牛吃草问题的解题方法

合集下载

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题经常使用到四个基本公式,分别是:之巴公井开创作(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决牛吃草问题的基础.一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行比较分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题.例1一个牧场长满青草,牛在吃草而草又在不竭生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽.如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变动.设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45.为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有几多青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份.那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库.5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要几多台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40,原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份,每天流进来的水为y份,每台机器抽出的水是1个单元.那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完,设n台机器可以抽完,则:60+6×2=6 nn=12。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题经常使用到四个基本公式, 分别是:之答禄夫天创作(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决牛吃草问题的基础.一般设每头牛每天吃草量不变, 设为"1", 解题关键是弄清楚已知条件, 进行比较分析, 从而求出每日新长草的数量, 再求出草地里原有草的数量, 进而解答题总所求的问题.例1一个牧场长满青草, 牛在吃草而草又在不竭生长, 已知牛27头, 6天把草吃尽, 同样一片牧场, 牛23头, 9天把草吃尽.如果有牛21头, 几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变动.设1头牛1天吃的草为"1", 由条件可知, 前后两次青草的问题相差为23×9-27×6=45.为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的, 所以每天生长的青草为45÷3=15现从另一个角度去理解, 这个牧场每天生长的青草正好可以满足15头牛吃.由此, 我们可以把每次来吃草的牛分为两组, 一组是抽出的15头牛来吃当天长出的青草, 另一组来吃是原来牧场上的青草, 那么在这批牛开始吃草之前, 牧场上有几多青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组, 15头去吃生长的草, 其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份, 每天长出来的草为y份, 每头牛每天吃草1份.那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛, 设n天可以吃完, 则:72+15n=21nn=12例2一水库原有存水量一定, 河水每天入库.5台抽水机连续20天抽干, 6台同样的抽水机连续15天可抽干, 若要6天抽干, 要几多台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1", 第一次总量为5×20=100, 第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40, 原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份, 每天流进来的水为y份, 每台机器抽出的水是1个单元.那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完, 设n台机器可以抽完, 则:60+6×2=6 nn=12。

牛吃草类型应用题解题方法完整版

牛吃草类型应用题解题方法完整版

牛吃草类型应用题解题方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(10-5)×20=100(份)或(15-5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是水管排原有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天..例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264-180)×10=840(份).可供285头牛吃840÷(285-180)=8(天).所以,第三块草地可供19头牛吃8天我将“牛吃草”归纳为两大类,用下面两个例题来说明例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。

奥数牛吃草问题的4个基本公式及经典题型

奥数牛吃草问题的4个基本公式及经典题型

奥数牛吃草问题的4个基本公式及经典题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛吃草问题是小学奥数中的经典奥数题型之一,也是小学奥数考试中经常会涉及到的考点。

今天,沪江小编就为同学们总结一下这方面的考点和经典题型,希望能够帮助大家更深入地认识这一内容。

在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛25天12×25=300 :原有草量+25天自然减少的草量24头牛10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

牛吃草问题解析

牛吃草问题解析

牛吃草问题解析主要类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

基本思路:①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。

③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。

基本公式:解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:一般解法例题1、“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。

第二种:公式解法例题2、有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

牛吃草问题

牛吃草问题

“牛吃草”问题三步法“牛吃草”问题也属于工程问题,但不同的是在普通工程问题的基础上,工作总量随着工作时间均匀的变化,这样就I 增加了解题难度。

“牛吃草”问题解题的关键在于求出工作总量的变化率。

“牛吃草”问题与行程问题中的追击问题有些类似,下面就重点介绍几种不同类型“牛吃草”问题的解题步骤和方法:一般的解题步骤是:1. 求草速(变化率)草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数)2. 求原草量原来的草量=对应牛的头数×较多天数-对应牛的头数×较少天数或:原草量=总草量-新生草量3. 求问题在此之前,须设定1头牛1天的吃草量为“1”。

例 1. 牧场上有一片青草,每天匀速生长,这片草地可供24头牛吃6周;或可供18头牛吃10周。

问:可供19头牛吃多少周?解:设每头牛每周的吃草量为1份,那么:①. 24头牛6周的吃草总量为:24×6=144(份)②. 18头牛10周的吃草总量为:18×10=180(份)③. 总草量(即10-6=4周共生长的草量):180-144=36(份)④. 每周生长的草量(即草速——变化率)36÷4=9(份)⑤. 求元草量:144-9×6=90(份)或:180-9×10=90(份)⑥. 因为,我们假定每头牛每周吃草量为1份,且草地上的草又以每周9份的速度生长,所以,我们就有必要先选定9头牛来专吃新生长的9份草,让其余的(19-9=10头)牛吃原有的草。

