高考中的数学建模问题
高考试题中数学建模的考查趋势分析及其教学建议

出面积的最大值.
二、数学建模在高中数学内容的渗透
(3)指数函数模型
例 3:(必修 1 第 57 页例 8)截住到 1999 年底,我国 人口约 13 亿.如果今后能将人口年平均增长率控制在 1%,那么经过 20 年后,我国人口数最多为多少(精确 到亿)?
二、数学建模在高中数学内容的渗透
(3)指数函数模型
一、数学建模素养的意义
(四)数学建模能力的构成 1、阅读理解能力 2、抽象概括能力 3、符号表示能力 4、模型选择能力 5、数学运算能力
一、数学建模素养的意义
1、阅读理解能力。
阅读理解能力是学生按照一定思路、步骤感知实际 问题的信息,在对信息分析和思考后,获得对问题感性 认识的能力。阅读理解能力较好的学生,读得准、读得 快、理解快、理解深,这是数学建模的前提。如,1999 年上海高考卷第22题的问题情境是冷轧钢板的过程,题 中出现了“减薄率”这一专门术语,并给出了即时定义 。能否深刻理解该定义,取决于学生阅读理解能力,这 将直接影响该问题的数学建模。
一、数学建模素养的意义
2、抽象概括能力。
如,将银行计息的“复利公式”类比和推 广到计算细胞分裂、人口增长等实际问题, 这不仅给了学生解决实际问题一把通用的钥 匙,也是培养和提高学生抽象概括能力的重 要方式。
一、数学建模素养的意义
3、符号表示能力。
把实际问题中表示数量关系的文字、图像 “翻译”成数学符号语言,即数、式子、方 程、函数、不等式等的能力。这种“翻译” 是数学建模的基础性工作。
二、数学建模在高中数学内容的渗透
数学建模的教学重点在新课程中规定的应用:
1、初步掌握建立函数模型解决问题的过程和方法,能应用导数等 解决一些简单的实际问题。
新高考背景下高中数学建模教学策略与案例分析

新高考背景下高中数学建模教学策略与案例分析摘要:随着社会发展,教育行业得到进一步的提升。
近年来,在新高考背景下,高中数学教学工作中数学建模教学受关注的程度越来越高,学生数学建模素养逐渐成为高考的热点内容。
与传统考试模式相比,新高考更加注重学生的学科素养和学习能力,针对数学学科的学习成果考察已不再停留于公式、定理的学习,更倾向于考查学生的综合能力。
因此,基于对高中数学建模教学重要性的认识,本文分析了当前高中数学建模教学面临的问题,并提出了相应的教学策略,旨在为培养学生的数学建模素养提供参考。
关键词:新高考;高中数学;数学建模;教学策略引言在新高考、新教材背景下,教师要注重培养学生的综合素养及核心能力,并引导学生通过多种方式的学习提高自身对问题的处理能力及知识运用能力,进一步提高学生数学知识学习的系统性及融合性。
从目前的高中数学教学情况来看,在实际课堂教学中,个别教师无法进行高效率的课堂教学,教学过程更是缺乏探究性,导致教学效果欠佳。
想要改变这些状况,教师就要在教学过程中更新教学理念,以学生为中心开展教学活动,重视学生的探究与思考,灵活运用情境教学、多媒体教学等多种教学方式激发学生对数学课堂的兴趣,营造良好的教学氛围,提高数学课堂教学质量。
本文基于新高考、新教材对高中数学课堂教学的积极意义和存在的问题,对新高考、新教材背景下如何开展高中数学课堂教学进行探析。
1新高考背景下高中数学教学方法优化的必要性新高考对高中数学教学目标提出了新的要求和标准,即让学生在高中数学学习时能轻松应对不同的实际问题,能拿出更多、更有效的办法。
这也对高中数学教师的教学提出了更高的要求,教师不仅要想办法提高课堂效率,还要对学生的基本学习情况有所了解,运用创新并具有针对性的教学方法,在学生面对数学问题及教材难点时,引导其加深对数学问题和难点的理解;同时,在高中数学课堂教学中,教师应该以学生为中心,激发学生的主观能动性,鼓励学生自主学习和独立思考,鼓励学生在课堂上踊跃发言,以形成良好的课堂氛围。
专题七 数学建模 2023高考数学二轮复习课件

角度一 指数、对数运算模型
【例1】 某人喝了一定量的酒后,其血液中的酒精含量上升到0.8 mg/mL,此
时他停止饮酒,其血液中的酒精含量以每小时20%的速度减少,经过n小
时后他血液中的酒精含量在0.2 mg/mL以下,则n的最小整数值为(参考数
据:lg 2≈0.30,lg 3≈0.48)
(B )
cos 45°=22ar=22ab= 22,即ba= 22,故离心率 e=ac= 故选 B.
1-ba2=
1-12=
2 2.
目录
02
类型2 构造新模型求解
目录
角度一 构造函数模型
【例4】 f(x)在(0,+∞)上的导函数为f′(x),xf′(x)>2f(x),则下列不等式成
立的是
(A)
A.2 0212f(2 022)>2 0222f(2 021)
以下,所以 n 的最小值为 7,故选 B.
目录
|技法点拨| 先计算出100 mL血液中酒精含量,再构建指数型函数模型,根据 n小时后血液中酒精含量列出不等式即可求解.
