数学八年级下册数学期末试卷测试卷附答案
八年级数学下册期末考试卷及答案【完整版】
八年级数学下册期末考试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°8.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为().A.1 B .31-C.2 D.222-9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.若2x=5,2y=3,则22x+y=________.2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,后求值:(5a 5a (a ﹣2),其中a=12+2.3.已知x+12132x+y ﹣6的立方根是2,求3xy 的算术平方根.4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、A6、C7、C8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、752、03、54、705、49 136、20三、解答题(本大题共6小题,共72分)1、x=-1或x=32、43、6.4、略.5、(1)略;(2)MB=MC.理由略;(3)MB=MC还成立,略.--; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5 6、(1) 60x y台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
八年级数学(下)期末试卷含答案
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
2023年人教版八年级数学下册期末考试题及答案【完美版】
2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。
2. 如果x=2,那么x²等于______。
3. 如果a=4,b=2,那么a+b等于______。
4. 如果x=3,那么x²等于______。
三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。
2. 计算:3x²2y²=5,其中x=3,y=2。
3. 计算:2a²+3b²=6,其中a=4,b=2。
五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。
2. 证明:如果x²=y²,那么x=y。
六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。
2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。
七、简答题(每题10分,共20分)1. 简述方程的基本概念。
2. 简述不等式的基本概念。
八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)
黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。
八年级数学下册期末考试试卷(答案解析版)
八年级数学下册期末考试试卷(答案解析版)一.选择题1.下列各点中,位于直角坐标系第二象限的点是()A. (2,1)B. (﹣2,﹣1)C. (2,﹣1)D. (﹣2,1)2.在①平行四边形,②矩形,③菱形,④正方形中,既是轴对称图形,又是中心对称图形的是()A. ①②③④B. ②③C. ②③④D. ①③④3.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 54.下列条件中,能判定两个直角三角形全等的是()A. 一锐角对应相等B. 两锐角对应相等C. 一条边对应相等D. 两条直角边对应相等5.如图,如果CD是Rt△ABC的中线,∠ACB=90°,∠A=50°,那么∠CDB等于()A. 100°B. 110°C. 120°D. 130°6.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AD的中点,如果OE=2,AD=6,那么▱ABCD的周长是()A. 20B. 12C. 24D. 87.若一个多边形的内角和等于900°,则这个多边形的边数是()A. 8B. 7C. 6D. 58.如图,在四边形ABCD中,对角线AC与BD交于点O,下列条件中不一定能判定这个四边形是平行四边形的是()A. AB∥DC,AD=BCB. AD∥BC,AB∥DCC. AB=DC,AD=BCD. OA=OC,OB=OD9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 610.对于函数y=x﹣1,下列结论不正确的是()A. 图象经过点(﹣1,﹣2)B. 图象不经过第一象限C. 图象与y轴交点坐标是(0,﹣1)D. y的值随x值的增大而增大11.函数y=2x和y=ax+4的图象相交于点A(m,3),则关于x的不等式2x<ax+4的解集为()A. x<B. x<C. x>﹣D. x<﹣12.如图,在矩形ABCD中,AB=2,AD=3,BE=1,动点P从点A出发,沿路径A→D→C→E运动,则△APE 的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.