由此可得到:⑦19头牛可吃的周数:90÷(19-9)=9(周)答:可供19头牛吃9周。

练习题1. 一片草地可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃多少天?2. 一片草地可供27头牛吃6天,或可供23头牛吃9天,问可供21头牛吃多少天?3. 一池泉水,每分钟涌出的泉水量不变。

小学奥数牛吃草问题的解题方法

小学奥数牛吃草问题的解题方法

小学奥数牛吃草问题的解题方法
同一片牧场中的牛吃草问题,一般的解法可总结为:
1、草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数)
2、原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数
3、吃的时间=原来的草量÷(牛的头数-草的生长速度)
4、牛的头数=原来的草量÷吃的天数+的生长速度
例如:有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?
分析:设1头牛1天的吃草量为“1”,摘录条件,将它们转化为如下形式方便分析
10头牛 20天10×20=200 :原有草量+20天生长的草量
15头牛 10天15×10=150 :原有草量+10天生长的草量
从上易发现:1200平方米牧场上20-10=10天生长草量=200-150=50,即1天生长草量=50÷10=5;
那么1200平方米牧场上原有草量:200-5×20=100或150-
5×10=100。

则3600平方米的牧场1天生长草量=5×(3600÷1200)=15;原有草量:100×(3600÷1200)=300.
75头牛里,若有15头牛去吃每天生长的草,剩下60头牛需要300÷60=5(天)可将原有草吃完,即它可供75头牛吃5天。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草公式

牛吃草公式

牛吃草公式牛吃草公式四个基本公式分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)。

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数。

(3)吃的天数=原有草量÷(牛头数-草的生长速度)。

(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题的例题一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天。

如果一头牛一天吃草的量等于5只羊一天吃草的量,那么这块草地可以供10头牛和75只羊一起吃多少天?题目前面说的是牛和羊,两种不同的动物,不同数量,不同天数。

所以我们需要把它换算成同一种动物,这样才便于我们进行计算。

题目后面说1头牛,一天的吃草量等于5只羊一天的吃草量。

这个是一个非常重要的信息。

100只羊每天吃掉的草其实就相当于100÷5=20头牛的草的消耗量。

我们把每头牛一天的吃草量当成为1份,假设草地每天恢复的量为x份,那我们就可以列一个方程。

根据这个方程式,我们可以算出这个x=10,也就是说草地每天恢复10份的量。

根据题意草地原有草量为。

(16×20)-(20×10)=320-200=120(份)。

10头牛和75只羊每天的吃草量,其实就相当于:10+75÷5=25(头)牛的吃草量。

每天纯消耗草量:25-10=15(份)。

120÷(25-10)=120÷15=8(天)。

答:这块草地可以供10头牛和75只羊一起吃8天。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

思路剖析
根据题目的条件可知吃草的总天数是12天,12天的青草总量很容易求得,青草总量分成两部分,前6天只有4头牛吃草;后6天增加了若干头。我们可以从青草总量扣去4头牛6天所吃的草量,就是后6天增加若干头牛后吃的草量。
「例5」由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?8天
思路剖析
本题虽然不是“牛吃草”,但是问题的本质是一样的,所以我们的解题步骤也可以采取类似的步骤。
「例7」某画展早上10点开门,但早有人排队等候入场,以第一个观众到来时起,每分钟观众来的人数都一样多。如果开了3个入场口,9分钟以后就不再有人排队;如果开5个入场口,5分钟以后就没有人排队。请问︰第一个观众是甚么到来的?早上9点15分
? 思路剖析
虽然本题表面上不像牛吃草问题,但仔细分析后,条件的结构转化后就与牛吃草问题没有什么多大的分别!事实上,“三辆车与骑车人的距离”相当于“原有的草量”,“车”相当于“牛”,“骑车人的速度” 就相当于“ 草的生长速度”,三辆车与骑车人的距离均匀地增加类似于牛吃草问题中新生的草均匀地生长一样!我们可以用“牛吃草”的一般解题方法逐步分析,求出慢车的速度。
解决牛吃草问题必须求出草的生长速度和草原上原有的草量,这是解决问题的关键。在大多数情况下,牛吃草问题的解决分成以下几个步骤︰应用基本公式(1)和(2),分别求出草的生长速度和原有的草量;根据题目的要求选择基本公式(3)或(4)来解答题中的所求问题。
? 经典例题
「例1」 牧场上的青草,每周长一样密,一样快。如果这片牧场可供24头牛吃6周,
2 0头牛吃10周,那么这片牧场可供18头牛吃_____周。15周