目录
在流行病学中,基本传染数是指每个感染者平均可传染的人数.当基本传染
数高于 1 时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病
B.2 0212f(2 022)<2 0222f(2 021)
C.2 021f(2 022)>2 022f(2 021)
D.2 021f(2 022)<2 022f(2 021)
目录
解析
令
g(x)
=
f(x) x2
(x>0)
,
则
g′(x)
=
x2f′(x)-2xf(x) x4
=
2021年数学新高考2卷 数学建模

2021年数学新高考2卷数学建模一、概述数学建模是数学与实际问题相结合的一门学科,它通过数学方法研究和解决实际问题。
近年来,随着社会发展和教育改革的不断推进,数学建模在高中数学教学中日益受到重视。
2021年数学新高考2卷中的数学建模题目也成为备受关注的焦点。
本文将针对2021年数学新高考2卷中的数学建模部分进行深入分析和讨论。
二、数学新高考2卷中的数学建模2021年数学新高考2卷中的数学建模部分分为A、B两道题。
在A题中,考生需要结合实际情景,利用函数、求导、积分等数学知识进行建模分析。
而B题则涉及到概率与统计、线性规划等知识,要求考生解决一个实际问题并加以分析。
整体来看,数学建模题目考察了考生对于数学理论与实际问题结合的能力,考生不仅需要掌握扎实的数学基础知识,还需要具备灵活运用知识解决实际问题的能力。
三、建模题目解析A题的建模题目主要涉及函数的性质和应用、导数在几何和科学问题中的应用以及定积分的应用等内容。
通过建立数学模型,考生需要解决一个关于质点运动及其相关问题的实际问题。
而B题则涉及到一个关于饲料配方和需求量的实际问题,要求考生利用线性规划模型进行分析和求解。
总体来看,这两道建模题目在考查考生对于数学理论与实际问题相结合的理解和应用能力的也着重考察考生的逻辑推理和问题解决能力。
四、考生解题策略针对建模题目,考生在解题时应该充分理解实际问题,抓住问题的关键点,建立合适的数学模型。
在求解过程中,要注意运用所学的数学知识,结合实际问题进行分析和推理,并且要善于将问题转化为数学问题进行求解。
另外,考生还应该注意对解题过程中的数学概念和方法进行合理的解释和阐述,使得解题过程清晰易懂。
通过逻辑严谨的证明和推理,全面展现数学建模的解题过程。
五、数学建模的意义数学建模是现代数学应用的一种重要形式,它将数学与科学、工程和社会实际问题相结合,为解决实际问题提供了重要的数学工具和方法。
通过数学建模,不仅能够培养学生的数学思维和分析问题的能力,还能将数学知识应用于实际生活中,提高学生的数学素养和实际应用能力。
高考数学建模技巧有哪些应用

高考数学建模技巧有哪些应用在高考数学中,建模技巧是一项非常重要的能力。
它不仅能够帮助我们更好地理解和解决实际问题,还能培养我们的逻辑思维和创新能力。
那么,高考数学建模技巧究竟有哪些应用呢?首先,建模技巧在函数问题中的应用十分广泛。
函数是高中数学的核心内容之一,许多实际问题都可以通过建立函数模型来解决。
比如,在经济领域中,成本、利润和销量之间的关系往往可以用函数来表示。
我们可以通过建立成本函数、收入函数和利润函数,来分析企业的生产经营状况,从而做出最优决策。
例如,某工厂生产某种产品,其成本函数为 C(x) = 2x^2 + 10x +50(其中 x 表示产量),收入函数为 R(x) = 30x。
那么,利润函数 L(x) = R(x) C(x) = 30x (2x^2 + 10x + 50) =-2x^2 + 20x 50。
通过对这个利润函数进行分析,我们可以求出当产量为多少时,利润最大。
这就需要运用到函数的单调性、极值等知识,以及建模的思想,将实际问题转化为数学问题。
其次,在几何问题中,建模技巧也能发挥重要作用。
比如,在测量建筑物的高度、河流的宽度等问题时,我们可以通过建立相似三角形的模型来求解。
假设要测量一座塔的高度,我们可以在塔旁边立一根已知长度的杆子,然后分别测量杆子和塔的影子长度。
由于太阳光线是平行的,所以杆子和塔与其影子构成的两个三角形是相似的。
设杆子的高度为h1,影子长度为 l1,塔的高度为 h2,影子长度为 l2,根据相似三角形的性质,我们可以得到 h1 / l1 = h2 / l2,从而求出塔的高度 h2 = h1 ×l2 / l1。
再者,建模技巧在概率统计问题中的应用也不容忽视。
例如,在调查某种产品的合格率、某种疾病的发病率等问题时,我们可以通过抽样调查建立概率模型来估计总体的情况。
假设要调查一批灯泡的合格率,我们从这批灯泡中随机抽取一定数量的灯泡进行检测,记录合格灯泡的数量。
“数学建模思想”在高考数学中的应用

数学建模思想 在高考数学中的应用郑记科(河南省驻马店高级中学㊀463000)摘㊀要:在高考中ꎬ数学所占比重较大ꎬ同时难度也较大.学好数学ꎬ能够很大地与其他学生拉开差距.这样ꎬ有利于学生在高考中取得一个好的数学成绩ꎬ能够对学生的高考分数有一个提升ꎬ从而让学生多一点选择大学和专业的机会.在高考数学中应用 数学建模思想 ꎬ能够将复杂的数学题型简单化ꎬ从而提高数学的做题效率ꎬ让学生在规定的考试时间中获得一个更高的数学分数.基于此ꎬ本文将对 数学建模思想 在高考数学中的应用进行探究.关键词:数学建模思想ꎻ高考数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2022)06-0036-03收稿日期:2021-11-25作者简介:郑记科(1982.8-)ꎬ男ꎬ河南省驻马店人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀高考数学ꎬ题型较多ꎬ题目新颖ꎬ难度较大.为了让学生在有限的考试时间内做出更多的题ꎬ做对更多的题ꎬ从而取得更高的数学分数ꎬ在高考数学中引进 数学建模思想 是尤为重要的. 数学建模思想 的引用ꎬ对于学生来说ꎬ是帮助学生理解题很好的方式ꎬ简化题目ꎬ这样ꎬ能够让学生去很快地解决问题ꎬ从而有时间对求解的结果进行检查ꎬ以此提高做题正确率ꎬ从而在高考数学中取得好成绩.因此ꎬ下文将从 数学建模思想 的定义以及 数学建模思想 在高考数学中的基本形式介绍 数学建模思想 .1 数学建模思想 的定义为了去探究 数学建模思想 在高考数学中的应用ꎬ应该先对 数学建模思想 有一个简单的了解. 