二.填空题13.如图,四边形ABCD是菱形,如果AB=5,那么菱形ABCD的周长是________.14.点P(2,3)关于x轴的对称点的坐标为________.15.将直线y=2x向上平移4个单位,得到直线________.16.在一次函数y=﹣x+2的图象上有A(x1,y1),B(x2,y2)两点,若x1>x2,那么y1________y2.17.如图所示,已知△ABC的周长是18,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的面积是________.18.如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC于点G,交边AE 于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)三.解答题19.如图,在▱ABCD中,AE=CF.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为平行四边形.20.如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.21.某校为了解八年级学生的视力情况,对八年级的学生进行了一次视力调查,并将调查数据进行统计整理,绘制出如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)在频数分布表中,a=________,b=________;(2)将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,求视力正常的人数占被调查人数的百分比是多少?22.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?23.△ABC在平面直角坐标系中的位置如图所示,△ABC的顶点均在格点上,其中每个小正方形的边长为1个单位长度,将△ABC绕原点O旋转180°得△A1B1C1.(1)在图中画出△A1B1C1;(2)写出点A1的坐标________;(3)求出点C所经过的路径长.24.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB= ,∠DCF=30°,求四边形AECF的面积.(结果保留根号)25.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h 后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.26.如图,在平面直角坐标系xOy中,已知直线AB:y= x+4交x轴于点A,交y轴于点B.直线CD:y=﹣x﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】点的坐标【解析】【解答】A、(2,1)在第一象限,A不符合题意;B、(﹣2,﹣1)在第三象限,B不符合题意;C、(2,﹣1)在第四象限,C不符合题意;D、(﹣2,1)在第二象限,D符合题意.故答案为:D.【分析】依据第二象限各点的横坐标为负数,纵坐标为正数解答即可.2.【答案】C【考点】中心对称及中心对称图形【解析】【解答】①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形;故答案为:C.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,然后依据上述方法进行判断即可.3.【答案】C【考点】勾股定理【解析】【解答】∵在Rt△ABC中,∠C=90°,AB=5,BC=3,∴AC= = =4.故答案为:C.【分析】依据勾股定理可得到AC=,然后将AB、BC的值代入计算即可.4.【答案】D【考点】直角三角形全等的判定【解析】【解答】两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故答案为:D.【分析】判定两个直角三角形全等的方法有:SAS、SSS、AAS、ASA、HL五种,然后结合题目所给的条件进行判断即可.5.【答案】A【考点】直角三角形斜边上的中线【解析】【解答】∵CD是Rt△ABC的中线,∠ACB=90°,∴DC=DA,∴∠DCA=∠A=50°,∴∠CDB=∠DCA+∠A=100°,故答案为:A.【分析】首先依据在直角三角形中,斜边上的中线等于斜边的一半得到DC=DA,接下来,再依据等边对等角的性质得到∠DCA=∠A=50°,最后,依据三角形的外角的性质进行计算即可.6.【答案】A【考点】三角形中位线定理,平行四边形的性质【解析】【解答】∵▱ABCD对角线相交于点O,E是AD的中点,∴AB=CD,AD=BC=6,EO是△ABD的中位线,∴AB=2OE=4,∴▱ABCD的周长=2(AB+AD)=20.故答案为:A.【分析】首先依据平行四边形的性质可得到O为BD的中点,然后依据三角形的中位线的性质可得到AB=OE=4,然后再依据平行四边形的性质得到各边的长,最后再求得其周长即可.7.【答案】B【考点】多边形内角与外角【解析】【解答】设这个多边形的边数是n,则:(n﹣2)180°=900°,解得n=7故答案为:B.【分析】设这个多边形的边数是n,然后依据多边形的内角和公可得到180°(n﹣2)=900°,最后,再解这个关于n的方程即可.8.