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题经常使用到四个基本公式,辨别是:之邯郸勺丸创作(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决牛吃草问题的基础.一般设每头牛每天吃草量不变,设为"1",解题关头是弄清楚已知条件,进行对比阐发,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题.例1一个牧场长满青草,牛在吃草而草又在不竭生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽.如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关头是要抓住牧场青草总量的变更.设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45.为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份.那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛,设n天可以吃完,则:72+15n=21nn=12例2一水库原有存水量一定,河水每天入库.5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1",第一次总量为5×20=100,第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40,原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份,每天流进来的水为y份,每台机器抽出的水是1个单位.那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完,设n台机器可以抽完,则:60+6×2=6 nn=12。

数量关系牛吃草问题解题技巧

数量关系牛吃草问题解题技巧

数量关系牛吃草问题解题技巧牛吃草,是一类趣味数学问题,也是公务员考试数量关系中的的常考题型。

今天,老周给大家分享牛吃草问题的三种解法。

及对牛吃草问题的本质进行剖析,帮助大家更彻底、更轻松地破解牛吃草问题。

牛吃草问题的三种解法:第一种,牛吃草问题周氏比例法-老周原创方法。

如果用第二三种方法计算量大,用此法很有效。

第二种,方程法。

第三种,公式法。

所谓的列表法,老周就不介绍了,实质是公式法或方程法的模式化。

基本牛吃草例1:有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完.若是21头牛,要几周才可以吃完?A.10B.11C.12D.15第一种方法、周氏比例法解牛吃草问题:步骤看起来很多,掌握了,实际上很容易:)第一步:把前二次的牛头数,时间的数字分两列写出来。

27 623 9第二步:每两列数字相减,把结果写出来。

4 与 3第三步:二个差相除。

4/3第四步:求X.三点一线,把三数联起来进行运算,图中红线。

按A-B*C=27-9*4/3=15 算出结果X。

第五步:求Y.根据基本公式(牛-X)天=Y,代入其中一排数据,比如第一排(27-15)*6=72 第六步:求结果。

把X,Y,代入提问中,求出答案。

(21-15)T=72 T=12老周心语:老周看到有些牛吃草题目,用列方程或公式,计算较繁,所以在今年6月份,为大家发明了这么一个解法,可避开一些计算,更快的算出答案。

实质是用比例法的思想解题,老周把这个牛吃草的解法,归在周氏比例法的系统中。

此解法,后来被人盗用,并说成是他原创。

老周表示,老周的原创解法欢迎大家转载,传播,但希望能尊重原创者,引用时注明出处。

老周精剖牛吃草问题:我们看此题,典型的牛吃草问题。

草,是在不断生长的,它有生长的效率;牛,在努力吃草,它有吃草的效率。

牛吃草问题可以理解成为工程问题。

牛有吃草的效率,草有生长的效率,而这个草场原有草量,就相当于工程总量。

每天的实际效率=牛吃草的效率-草生长的效率。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题

牛吃草问题

多长10天,多出50份对牛吃草问题的一些个人见解(1)解决一般问题的“大括号法”;例一:牧场上长满了牧草,每天牧草都匀速增长,这片牧场可供10头牛吃20天,可供15头牛吃10天,供25头牛可吃几天?分析:假设一头牛一天吃一份;第一步:找到对于同一块牧场的两个条件,列在纸上:10头牛吃20天,共吃200份; 200份=原草量+20天长的 头牛吃10天,共吃150份; 150份=原草量+10天长的第二步:找到第一个关键量——多长10天,多出50份,即每天5份; 第三步:找到第二个关键量——200份=原草量所以得到原草量为200-100=100份通过上面的方法,已经得到了两个关键量第四步:解题一般问题是两种:(1) 知道牛数,求天数——天数=原草量÷(牛数 — 每天生长数)(2) 知道天数,求牛数——牛数=原草量÷天数+每天生长量 备注:解这类问题的关键就是第一步,找到两个条件,然后相对应的写成两行,上下对应就能找到多出来的部分;对于生长的牧场,吃掉的=原草量+几天生长的对于坏掉的牧场,吃掉的=原草量+几天坏掉的这种方法是解决同块牧场牛吃草问题的万能方法,无论吃草的方式多么复杂,只要我们将两个条件找到,然后算出共吃的份数,然后上下对应就能找到两个关键量。