数学建模思想 其实可以理解为学生通过对文字性题目的分析ꎬ通过列方程组㊁不等式㊁函数ꎬ画几何图形等ꎬ使复杂的题目简单化ꎬ将文字性题目转换为学生所熟悉的数学方程式㊁图形等ꎬ从而更有利于学生去求解问题ꎬ提高做题效率等.在这样的基础上ꎬ通过 数学建模 ꎬ能够让学生以一个轻松愉悦的方式去学习数学ꎬ并且能够在高考数学中ꎬ考出水平ꎬ考出优势ꎬ这对于那些希望通过数学拉开差距ꎬ从而取得一个好的高考成绩的学生是很重要的.2 数学建模 的基本高考题型高考数学是一个考查学生综合思维的学科ꎬ一般来说ꎬ高考数学题型较多ꎬ题目新颖ꎬ对于学生来说难度较大ꎬ但大部分题目都是可以通过 数学建模 来实现题目的简单化的ꎬ从而有利于学生去求解ꎬ提高做题效率与正确性.根据数学知识点的不同ꎬ数学建模可以分成多种形式ꎬ高考数学的题型也可以分为多种模型ꎬ从而有利于学生去逐一地掌握知识点.2.1函数模型例1㊀在2016年的山东高考数学中有这样一道函数题:已知函数F(X)的定义域为Rꎬ当X<0时ꎬF(X)=X2-1ꎻ当-1ɤXɤ1时ꎬF(-X)=-F(X)ꎻ当X>0.5时ꎬF(X+0.5)=F(X-630.5)ꎬ求F(6).解决这一类问题ꎬ可以通过 数学建模思想 来完成.学生给通过读题目ꎬ分析出题目所给函数是一个组合函数ꎬ这一组合函数分为三段ꎬ在条件当X<0时ꎬF(X)=X2-1中ꎬ可以画出X<0时的函数图像.而在条件当-1ɤXɤ1时ꎬF(-X)=-F(X)中ꎬ可以发现该函数在-1ɤXɤ1区间内为奇函数ꎬ从而能够画出函数在-1ɤXɤ1上的图像ꎬ从而得出函数式ꎻ而观察条件当X>0.5时ꎬF(X+0.5)=F(X-0.5)ꎬ可以发现函数在X>0.5上为周期函数ꎬ从而根据它们的周期规律ꎬ能够画出这一段的函数图像ꎬ并得到函数式.因为F(6)在X>0.5内ꎬ求出第三段的函数式将X=6代入式子ꎬ就能进行结果的求解.通过逐步分析ꎬ辅助画图这一种 数学建模 的方法ꎬ能够让学生的解题思路更加清晰ꎬ也有利于计算结果的检验.2.2线性规划模型例2㊀在2012年的广东高考中有这样一道线性规划题:已知变量Xꎬy满足条件:X+yɤ1ꎻX-yɤ1ꎻX+1ȡ0.则Z=X+2y的最小值.求解这一问题ꎬ学生可以通过 数学建模思想 ꎬ将题目所给信息ꎬ转变为图形ꎬ从而有利于学生更直观地看出三个函数所处的位置.再将三条函数的相交点求出来.将Z=X+2y进行转化ꎬ在图上画出y=0.5X这个函数.让y=0.5X在平面直角坐标系中进行上下平移ꎬ最终找到Z=X+2y的最小值.这一方法ꎬ应用了空间想象与图形辅助的 数学建模思想 .通过文字转变为图形这一方法ꎬ能够让学生更直观地去求解这一类问题ꎬ从而为高考数学解题节省时间.2.3排列组合模型例3㊀甲㊁乙㊁丙㊁丁四人两两进行握手ꎬ问他们一共要握多少次手.对于这一问题ꎬ应用 数学建模思想 ꎬ学生可以联系实际ꎬ情节带入ꎬ再应用数学知识进行求解ꎬ这样往往能使问题简单化.学生可以先假设自己是甲ꎬ就需要和其他三位同学进行三次握手ꎻ再假设自己是乙同学ꎬ因为已经和甲同学握过手了ꎬ所以还需要和丙㊁丁两位同学进行两次握手ꎻ再假设自己是丙ꎬ因为已经和甲㊁乙两位同学握过手ꎬ所以只需和丁握一次手ꎻ当轮到丁时ꎬ他已经和全部四位同学握过手ꎬ所以不需要去再次握手.最终应用分类加法计数原理ꎬ计算出结果.对于像这样的一些简单的数学排列组合问题ꎬ可以这样情景带入ꎬ这样便于学生去展开思考ꎬ最终解决问题.还可以通过一些简单的文具ꎬ比如说笔ꎬ用四支笔ꎬ进行实际操作ꎬ两两配对ꎬ最终得到答案.通过情景带入这种 数学建模思想 ꎬ能够很好地解决排列组合这类问题.2.4立体几何模型例4㊀在一个圆柱体的物体上ꎬ一小虫子在圆柱体的侧面上进行爬行ꎬ从底上爬到与之相对的顶上ꎬ已知圆柱体的高为10cmꎬ圆柱体的圆的半径是4cmꎬ问小虫爬过的距离.解决这一类问题ꎬ需要用到图形结合的 建模思想 ꎬ学生需要在草稿纸上画出一个圆柱体ꎬ在圆柱体上根据题目信息标注出小虫的起始点.联系实际生活ꎬ学生应该知道圆柱体应该是立体的ꎻ再结合课本知识ꎬ知道圆柱体的侧面展开是一个长方形ꎬ长方形的长就是底面或顶面圆的周长.而小虫爬行的距离为长方形的一顶点到另一边中点的距离ꎬ为一直角三角形的斜边.通过圆的周长公式算出圆的周长ꎬ取一半就是长方形同一侧顶点到中点的距离ꎬ就是直角三角形的一直角边ꎬ而圆柱体的高就是直角三角形的另一条直角边.通过直角三角形的边与边关系的公式ꎬ就能够求解出斜边ꎬ就是题目所要求的结果.这一 数学建模 的过程ꎬ应用了图形结合ꎬ实际联系等方式.2.5概率统计模型例5㊀简单的概率模型如:甲在一次比赛中获胜的概率为0.6ꎬ乙在一次比赛中获胜的概率为0.4ꎬ问甲乙两位同学进行三次比赛ꎬ采用三局两胜制ꎬ那么甲乙两同学获胜的概率分别为多少.解决这一类问题ꎬ学生同样可以应用 数学建模思想 ꎬ将这一问题与现实生活联系起来ꎬ进73行 数学建模 .同学假设自己是甲ꎬ那么甲同学获胜分三种情况ꎬ一种是甲同学连续获胜两次ꎬ从而直接结束比赛ꎬ这种情况甲同学获胜的概率则为0.6∗0.6ꎻ另一种情况是甲第一次获胜ꎬ第二次失败ꎬ第三次再获胜ꎬ从而赢下比赛ꎬ这种情况ꎬ通过计算ꎬ获胜的概率为0.6∗0.4∗0.6.第三种情况ꎬ则是甲同学第一次失败ꎬ后两次获胜ꎬ而这种结果出现的概率为0.4∗0.6∗0.6ꎻ最后通过分类加法计数原理ꎬ将三次概率相加就是甲同学获胜的概率.计算乙同学获胜的概率也是一样的.通过 数学建模 ꎬ往往能够让学生在解决概率统计这类问题时ꎬ思路更加地清晰ꎬ从而解题的效率也就更高.在高考数学中ꎬ题型大概就是这些ꎬ对于不同种类的题型ꎬ应用相似的数学建模思想ꎬ往往也能够给数学题目建立起模型ꎬ从而方便学生去观察ꎬ去找出解决问题的最优方法ꎬ以此来提高学生的做题速度与正确性ꎬ从而取得一个好的数学成绩.这是教会学生去应对高考数学的一种很重要的方法.3数学建模思想在课堂中应用的措施3.1设立问题情境ꎬ激发学生兴趣一些学生在高中学习生涯中ꎬ总是感觉数学比较难学ꎬ成绩较难提高.其实学习数学知识并没有想象中的那么困难ꎬ只是学生在思想中对数学的恐惧ꎬ才造成学习数学困难的假象.建模思想是高中数学学习当中非常重要的一项内容ꎬ主要体现为主体性原则ꎬ从根本上来说ꎬ就是通过设置问题情境ꎬ使学生拥有对数学探究的热情ꎬ让学生对建模产生兴趣.3.2在高中数学课堂讲解的过程中ꎬ要渗透数学建模思想教师在数学课程中深入讲解数学概念ꎬ可以有力地渗透建模思想:第一ꎬ要通过分析数学理论本身所具有的一些特殊性ꎬ对数学当中的其他内容进行渗透ꎬ如在«三角函数»教学过程中ꎬ可利用三角函数的特性展开积极引导.