【答案】A【考点】平行四边形的判定【解析】【解答】A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故答案为:A.【分析】首先结合图形确定出其中的已知条件,然后再依据平行四边形的判定定理逐项进行判断即可. 9.【答案】C【考点】利用频率估计概率【解析】【解答】∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,∴摸到红色球、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1﹣0.15﹣0.45=0.4,∴口袋中白色球的个数可能为0.4×40=16.故答案为:C.【分析】先求得摸到白球的频率,最后依据频数=总数×频率进行计算即可.10.【答案】B【考点】一次函数的性质【解析】【解答】A、当x=﹣1时,y=x﹣1=﹣1﹣1=﹣2,则图象经过点(﹣1,﹣2),A不符合题意;B、由于k>0,b<0,则图象经过第一、三、四象限,B符合题意;C、当x=0时,y=﹣1,则图象与y轴交点交点坐标是(0,﹣1),C不符合题意;D、由于k=1>0,所以y的值随x值的增大而增大,D不符合题意.故答案为:B.【分析】对于A,将(-1,-2)代入直线的解析式进行判断即可;对于B,依据题意可知k>0,b<0,然后再依据一次函数的图像和性质进行判断即可;对于C,当x=0时,求得对应的y值,从而可得到直线与y轴交点的坐标;对于D,依据一次函数的图像和性质进行判断即可.11.【答案】B【考点】一次函数与一元一次不等式【解析】【解答】把A(m,3)代入y=2x得2m=3,解得m= ,把A(,3)代入y=ax+4得3= a+4,解得a=﹣,解不等式2x<﹣x+4得x<.故答案为:B.【分析】将点A的坐标代入两直线的解析式可求得m、a的值,然后将a的值代入不等式,得到关于x的一元一次不等式,最后,再解这个不等式即可.12.【答案】A【考点】分段函数,一次函数的图象,根据实际问题列一次函数表达式【解析】【解答】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵BE=1,∴CE=BC﹣BE=2,①点P在AD上时,△APE的面积y= x•2=x(0≤x≤3),②点P在CD上时,S△APE=S梯﹣S△ADP﹣S△CEP,形AECD= (2+3)×2﹣×3×(x﹣3)﹣×2×(3+2﹣x),=5﹣x+ ﹣5+x,=﹣x+ ,∴y=﹣x+ (3<x≤5),③点P在CE上时,S△APE= ×(3+2+2﹣x)×2=﹣x+7,∴y=﹣x+7(5<x≤7),故答案为:A.【分析】分为点P在AD上、点P在CD上、点P在CE上三种情况列出三角形的面积与x的关系,即y与x的关系式,然后依据关系可得到函数的大致图像,故此可得到问题的答案.二.<b >填空题</b>13.【答案】20【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴菱形的周长为20,故答案为20【分析】依据菱形的四条边相等可得到BC=AB=CD=AD=5,然后再求得菱形的周长即可.14.【答案】(2,﹣3)【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).【分析】依据关于x轴对称点的横坐标互为相反数,纵坐标相等进行解答即可.15.【答案】y=2x+4【考点】一次函数图象与几何变换【解析】【解答】解:直线y=2x向上平移4个单位后得到的直线解析式为y=2x+4.故答案为:y=2x+4.【分析】当直线y=kx+b(k≠0)平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.16.【答案】<【考点】一次函数的性质【解析】【解答】解:∵﹣1<0,∴直线y=﹣x+2上,y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【分析】已知k=-1<0,一次函数的性质可知y随x的增大而减小,然后依据两点的横坐标的大小可得到它们纵坐标的大小关系.17.【答案】36【考点】角平分线的性质【解析】【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=4,∴△ABC的面积= ×18×4=36.故答案为:36.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,依据平分线的性质可得到OE=OD=OF,然后将三角形ABC 的面积转化为△ABO、△BCO、△ACO的面积之和求解即可.18.【答案】①④【考点】全等三角形的判定与性质,线段垂直平分线的性质,正方形的性质【解析】【解答】解:如图,设FG交AD于M,连接BE.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠ADC=∠C=90°,∵DE=EC=2,在Rt△ADE中,AE= = =2 .∵AF=EF,∴DF= AE= ,故①正确,易证△AED≌△BEC,∴∠AED=∠BEC,∵DF=EF,∴∠FDE=∠FED=∠BEC,∴DF∥BE,∵BE与EG相交,∴DF与EG不平行,故②错误,∵AE⊥MG,易证AE=MG=2 ,由△AFM∽△ADE,可知= ,∴FM= ,FG= ,在Rt△EFG中,EG= = ,在Rt△ECG中,CG= = ,∴BG=BC﹣CG=4﹣= ,故④正确,∵EF≠EC,FG≠CG,∴△EGF与△EGC不全等,故③错误,故答案为①④.