例二、一块牧场,如果放养25头牛,可以吃10天;如果先放养10头牛,吃了10天,后又赶来10头牛,又过了10天,这时牧场的草刚好吃完;问这块牧场供10头牛可以吃几天?分析:这是一道相对复杂的题,我们还是用“大括号法”进行解析。

第一步:两个条件25头牛,吃10天;共吃250份=原草量+10天长10头牛,吃10天,然后20头牛,吃10天;共吃10×10+20×10=300份=原草量+20天长多长10天,多吃了50份;每天长5份…………(2)对于多块牧场牛吃草问题的解题方法:第一步:找到或者设计出两块面积相同的牧场,从而找到同面积牧场下的两个条件;(可以将大牧场切割,亦可以将小牧场扩大倍数)第二步:利用“大括号法”计算出这一面积下的两个关键量;第三步:根据面积比例关系,算出所求面积牧场的两个关键量;第四步:求解。

牛吃草类型应用题解题方法

牛吃草类型应用题解题方法

例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草.200-150=50份,20-10=10天,说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草10-5×20=100份或15-5×10=100份.现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5天.所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:1每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.2在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.3在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16份,3个出水管5分钟所排的水是3×5=15份,这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3分内所放进的水量,所以每分钟的进水量是水管排原有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10份,说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草20+10×5=150份.由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天..例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100级,女孩6分钟走了15×6=90级,女孩比男孩少走了100-90=10级,多用了6-5=1分,说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有20+10×5=150级.解:自动扶梯每分钟走20×5-15×6÷6-5=10级,自动扶梯共有20+10×5=150级.答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过4×30份,5个检票口20分钟通过5×20份,说明在30-20分钟内新来旅客4×30-5×20份,所以每分钟新来旅客4×30-5×20÷30-20=2份.假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为4-2×30=60份或5-2×20=60份.同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷7-2=12分.例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.5,6,8=120.因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264头牛吃10 天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240头牛吃14 天.120÷8=15,问题变为:120公顷草地可供19×15=285头牛吃几天因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有240×14-264×10÷14-10=180份.草地原有草264-180×10=840份.可供285头牛吃840÷285-180=8天.所以,第三块草地可供19头牛吃8天我将“牛吃草”归纳为两大类,用下面两个例题来说明例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天;那么它可供21头牛吃几天例2.有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天分析与解:例1是在同一块草地上,例2是三块面积不同的草地.这就两者本质的区别第一章:核心思路普通解法请参考上面三位前辈的帖子;我没把链接做好,不好意思现在来说我的核心思路:例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天;那么它可供21头牛吃几天将它想象成一个非常理想化的数学模型:假设27头牛中有X头是“剪草工”,这X头牛只负责吃“每天新长出的草,并且把它们吃完”,这样以来草场相当于不长草,永远维持原来的草量,而剩下的27-X头牛是真正的“顾客”,它们负责把草场原来的草吃完;请慢慢理解,这是关键例1:解:设每天新增加草量恰可供X头牛吃一天,21牛可吃Y天后面所有X均为此意可供27头牛吃6天,列式:27-X·6注:27-X头牛6天把草场吃完可供23头牛吃9天,列式:23-X·9注:23-X头牛9天把草场吃完可供21头牛吃几天列式:21-X·Y注:21-X头牛Y天把草场吃完因为草场草量已被“清洁工”修理过,总草量相同,所以,联立上面1、2、327-X·6=23-X·9=21-X·Y27-X·6=23-X·9123-X·9=21-X·Y2解这个方程组,得X=15头Y=12天例2:有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天解析:现在是三块面积不同的草地.