第二ꎬ要注意数学教材当中一些规律性知识内容的总结延伸ꎬ使学生能够深入理解数学概念具有的普遍性.第三ꎬ通过对数学理论和模型间的相互联系ꎬ促使学生对概念产生更深的认识ꎬ进而全面理解数学建模同有关理论间的转换作用.3.3在应用题教学当中ꎬ数学建模思想的应用知识与实际问题结合的题目在逐年增多ꎬ利用数学运算来体现出数学事物的变换规律ꎬ建模方法更科学ꎬ数学结论更加可靠.因此ꎬ在实际应用题讲解过程中ꎬ需要进行一些基础知识的扩展ꎬ利用数学模型来实际解决问题.第一ꎬ在分析应用题的过程中ꎬ不仅要对题目更深层次的含义进行研究ꎬ而且还要将其进行变式.第二ꎬ依据一些原有的条件对数学模型进行有效求解.第三ꎬ依据数学模型体现出来的一些规律ꎬ展开科学预估.数学建模思想 能够帮助学生去应对高考数学中不同种类的题型ꎬ 数学建模 的过程ꎬ往往是根据数学题目中的一些条件ꎬ将复杂的文字表述转变为学生容易理解的解方程组㊁观察图形ꎬ联系实际等形式ꎬ从而让学生能够有条理地去分析问题ꎬ从而快速地求解出答案. 数学建模 的过程ꎬ不仅有利于学生去快速解决问题ꎬ也有利于学生去检验结果ꎬ从而提高学生做题的正确性.因此ꎬ 数学建模思想 在高考数学中的应用ꎬ对于学生来说发挥着巨大的作用.参考文献:[1]张定强ꎬ裴阳.探析建模思想落实核心素养 近五年高考数学建模思想考查的特征分析及启示[J].考试研究ꎬ2018(06):85-90.[2]颜习位.近年高考中数学建模思想及其应用初探[J].青少年日记(教育教学研究)ꎬ2013(10):65.[3]梁远榕.运用建模思想解高考数学应用题浅探[J].数学学习与研究ꎬ2010(13):71+73.[责任编辑:李㊀璟]83。
高考数学建模技巧有哪些应用

高考数学建模技巧有哪些应用在高考数学中,建模技巧的应用具有极其重要的地位。
数学建模是将实际问题转化为数学问题,并通过数学方法求解,最终将结果应用回实际问题的过程。
它不仅能够锻炼学生的数学思维能力,还能帮助学生更好地应对现实生活中的各种问题。
那么,高考数学建模技巧究竟有哪些应用呢?首先,数学建模在函数问题中的应用广泛而深刻。
函数作为高中数学的核心内容之一,与实际生活紧密相连。
比如,在经济领域,成本、收入和利润等问题常常可以通过构建函数模型来解决。
假设某企业生产某种产品,其成本函数为 C(x) = 2x^2 + 10x + 50(其中 x 表示产量),销售价格为每件 30 元,那么利润函数 L(x) 就可以表示为 L(x)= 30x C(x) = 30x (2x^2 + 10x + 50) =-2x^2 + 20x 50。
通过求解这个二次函数的最值,我们可以确定企业获得最大利润时的产量。
其次,在几何问题中,建模技巧也发挥着关键作用。
例如,测量建筑物的高度、河流的宽度等问题。
以测量建筑物高度为例,如果我们在距离建筑物底部一定距离的地方,测量出视线与地面的夹角以及测量点与建筑物底部的水平距离,就可以通过构建三角函数模型来计算建筑物的高度。
假设测量点与建筑物底部的水平距离为 a 米,视线与地面的夹角为θ,那么建筑物的高度 h 就可以表示为 h =a × tanθ。
数学建模在概率统计问题中的应用同样不可小觑。
比如在抽奖活动中,计算中奖的概率;在质量检测中,根据样本数据估计总体的参数等。
假设某批产品的次品率为 p,从这批产品中随机抽取 n 个进行检测,其中次品的数量 X 服从二项分布 B(n, p)。
通过已知的样本数据,可以对 p 进行估计,从而对整批产品的质量有一个大致的了解。
此外,建模技巧在优化问题中也有出色的表现。
例如,资源分配问题、行程安排问题等。
在资源分配问题中,要在一定的限制条件下,使资源的利用达到最优。
2024年高考数学建模案例解析

2024年高考数学建模案例解析2024年高考学科综合能力考试数学建模案例解析随着社会的不断发展和教育的改革,数学建模成为高中数学教育的重要组成部分。
尤其在2024年的高考中,数学建模案例成为考试的一部分。
本文将以2024年高考数学建模案例为例,进行详细解析,并探讨数学建模在培养学生综合能力方面的作用。
案例背景及要求:假设2024年某城市掀起了共享单车的热潮,共享单车数量不断增加。
由于路网条件的限制,城市规划局希望求解出一种合理的摆放方案,以保证尽可能多的市民能够方便地使用单车,并且降低管理成本。
要求学生考虑单车摆放位置、数量分布、市民的需求等因素,通过数学建模给出一种最优解,并提出相应的调整策略。
解题思路及方法:1. 研究市民需求:首先,我们需要了解市民对共享单车的需求情况,通过问卷调查、数据分析等手段,了解市民骑车的频率、时间段、出行距离等信息,从而确定出行热点区域和高峰时段。
2. 路网分析:对城市的路网进行分析,确定主要道路、交通流量等信息,了解交通状况,为后续的摆放方案提供基础数据。
3. 摆放方案优化:针对市民需求和路网状况,我们可以运用图论算法、最优化算法等数学工具,建立一个数学模型,以求解出最优的摆放方案。
可以考虑的因素包括:单车数量、摆放位置、覆盖范围、容量等。
4. 调整策略提出:根据实际情况和模型结果,我们可以提出相应的调整策略。
例如,可以针对交通拥堵区域增加摆放数量,调整单车的分布密度,以满足市民需求,并减少单车的管理成本。
案例解析:在实际解决这个问题的过程中,首先需要对市民需求进行充分了解。
通过问卷调查,我们得知市民在上下班高峰期间对共享单车的需求较大,出行热点集中在市中心和商圈周边。
同时,我们还发现了一些特殊需求,如学生、游客等群体对单车的需求量也较大。
在进行路网分析时,我们发现了一些瓶颈路段和拥堵区域。
这些信息为摆放方案的优化提供了依据。
在建立数学模型时,我们可以使用最小费用流算法来求解。
利用数学建模求解高考应用题

前半径 为6 n 以 1 劬 的速度不断增大 , 0v 并 L o 问几小时后该城市 开始 受到 台风的侵蚀?
解:
1 0 t 8 一 0 ̄0 (一 ) 0 ( 一 ) 504一 8 0
两边 平 方 整理 得 : +at Ox+4f 8 +2 =o —l) ( ) 4 当△:6 (-1)一2 [(-8 +2 1 4t 0 o4t ) 4≥0
辊。
例 3 在某海滨城市附近海面有一 台风 , 、 据监测 , 当前 台风中心位于