【分析】设FG交AD于M,连接BE.对于①先依据勾股定理求得AE的长,然后依据直角三角形斜边上中线依据斜边的一半可得到DF的长;对于②,先证明DF∥BE,然后依据过一点有且只有一条直线与已知直线平行进行判断即可;对于③,依据全等三角形的判定定理可对③作出判断;对于④,先依据相似三角形的性质可求得FM和FG的长,然后依据勾股定理可求得EG和CG的长,最后依据BG=BC﹣CG可求得BG的长.三.<b >解答题</b>19.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS)(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴DF=EB,∵DF∥EB,∴四边形BFDE是平行四边形.【考点】全等三角形的判定与性质,平行四边形的判定与性质【解析】【分析】(1)首先依据平行四边形的性质可得到AD=BC,∠A=∠C,然后再根据SAS证明即可;(2)依据平行四边形的性质得到DC∥AB,DC=AB,然后再依据等式的性质可得到DF=BE,最后,再依据一组对边平行且相等的四边形为平行四边形进行证明即可.20.【答案】(1)解:∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角(2)解:S四边形ABCD=S△ABC+S△ADC= •AB•B C+ •AD•DC=234(m2).【考点】勾股定理的应用【解析】【分析】(1)连接AC,先根据勾股定理求出AC的长,再依据勾股定理的逆定理得到∠D是直角;(2)由题意可知S四边形ABCD=S△ABC+S△ADC,然后将四边形ABCD的面积转化为两个直角三角形的面积之和求解即可.21.【答案】(1)60;0.05(2)解:频数分布直方图如图所示,(3)解:视力正常的人数占被调查人数的百分比是×100%=70%.【考点】频数(率)分布表,频数(率)分布直方图【解析】【解答】解:(1)总人数=20÷0.1=200.∴a=200×0.3=60,b=1﹣0.1﹣0.2﹣0.35﹣0.3=0.05,故答案为60,0.05.(2)频数分布直方图如图所示,(3)视力正常的人数占被调查人数的百分比是×100%=70%.故答案为:(1)1;2;(2)见解答过程;(3)70%.【分析】(1)依据总数=频数÷频率可求得总人数,然后依据频数=总数×频率,频率=频数÷总数求解即可;(2)依据(1)中结果补全统计图即可;(3)依据百分比=频数÷总数求解即可.22.【答案】(1)解:根据题意可知:当0<x≤6时,y=2x;(2)解:根据题意可知:当x>6时,y=2×6+3×(x﹣6)=3x﹣6(3)解:∵当0<x≤6时,y=2x,y的最大值为2×6=12(元),12<27,∴该户当月用水超过6吨.令y=3x﹣6中y=27,则27=3x﹣6,解得:x=11.答:这个月该户用了11吨水.【考点】一次函数的应用【解析】【分析】(1)当0<x≤6时,根据“水费=用水量×2”可得出y与x的函数关系式;(2)当x>6时,根据“水费=6×2+(用水量-6)×3”可得出y与x的函数关系式;(3)当0<x≤6时,y≤12,由此可知这个月该户用水量超过6吨,将y=27代入y=3x-6中,得到关于x的一元一次方程,然后求得x的值即可.23.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)(2,﹣4)(3)解:由勾股定理可得,CO=∴点C所经过的路径长为:×2×π× = π.【考点】图形的旋转,旋转的性质,作图-旋转变换【解析】【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,点A1的坐标为(2,﹣4),(3)由勾股定理可得,CO= 10∴点C所经过的路径长为:×2×π× = π.故答案为:(1)见解答过程;(2)(2,﹣4);(3)π.【分析】(1)根据旋转角度、旋转方向、旋转中心,确定出对应点的位置,然后顺次连结对应点可得到△A1B1C1;(2)根据点A1在坐标系中的位置可得到点A1的坐标;(3)点C所经过的路径为以O为圆心,为半径的半圆,然后再依据弧长公式进行计算即可.24.【答案】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形(2)解:∵四边形ABCD是矩形,∴CD=AB= ,在Rt△CDF中,cos∠DCF= ,∠DCF=30°,∴CF= =2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2【考点】菱形的判定,矩形的性质【解析】【分析】(1)首先根据线段垂直平分线的性质得到AF=CF,AE=CE,OA=OC,然后再证明△AOF ≌△COE,则可得AF=CE,从而可得到四边形的四条边都相等,故此可作出判断;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,最后依据菱形的面积=底×高求解即可.25.【答案】(1)解:200÷2=100(km/h).答:当0<x<2时,乙车的速度为100km/h.(2)解:甲车的速度为(400﹣200)÷2.5=80(km/h),甲、乙两车到达目的地的时间为400÷80=5(h).设乙车与甲车相遇后y乙与x的关系式为y乙=kx+b,将点(2.5,200)、(5,400)代入y乙=kx+b,,解得:,∴乙车与甲车相遇后y乙与x的关系式为y乙=80x(2.5≤x≤5).