①②③④ 由②有,代入③,得代入④,得 y2=52,∴y=5(x、y、z 非负), ∴=1, ∴原式=1+ (4)设参法 例 12 (1986 年数理化接力赛题) 设(a1,a2,…,an,b1,b2,…,bn 都是正数).求证:
= 证明 设 且 a1= · = ∴左边=右边 (5)公式法、代数变换及其他 例 13 已知 x=求 x3+12x 的值. 解 由公式(a-b)3=a3-b3-3ab(a-b)可得
绝对值与二次根式
1. 绝对值 例 1 (1986 年扬州初一竞赛题)设 T=|x-p|+|x-15|+|x-p-15|,其中 0<p<15.对
于满足 p≤x≤15 的 x 的来说,T 的最小值是多少? 解由已知条件可得 T=(x-p)+(15-x)+(p+15-x)=30-x. ∵当 p≤x≤15 时,上式中在 x 取最大值时 T 最小;当 x=15 时,T=30-15=15,故 T
即 同理可设则
∴A+B= = = 由 A+B=a, 得 ∴ (2) 比较系数法
例 10 求满足条件的自然数 a、x、y. 解 将等式两边平方得 ∵x、y、a 都是自然数. ∴只能是无理数,否则与等式左边是无理数相矛盾. ∴x+y=a,xy=6. 由条件可知 x>y 且 x、y 是自然数. 当 x=6 时,y=1,得 a=7. 当 x=3 时,y=2,得 a=5. 故 x=6,y=1,a=7. 或 x=3,y=2,a=5. 例 11 化简 分析 被开方式展开后得 13+2,含有三个不同的根式,且系数都是 2,可看成是将平方 得来的. 解设
5.如果 x>0,y>0,且试求的值. 6.(第 8 届美国教学邀请赛试题)
求的值. 7.求适合下列各式的 x、y; (1)若 x、y 为有理数,且 (2)若 x、y 为整数, 8.已知求证 a2+b2=1. 9.已知 A=求证 11<A3-B3<12<A3+B3<13. 10.(1985 年武汉初二数学竞赛题)已知其中 a、b 都是正数. (1) 当 b 取什么样的值时,的值恰好为 b? (2) 当 b 取什么样的值时,的值恰好为?
=4-=2+(2-), 故 x=2,y=2-, ∴x+y+
=4-+2+=6. 例 5 化简 解 原式=
=|x+3|+|x-1|-|x-2|. 令 x+3=0,x-1=0,x-2=0.得 x=-3,x=1,x=2,这些点把数轴划分成四个部分: 当 x<-3 时 原式=-(x+3)-(x-1)+(x-2)=-x-4; 当-3≤x<1 时,
(4) 已知则 ( 5 )( 北 京 市 1989 年 高 一 数 学 竞 赛 题 ) 设 x 是 实 数 , 且 f ( x ) =|x+1|+|x+2|+|x+3|+|x+4|+|x+5|.则 f(x)的最小值等于__________. 3.化简(a>0). 4.已知 ab<0,a2+b2=a2b2,化简
原式=(x+3)-(x-1)+(x-2)=x+2; 当 1≤x≤2 时, 原式=(x+3)+(x-1)+(x-2)=3x; 当 x>2 时, 原式=(x+3)+(x-1)-(x-2)=x+4. 说明:将根号下含字母的式子化为带绝对值的式子来讨论,是解这类问题的一般技 巧. 例 6 化简(a>>0). 解 原式=