城 市 0的东 偏 南 ( =a cs ) 向 30 里 的海 面 P , 以 r o 方 c 0公 处 并
iU
2 肋 的速度向西偏北 4 。 0 5 方向转移 , 台风侵蚀的范围为圆形区域 , 当
科 技信 皇
利用数学 建模 求稿高 考应用题
武警警官学院 王书勤
[ 要] 摘 本文主要 对数学建模对高考应用题的作用进行说明 , 首先说明 了数学模型建立的几个步骤 , 然后再利用数学建模求解一些 具体 的高考题 目。 [ 关键词 ] 学建模 高考应用题 求解 数 高考《 数学科考试 说明》 规定 : 数学科 考试主要考查 “ 算能力 、 运 逻 解: 辑思维能力 、 空间想象能力 以及运 用所学数学知识 和方法分析 问题 和 1模型的建立 : 、 解决 问题 的能力 ” 自 19 年 以来 , 。 93 应用题作 为高考 的热点问题倍 受 理解材料 , 在头脑 中可形成冷轧机 的简易模型 , 其问题 的关键是建 大家的关注 , 这几年高考应用题的考试 趋势有 二 : 其一考查 的力 度越来 立 “ 减薄率 ” 的数学模 型。若输入带钢厚度为 , 设减薄率为 7, 则通过 越大 ; 其二 , 试题越来越贴近实际 , 然而从考生答题的情况来看 , 此类 题 对 轧辊 后 的带 钢厚 度 为 【一y 通过 两对 轧辊 后 的带 钢 厚度 为 1 ), 的得分率 极低 , 高考应用题 的过程其实就 是一个数学 建模的过 程 , 解 1 ,1 ) ( 一y … 通 过 n 轧 辊 的带 钢 厚 度 为 l ) 这 一’(一y一口1 )… ) 对 —y , 因此 , 加强数学建模教学 、 培养学生的数学建模 能力以提高学生高考应 用题的得分率很有必要 。 就是本题 的数学模型——等 比数列模 型。 所谓数 学建模就是对 于现 实世界的一个特定 对象 , 为一个 特定的 2、 型的解决 : 模 目的, 据特有 的内在规律 , 根 做出~个必要 的简化 假设 , 运用适 当的数 () 使 轧 钢 对 数 最 小 , 择 减 薄 率 为 ) =7 , 有 I为 选 , … 。则 学工具 , 得到一个数学结构的过程 , 此结构称为数学模型。 a1 o ≤口。 ( —7 ) 般来说 , 建立数学模型常常需要经过如下几个步骤 : 所 以 n _ -la l, g' g 6 1 分析实际问题 , 、 扬弃次要因素 , 提出必要假设—— 模型的分析和 l( 一 7 ) gi 0 假设 ; () I 由于轧钢过程 中 , I 带钢宽度不变 , 且不考虑损耗 , 实质上 暗示 其 2 根据假设 , 、 进行数学抽 象和概括 , 出量与量之间 的关 系 , 找 把实 际问题转化成数学问题——模型 的建立 ; 了等量关 系 , 即过 轧辊后带 钢 由短变 长 , 由厚 变薄 , 度不变 , 宽 损耗不 3 找适 当的数学] 具 , 、 _ 根据数学原理进行推理和求解 , 出数学上 计 , 找 由此可知冷轧机在轧钢过程 中 , 相邻 的两疵点 间的带钢体积保持不 的结论——模型的解决; 变 , 点 轧辊 出 口处疵点 间距为 轧辊周长 , 口时 输入带钢 体积为 第 对 出 4 把数学上的结论放到现实问题 中加以解释 , 、 判断是否正确合理 , 10 a・ 一y 宽度 。 6 0・ ( 1 )・ 若 出现偏差 , 须修正— —模型的返回。 可得等式: 6 0 口 【一y ・ 10 ・ ・ 1 ) 宽度 =L ・ ・ 一y ・ a ( ) 宽度 1 下面就一些高考应用题谈谈 如何利用数学建模进行求解 。 因为 7= 0 即 L :1 0 08 2 %, 6 0・. 例 1某地为促进淡水鱼养殖业的发展 , 、 将价格控制在适 当范 围内, 决定 对淡水 鱼养 殖提供政府 补贴 , 设淡水 鱼的市场价 为 z元/ 千克 , 政 由此得 』1 1 5 J:3 2 mm, =2 0 mm, =2 0rm , 人表 格 即 L2 5 0 L3 0 0 a 填 府补贴为 f 千克 , 元/ 根据市场调查 , 8 a 1 时 , 当 G s 4 淡水鱼 的市场 日 < - 供 可 。 应量 P千克与市场 日 需求 量 Q千克近似地满足关系 : 3 模型的返回 : 、 冷轧机至少需要数量 不小 于 _ -l a的整数对轧 l, g g f 0 Q 504 一z 8 ( 1 ( 一 ) 0 , ) = 0 ̄0 (一 ) 8
关于高考志愿如何填报的数学建模题

高考志愿如何填报的数学建模题高考志愿如何填报的数学建模题随着高考日益临近,填报志愿成为广大考生和家长关注的焦点。
在高考志愿填报中,数学建模题也成为了重要的考察内容之一。
本文将综合多地高考信息,从不同角度出发,为考生和家长提供有关高考志愿如何填报的数学建模题的相关建议。
一、数学建模题的分类和特点数学建模题是高考数学中的一大难点,因此必须对其进行分类和了解其特点。
数学建模题可以分为实际问题和虚拟问题两种类型。
实际问题是指与现实生活相关的问题,如交通、环境、经济等方面的问题。
虚拟问题则是指与现实生活无关的问题,如抛物线、三角函数等数学专业问题。
数学建模题的特点是综合性强,涉及多个知识点,需要考生在解题过程中进行综合运用。
因此在考察数学建模题时,不仅要考察考生的数学知识,还要考察考生的数学思维能力和解决实际问题的能力。
二、数学建模题在高考志愿填报中的作用数学建模题在高考志愿填报中的作用是非常重要的。
在填报志愿时,数学建模题的考试成绩也被列入了志愿填报的参考范围。
因此,考生应该在高考前认真对待数学建模题,切实提高自己的成绩,以便更好地填报自己的志愿。
三、如何提高数学建模题的成绩提高数学建模题的成绩需要考生在平时的学习中进行积累和总结。
首先,考生要熟练掌握基本的数学知识和公式,例如函数、导数、积分等。
其次,考生要注重实际问题的解决过程,学会运用数学知识解决实际问题。
最后,考生还要注重练习,通过大量的练习和模拟考试来提高自己的数学建模能力。
四、高考志愿填报中数学建模题的策略在高考志愿填报中,数学建模题的策略也非常重要。
首先,考生要了解自己的数学建模水平和所报考专业的要求,确定自己的志愿填报方向。
其次,考生要注意填报的志愿之间的差距,尽可能地提高自己的上榜率。
最后,考生还要注意填报志愿时的时间控制,尽可能地合理分配填报志愿的时间,避免错过填报的机会。
五、高考志愿填报中数学建模题的注意事项在高考志愿填报中,考生还需注意以下事项。