(3)解:根据题意得:y乙= ,y甲=400﹣80x(0≤x≤5).当0≤x<2时,400﹣80x﹣100x=20,解得:x= >2(不合题意,舍去);当2≤x<2.5时,400﹣80x﹣200=20,解得:x= ;当2.5≤x≤5时,80x﹣(400﹣80x)=20,解得:x= .综上所述:当x的值为或时,两车相距20km.【考点】一次函数的应用【解析】【分析】(1)先根据函数图像确定乙车行驶2小时所行驶的路程,然后再根据速度=路程÷时间求解即可;(2)依据函数图像可得到甲车行驶2.5行驶的路程,然后根据速度=路程÷时间可求出甲车的速度,由时间=路程÷速度可求出甲、乙两车到达目的地的时间,再结合二者相遇的时间,利用待定系数法即可求出乙车与甲车相遇后y乙与x的关系式;(3)根据数量关系,找出y甲、y乙关于x的函数关系式,分0≤x<2、2≤x<2.5和2.5≤x≤5三种情况,列出关于x的一元一次方程,最后解关于x的一元一次方程即可.26.【答案】(1)解:∵点B是直线AB:y= x+4与y轴的交点坐标,∴B(0,4),∵点D是直线CD:y=﹣x﹣1与y轴的交点坐标,∴D(0,﹣1);(2)解:如图1,∵直线AB与CD相交于M,∴M(﹣5,),∵点P的横坐标为x,∴点P(x,﹣x﹣1),∵B(0,4),D(0,﹣1),∴BD=5,∵点P在射线MD上,即:x≥0时,S=S△BDM+S△BDP= ×5(5+x)= x+ ,(3)解:如图,由(1)知,S= x+ ,当S=20时,x+ =20,∴x=3,∴P(3,﹣2),①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GE,设E'(m,n),∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1),∵M(﹣5,),∴= ,=1,∴m=8,n= ,∴E'(8,),②当AB为对角线时,同①的方法得,E(﹣9,6),③当MP为对角线时,同①的方法得,E''(﹣2,﹣),即:满足条件的点E的坐标为(8,)、(﹣9,6)、(﹣2,﹣).【考点】直线与坐标轴相交问题【解析】【分析】(1)将x=0代入函数解析式得到对应的y值,从而可得到点B和点D的坐标;(2)将所求三角形的面积转为△BDM和△BDP的面积之和,然后依据三角形的面积公式列出函数关系式即可;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.。
2023年部编版八年级数学下册期末测试卷附答案
2023年部编版八年级数学下册期末测试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.下列计算正确的是()A.235+= B.3223-=C.623÷= D.(4)(2)22-⨯-=4.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.25.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C.34D.4或346.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.67.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为( )A .1B .2C 3D .23 39.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.尺规作图作AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.计算:16=_______.3.若214x x x++=,则2211x x ++= ________. 4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12.3.已知11881,2y x x=-+-+求代数式22x y x yy x y x++-+-的值.4.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、D6、C7、D8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、43、84、85、46、32°三、解答题(本大题共6小题,共72分)1、x=12、4ab,﹣4.3、14、(1)略;(2)S=24平行四边形ABCD5、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
人教版八年级下册数学期末考试试题及答案
人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。
八年级数学下册期末试卷(附答案解析)
八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。
八年级数学下册期末考试卷(含有答案)
八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。
)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。
八年级下期末数学试卷(解析版)
八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。