为了解决这个问题,需要将三块草地的面积统一起来.这是面积不同时得解题关键求5,6,8得最小公倍数为1201、因为5公顷草地可供11头牛吃10天,120/5=24,所以120公顷草地可供1124=264头牛吃10天.2、因为6公顷草地可供12头牛吃14天,120/6=20,所以120公顷草地可供1220=240头牛吃14天.3、1208=15,问题变为:120公顷草地可供19/15=285头牛吃几天这样一来,例2就转化为例1,同理可得:264-X·10=240-X·14=285-X·Y264-X·10=240-X·141240-X·14=285-X·Y2解方程组:X=180头Y=8天典型例题“牛吃草”已介绍完毕;第二章:“牛吃草”变型.以下几道题目都是“牛吃草”的变型,解法和上面我讲的一摸一样,因为我在前边写的很详细了,所以下面的例题不再给出详解,略作说明即可;请大家自行验证;例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天解析:本题的不同点在草匀速减少,不管它,和前边设X、Y一样来理想化,解出的X为负数无所谓,因为X是我们理想化的产物,没有实际意义,解出Y为我们所求;例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级解析:总楼梯数即总草量,设略列式20-X·5=15-X·6X=-10级例3已说过,X 是理想化的产物,没有实际意义将X=-10代入20-X·5得150级楼梯例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟解析:原有旅客即原有草量,新来排队得旅客即每天新长出得草量,其它不用我多说了吧;例6现欲将一池塘水全部抽干,但同时有水匀速流入池塘;若用8台抽水机10天可以抽干;用6台抽水机20天能抽干;问:若要5天抽干水,需多少台同样的抽水机来抽水解析:原有水量即原有草量,新匀速注入得水即每天新长出得草量,继续;;;;;;例7一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水解析:10-X3=5-x8=n-x2;例8、牧场有一片青草,每天生成速度相同;现在这片牧场可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天解析:思路,把羊转化为牛4羊=1牛,“也可以供80只羊吃12天”相当于“20头牛吃12天”现在是“10头牛与60只羊一起吃这一片草”相当于“10+60÷4=25头牛吃草”16-x20=20-x12=25-xyx=10y=8例9.某牧场上长满牧草,,每天匀速生长,这片牧草供17头牛吃30天,19头牛吃24天,现有一群牛吃了6天,主人卖掉了4头牛,余下的牛吃了两天后刚好把草吃完,问这群牛原有几头解:设原有Y头,x还是“剪草的”17-x30=19-x24=y-x6+y-4-x2注意:剩下的2天已经卖掉了4头牛,要分开计算y-x-46+2,这样列式就错了x=9y=40。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草问题的解题方法
主要类型:
1、求时间
2、求头数
除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

基本思路;
①在求出“每天新生长的草星”和“原有草量”后,已知头数求时间时,我们用"原有草量F每天实际减少的草疑(即头数与每日生长量的差)”求岀天数。

②已知天数求只数时,同样需要先求出'‘每天新生长的草量”和“原有草量”。

③根据(“原有草量” +若干天里新生草疑)宁天数”,求出只数。

基本公式:
解决牛吃草问题常用到四个基本公式,分别是:
(1)草的生长速度二对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数三(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'
(3)吃的天数=原有草量三(牛头数-草的生长速度);
(4)牛头数二原有草量十吃的天数+草的生长速度
第一种;一般解法
“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21 头,那么几天能把牧场上的草吃尽呢并且牧场上的草是不断生长的。

” 一般解法:把一头牛一天所吃的牧草看作2,那么就有:
(1)27头牛6天所吃的牧草为:27X6=162 (这162包括牧场原有的草和6天新长的草。

)
(2)23头牛9天所吃的牧草为:23X9=207(这207包括牧场原有的草和9天新长的草。

)
(3)1 天新长的草为:(207-162)=9-6)=15

(4)牧场上原有的草为:27X6-15X6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:724-(21-15)=724-6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。

第二种:公式解法
有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

(1)如果放牧16 头牛,几天可以吃完牧草(2)要使牧草永远吃不完,最多可放多少头牛
解答:
1)草的生长速度:(22X8-24X6)F(8-6)=12(份)
原有草量:21X8-12X8=72(份)
16 头牛可吃:724-(16-12)=18(^)
2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数所以最多只能放12头牛。

相关文档
最新文档