高考专题练习: 概率统计中的数学建模与数据分析

(2020·广东六校第一次联考)某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一、二、三等奖(分别对应成绩等级的一、二、三等级).现有某考场所有考生的两科成绩等级统计如图1所示,其中获数学二等奖的考生有12人.图1(1)求该考场考生中获语文一等奖的人数;(2)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取5人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图2所示),求样本的平均数及方差并进行比较分析;图2(3)已知本考场的所有考生中,恰有3人两科均获一等奖,在至少一科获一等奖的考生中,随机抽取2人进行访谈,求这2人两科均获一等奖的概率.【解】 (1)因为获数学二等奖的考生有12人, 所以该考场考生的总人数为121-0.40-0.26-0.10=50.故该考场获语文一等奖的考生人数为50×(1-0.38×2-0.16)=4.(2)设获数学二等奖考生综合得分的平均数和方差分别为x -1,s 21,获语文二等奖考生综合得分的平均数和方差分别为x -2,s 22.x -1=81+84+92+90+935=88,x -2=79+89+84+86+875=85,s 21=15×[(-7)2+(-4)2+42+22+52]=22, s 22=15×[(-6)2+42+(-1)2+12+22]=11.6,因为88>85,11.6<22,所以获数学二等奖考生较获语文二等奖考生综合素质测试的平均分高,但是成绩差距较大.(3)两科均获一等奖的考生共有3人,则仅数学获一等奖的考生有2人,仅语文获一等奖的考生有1人,把两科均获一等奖的3人分别记为A 1,A 2,A 3,仅数学获一等奖的2人分别记为B 1,B 2,仅语文获一等奖的1人记为C ,则在至少一科获一等奖的考生中,随机抽取2人的基本事件有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 1C ,A 2A 3,A 2B 1,A 2B 2,A 2C ,A 3B 1,A 3B 2,A 3C ,B 1B 2,B 1C ,B 2C ,共15个.记“这2人两科均获一等奖”为事件M ,则事件M 包含的基本事件有A 1A 2,A 1A 3,A 2A 3,共3个, 所以P (M )=315=15,故这2人两科均获一等奖的概率为15.统计与概率“搭台”,方案选择“唱戏”破解此类频率分布直方图、分层抽样与概率相交汇的开放性问题的关键:一是会观图读数据,能从频率分布直方图中读出频率,进而求出频数;二是能根据分层抽样的抽样比或各层之间的比例,求出分层抽样中各层需取的个数;三是会转化,会对开放性问题进行转化.某校学生参与一项社会实践活动,受生产厂家委托采取随机抽样方法,调查我市市民对某新开发品牌洗发水的满意度,同学们模仿电视问政的打分制,由被调查者在0分到100分的整数分中给出自己的认可分数,现将收集到的100位市民的认可分数分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],绘制出如图所示的频率分布直方图.(1)求这100位市民认可分数的中位数(精确到0.1),平均数(同一组中的数据用该组区间的中点值作代表);(2)生产厂家根据同学们收集到的数据,拟随机在认可分数为80及其以上的市民中选出2位市民当产品宣传员,求这2位宣传员都来自认可分数为[90,100]的概率.解:(1)由于[40,50),[50,60),[60,70)的频率分别有0.1,0.2,0.3.故中位数位于[60,70)中,其值为60+10×23≈66.7.平均数为10×(45×0.01+55×0.02+65×0.03+75×0.025+85×0.01+95×0.005)=67.(2)认可分数位于[80,90)的人数为10,认可分数位于[90,100]的人数为5,从认可分数位于[90,100]的5人中随机选择2人的基本事件数为1+2+3+4=10,从认可分数位于[80,90)和[90,100]的15人中随机选择2人的基本事件数为1+2+3+…+14=105.故这2位宣传员都来自认可分数为[90,100]的概率为10105=2 21.图表与独立性检验相交汇(师生共研)某种常见疾病可分为Ⅰ,Ⅱ两种类型.为了了解所患该疾病类型与地域、初次患该疾病的年龄(单位:岁)(以下简称初次患病年龄)的关系,在甲、乙两个地区随机抽取100名患者调查其所患疾病类型及初次患病年龄,得到如下数据.初次患病年龄甲地Ⅰ型疾病患者/人甲地Ⅱ型疾病患者/人乙地Ⅰ型疾病患者/人乙地Ⅱ型疾病患者/人[10,20)815 1[20,30)433 1[30,40)352 4[40,50)384 4[50,60)392 6[60,70]21117(2)记“初次患病年龄在[10,40)内的患者”为“低龄患者”,“初次患病年龄在[40,70]内的患者”为“高龄患者”.根据表中数据,解决以下问题.①将以下两个列联表补充完整,并判断“地域”“初次患病年龄”这两个变量中哪个变量与所患疾病的类型有关联的可能性更大.(直接写出结论,不必说明理由)表一疾病类型患者所在地域Ⅰ型Ⅱ型总计甲地乙地总计100.问:是否有99.9%的把握认为所患疾病的类型与X有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【解】(1)依题意,甲、乙两地区Ⅰ型疾病患者共40人,甲、乙两地区Ⅰ型疾病患者初次患病年龄小于40岁的人数分别为15,10,则从Ⅰ型疾病患者中随机抽取1人,其初次患病年龄小于40岁的概率的估计值为15+1040=58.(2)①填空结果如下.表一低龄 25 15 40 高龄 15 45 60 总计4060100“初次患病年龄”与所患疾病的类型有关联的可能性更大.②由①可知X 为初次患病年龄,根据表二中的数据可得a =25,b =15,c =15,d =45,n =100,则K 2=100×(25×45-15×15)240×60×40×60≈14.063,因为14.063>10.828,故有99.9%的把握认为所患疾病类型与初次患病年龄有关.