2024年人教版初二数学下册期末考试卷(附答案)
一、选择题(每题1分,共5分)1. 若a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c2. 下列哪个数是有理数?A. √3B. πC. 1/2D. √13. 已知等差数列的前三项分别是2,5,8,求第10项。
A. 29B. 30C. 31D. 324. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 等边三角形5. 若|a 3| = 4,则a的值为?A. 7B. 1C. 7或1D. 4二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。
()2. 任何数乘以1都等于它本身。
()3. 0既不是正数也不是负数。
()4. 两个锐角相加一定大于90度。
()5. 任何数都有相反数。
()三、填空题(每题1分,共5分)1. 两个互为相反数的和是______。
2. 任何数乘以______都等于它本身。
3. 两个负数相乘,结果是______。
4. 两个锐角相加一定______90度。
5. 任何数都有______数。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等边三角形的性质。
3. 简述矩形的性质。
4. 简述平行四边形的性质。
5. 简述勾股定理。
五、应用题(每题2分,共10分)1. 已知等差数列的前三项分别是2,5,8,求第10项。
2. 已知等边三角形的周长为18,求它的面积。
3. 已知矩形的周长为20,求它的面积。
4. 已知平行四边形的面积为30,求它的周长。
5. 已知直角三角形的两条直角边分别为3和4,求它的斜边。
六、分析题(每题5分,共10分)1. 分析并解答:已知a > b,c > d,那么a + c与b + d的大小关系。
2. 分析并解答:已知等差数列的前三项分别是2,5,8,求第10项。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规作一个等边三角形。
八年级数学(下)期末考试试卷含答案
得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
2个C。
3个D。
4个二、填空题9.函数y=x+2中,自变量x的取值范围是______。
答案:全体实数。
10.若菱形的两条对角线的长分别为6和10,则菱形的面积为__________。
答案:30.11.如图,在ABC中,AD垂直平分BC,交BC于点E,CD⊥AC,若AB=4,CD=3,AD=5,则BE=_________________。
答案:4.12.长方形ABDE中,AC⊥DC于点C,交BD于点F,AE=AC,∠ADE=62°,求∠BAF的度数。
13.已知一次函数图象过点(0,-2)且与直线y=2-3x平行,求该一次函数的解析式。
14.若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD满足什么条件?15.直线y=2x+3与两坐标轴围成的三角形面积是多少?16.如图所示,在ABCD中,AB=8,BC=4,∠A=60°,若折叠ABCD,使点A与点C重合,折痕为EF,则DF等于多少?17.计算:1) (-3)²+(-2)²-1+(π-2)/16;2) (3-2)²×12+6/3.18.如图,一架梯子AB斜靠在一竖直的墙OA上,这时AO=3m,∠OAB=30°,梯子顶端A沿墙下滑至点C,使∠OCD=60°,同时,梯子底端B也外移至点D。
求BD的长度。
(结果保留根号)[补充:直角三角形中,30°所对的直角边是斜边的一半]19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边。
1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________。
2)如图,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的两个勾股四边形OAMB。
20.如图所示,ABCD的对角线AC的垂直平分线与边AD,BC分别相交于点E,F。
求证:四边形AFCE是菱形。
21.阅读,并回答下列问题:公元3世纪,我国古代数学家XXX就能利用近似公式a+r≈a+r/2得到2的近似值。
1)他的算法是:先将2看成12+1,利用近似公式得到2≈1+3/4=7/4,再将2看成7/4+1/4,由近似公式得到2≈(7/4+2/4)/2=9/8;依次算法,所得2的近似值会越来越精确。
2)按照上述取近似值的方法,当2取近似值577时,求近似公式中的a和r的值。
解:由题意可知,AC=BD=6,BE=CF=8,且AE是AC的中线,DF是BD的中线,连接EF,GH,如图所示:因为AE=1/2AC=3,DF=1/2BD=3,BE=CF=8,所以四边形EFGH是平行四边形;又因为EF∥GH,且EF=GH=BE=CF=8,所以四边形EFGH是矩形;故选C.点睛】本题考查了中位线定理、平行四边形的判定、矩形的判定,解题的关键在于能够熟练掌握相关知识进行求解。
8分钟时内水量为:5×8=40(L)。
故②说法错误;第10分钟时内水量为:20+5×10=70(L)。
故③说法错误;设第x分钟时内水量为y(L),则有:y=20+5(x-4)。
代入x=12得:y=60(L)。
故④说法正确;综上所述,选C.点睛】本题考查了函数的应用,需要掌握待定系数法的运用,同时要注意对各个选项的逐一判断,排除错误选项。
CAD=28°。
Rt△ACD≌Rt△AED。
AED=∠ACD=62°。
AEB=180°-∠BAE-∠EAD-∠AED=180°-90°-28°-62°=0°。
XXX。
XXX∠EDC=34°。
故选B.点睛】本题考查了矩形的性质、直角三角形的性质、全等三角形的性质等知识点,掌握这些知识点是解题的关键。
同时,注意利用图形的对称性、相似性等性质简化计算。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
题目13:解析:利用全等三角形的判定和性质,可以得到两个直角三角形的对应角相等,进而得到所求角度。
分析:根据题目中的条件,可以得到两个直角三角形是全等的,因此它们的对应角相等。
利用这个性质可以得到所求角度。
详解:根据题目中的条件,可以得到AE=AC,AD=AD,因此可以得到Rt△ACD≌Rt△AED(HL)。
接着,根据全等三角形的性质,可以得到∠EAD=∠CAD=28°。
最后,利用三角形内角和为180°的性质,可以得到∠BAF=90°-28°-28°=34°。
因此,所求角度为34°。
点睛:本题考查了矩形的性质,全等三角形的判定和性质。
灵活运用这些性质进行推理是本题的关键。
题目14:解析:根据菱形的性质,可以得到对角线互相平分,因此可以得到AC=BD。
分析:根据题目中的条件,可以得到四边形HEFG是菱形,因此可以利用菱形的性质得到所求结果。
详解:如下图,点E、F、G、H分别是AB、BC、CD、DA的中点。
因此,可以得到EF=1/2 AC,GF=1/2 BD,AE=1/2 AB,CG=1/2 BC。
要使得四边形HEFG是菱形,则XXX。
因此,可以得到AC=BD。
因此,所求结果为AC=BD。
点睛:本题考查菱形的性质。
解题关键是得出AG=EF=1/2 AC,GF=AE=BD/2.题目15:解析:利用一次函数图象上点的坐标特征,可以求出直线与两坐标轴的交点坐标,进而计算所求三角形的面积。
分析:利用一次函数图象上点的坐标特征,可以求出直线与两坐标轴的交点坐标。
进而,利用三角形的面积计算公式,可以计算所求三角形的面积。
详解:解:当x=0时,y=3,因此直线y=x+3与y轴的交点坐标为(0,3)。
当y=0时,x=-3,因此直线y=x+3与x轴的交点坐标为(-3,0)。
因此,所求三角形的底边长为3,高为3,因此所求三角形的面积为(1/2)*3*3=4.5.点睛:本题考查了一次函数图象上点的坐标特征和三角形的面积计算公式。
利用这些知识点可以轻松解决此题。
根据括号的优先级先计算括号里的式子,然后再进行减法运算。
详解】3﹣(m)=3-1m=3-m点睛】本题主要考查了括号的优先级,简单的代数运算即可解决。
注意要将减号改写为负号。
详解】证明:由已知条件可得,$\angle AOE=\angleCOF=90^\circ$,$OE=OF$,$AO=CO$。
又因为XXX,$AE=CF$(对角线平分),所以根据ASA全等原理,可得XXX$。
因此,$AE=CF$,$OE=OF$,$\angle OAE=\angle OCF$,即四边形 $AFCE$ 为平行四边形。
根据平行四边形的性质可得,$EF \parallel AC$,$EF\perp EO$,所以 XXX(直角边和斜边分别相等),从而可得$BD=2EF=2OE$。
因此,$BD=2OE=2OF=2\cdot \frac{1}{2}BC=BC$。
点睛】本题考查了平行四边形的性质和全等三角形的判定,需要理解对角线平分的概念和直角三角形的性质。
1)给出了一个一次函数的表达式,其中x表示运送的水泥量,y表示运费,根据题目所给的数据,可以画出该函数的图像,进而确定最低运费对应的水泥量及运费;2)根据题目所给的数据,可以列出两个方程,分别表示甲、乙两村的水泥需求量和A、B两厂的水泥产量之间的关系,然后解方程组,得到最低运费及对应的运送方案.详解】1)根据题目所给的数据,可以列出以下表格:水泥量x(吨) | 运费y(元) |0.| .|10.| .|20.| .|30.| .|40.| .|50.| .|60.| .|70.| .|根据表格中的数据,可以画出一条斜率为-30的直线,其截距为,表示运送0吨水泥时的运费.该直线的表达式为y=﹣30x+,其中x表示运送的水泥量,y表示运费.根据该函数的图像,可以看出当运送70吨水泥时,运费最低,为元.2)设A厂运往甲村水泥x吨,运往乙村水泥y吨,B厂运往甲村水泥z吨,运往乙村水泥w吨,则有以下两个方程:x+z=100y+w=110又因为A、B两厂的水泥产量分别为80吨和70吨,即x+y≤80,z+w≤70,将这两个不等式代入上面的方程组中,得到:x+z=100y+w=110x+y≤80z+w≤70解这个方程组,得到x=70,y=30,z=10,w=80,即A厂运往甲村水泥70吨,运往乙村水泥30吨,B厂运往甲村水泥10吨,运往乙村水泥80吨,最低运费为元.点睛】本题考查了一次函数的图像及最值问题,同时也考查了解方程组的能力.注意在解方程组时,要将不等式代入方程组中,得到完整的方程组再进行求解.1)题目中给出了从A厂和B厂运往甲村和乙村水泥的吨数,利用这些信息可以得到总运费关于从A厂运往甲村水泥的吨数x的一次函数关系式y=-30x+.其中x的取值范围是0≤x≤70.2)根据一次函数的性质,我们可以知道当x增大时,y会减小。