本题的易错点有三处:一是审题不认真,误认为甲、乙两地区Ⅰ型疾病患者的总数为100,错误列式15+10100=0.25;二是不能从频数分布表中获取相关数据,无法正确填写列联表,不能根据列联表中数据的含义做出正确判断;三是代错公式或计算错误,从而导致统计判断出错.(2021·福州市适应性考试)世界互联网大会是由中华人民共和国倡导并每年在浙江省嘉兴市桐乡乌镇举办的世界性互联网盛会,大会旨在搭建中国与世界互联互通的国际平台和国际互联网共享共治的中国平台,让各国在争议中求共识、在共识中谋合作、在合作中创共赢.2020年11月23日至24日,第七届世界互联网大会如期举行,为了大会顺利召开,组委会特招募了1 000名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄(单位:岁),得到了他们年龄的中位数为34,年龄在[40,45)内的人数为15,并根据调查结果画出如图所示的频率分布直方图.(1)求m,n的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);(2)这次大会志愿者主要通过现场报名和登录大会官网报名,即现场和网络两种方式报名参加.这100名志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?男性女性总计现场报名50网络报名31总计50参考公式及数据:K2=2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.050.010.0050.001k0 3.841 6.6357.87910.828解:(1)因为志愿者年龄在[40,45)内的人数为15,所以志愿者年龄在[40,45)内的频率为15100=0.15.由频率分布直方图得,(0.020+2m+4n+0.010)×5+0.15=1,即m+2n=0.07,①由中位数为34可得,0.020×5+2m×5+2n×(34-30)=0.5,即5m+4n=0.2,②由①②解得m=0.020,n=0.025.所以志愿者的平均年龄为(22.5×0.020+27.5×0.040+32.5×0.050+37.5×0.050+42.5×0.030+47.5×0.010)×5=34(岁).(2)根据题意得到列联表,男性女性总计现场报名193150网络报名311950总计5050100所以K2=100×(19×19-31×31)250×50×50×50=2×[(19+31)×(19-31)]250×50×50=5.76<10.828,所以不能在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”.图表与线性回归分析相交汇(师生共研)如图是某部门公布的一年内道路交通事故成因分析,由图可知,超速驾驶已经成为交通事故的一个主要因素.研究表明,急刹车时的停车距离等于反应距离与制动距离的和,下表是根据某部门的调查结果整理所得的数据(v表示行车速度,单位:km/h;d1,d2分别表示反应距离和制动距离,单位m).v6472808997105113121128135 d113.415.216.718.620.121.923.525.326.828.5好有1起属于超速驾驶的概率(用频率代替概率);(2)已知d 2与v 的平方成正比,且当行车速度为100 km/h 时,制动距离为65 m.①由表中数据可知,d 1与v 之间具有线性相关关系请建立d 1与v 之间的回归方程,并估计车速为110 km/h 时的停车距离;②我国《道路交通安全法》规定:车速超过100 km/h 时,应该与同车道前车保持100 m 以上的距离,请解释一下上述规定的合理性.参考数据:∑10i =1v i =1 004,∑10i =1(d 1)i =210,∑10i =1v i (d 1)i =22 187.3,∑10i =1v 2i =106 054,11 03352 524≈0.21. 参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y =bx +a 的斜率和截距的最小二乘估计分别为:b =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a =y--b x -.【解】 (1)由题意可知,从一年内发生的交通事故中随机抽出一起事故,则该起事故是恰好是超速驾驶的概率为0.2,设“恰好有一起事故属于超速驾驶”为事件A ,则P (A )=3×15×⎝ ⎛⎭⎪⎫1-152=48125.(2)由题意,设d 2=k ·v 2,当行车速度为100 km/h 时,制动距离为65 m. 所以k =0.006 5,即d 2=0.006 5v 2, ①设d 1=b v +a ,因为b =∑i =1n (x i -x ) (y i -y ) ∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,所以b=∑i =110v i(d1)i-10v-d-1∑i=110v2i-10v-2=22 187.3-10×100.4×21106 054-10×100.42=1 103.35 252.4≈0.21,故d1=0.21v+a*,把(100.4,21)代入*式,解得a=-0.084,所以d1与v i之间的回归方程为d1=0.21v-0.084.设停车距离为d,则d=d1+d2,则d=0.006 5v2+0.21 v-0.084,当v=110 km/h时,d=101.666,即车速为110 km/h时的停车距离为101.666 m.②易知当车速为100 km/h时,停车距离为85.916 m,该距离小于100 m,又因为当车速为110 km/h时的停车距离为101.666 m,该距离大于100 m,由以上两个数据可知,当车速超过100 km/h时,必须与同车道前车保持100 m以上的距离才能保证行驶安全.破解此类分层抽样、概率、线性回归相交汇的开放性问题的关键:一是会制图,即会根据频数分布表,把两组数据填入茎叶图中;二是会对开放性问题进行转化;三是熟练掌握求线性回归方程的步骤,求出a^,b^,即可写出线性回归方程.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据,x 1.08 1.12 1.19 1.28 1.36 1.48 1.59 1.68 1.80 1.87 y 2.25 2.37 2.40 2.55 2.64 2.75 2.92 3.03 3.14 3.26加以说明;(2)①建立月总成本y 与月产量x 之间的线性回归方程;②通过建立的y 关于x 的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:∑10i =1x i =14.45,∑10i =1y i =27.31,∑10i =1x 2i -10x -2≈0.850, ∑10i =1y 2i -10y -2≈1.042,b^≈1.223.②参考公式:相关系数r =∑ni =1x i y i -n x - y-(∑ni =1x 2i -n x -2)(∑ni =1y 2i -n y -2),回归直线y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为b ^=∑ni =1x i y i -n x - y-∑ni =1x 2i -n x-2,a ^=y --b ^x .解:(1)由已知条件得,r =b^·∑10i =1x 2i -10x-2∑10i =1y 2i -10y-2,所以r =1.223×0.8501.042≈0.998, 这说明y 与x 正相关,且相关性很强. (2)①由已知求得x -=1.445,y -=2.731, a ^=y --b ^x -=2.731-1.223×1.445≈0.964, 所以所求回归直线方程为y ^=1.223x +0.964.②当x =1.98时,y =1.223×1.98+0.964≈3.386(万元), 此时产品的总成本约为3.386万元.[A 级 基础练]1.(2020·高考全国卷Ⅰ)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下,甲分厂产品等级的频数分布表(1)(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40=0.4;100=0.28.乙分厂加工出来的一件产品为A级品的概率的估计值为28100(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为65×40+25×20-5×20-75×20=15.100由数据知乙分厂加工出来的100件产品利润的频数分布表为70×28+30×17+0×34-70×21100=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务. 2.(2021·福州市质量检测)垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期2个月的活动中,共有640万人参与.为鼓励市民积极参与活动,市文明办随机抽取200名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表,中的数据用该组区间的中点值作代表,其中标准差的计算结果要求精确到0.01);(2)若要从单次游戏得分在[30,40),[60,70),[80,90]的三组参与者中,用分层抽样的方法选取7人进行电话回访,再从这7人中任选2人赠送话费,求此2人单次游戏得分不在同一组内的概率.附:185≈13.60,370≈19.24.解:(1)参与该活动的网友单次游戏得分的平均值x -=1200×(35×10+45×40+55×60+65×40+75×30+85×20)=60. 标准差s =252×10+152×40+52×60+52×40+152×30+252×20200=185≈13.60.(2)用分层抽样抽取7人,其中得分在[30,40)的有1人,得分在[60,70)的有4人,得分在[80,90]的有2人.分别记为a ,b 1,b 2,b 3,b 4,c 1,c 2,7人中任选2人,有21种结果,分别是(a ,b 1),(a ,b 2),(a ,b 3),(a ,b 4),(a ,c 1),(a ,c 2),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 1,c 1),(b 1,c 2),(b 2,b 3),(b 2,b 4),(b 2,c 1),(b 2,c 2),(b 3,b 4),(b 3,c 1),(b 3,c 2),(b 4,c 1),(b 4,c 2),(c 1,c 2).其中2人得分在同一组的有7种,分别是{b 1,b 2},{b 1,b 3},{b 1,b 4},{b 2,b 3},{b 2,b 4},{b 3,b 4},{c 1,c 2},故2人得分不在同一组内的概率P =1-721=23.3.最近青少年的视力健康问题引起家长们的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查.(1)若从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)若某小学被抽中,调查得到了该小学前五个年级近视率y 的数据如下表,并根据方程预测六年级学生的近视率.附:回归直线y ^=b ^x +a ^的斜率和截距的最小二乘法估计公式分别为b ^=∑ni =1x i y i -n x - y -∑ni =1x 2i -n x-2,a ^=y --b ^x -. 参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55.解:(1)由24∶24∶12=2∶2∶1,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a 1,a 2,b 1,b 2,c ,从这5所学校中随机抽取3所学校的所有基本事件为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,c ),(a 1,b 1,b 2),(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,b 2),(a 2,b 1,c ),(a 2,b 2,c ),(b 1,b 2,c ),共10种,设事件A 表示“抽到的这3所学校中,小学、初中、高中分别有一所”,则事件A 包含的基本事件为(a 1,b 1,c ),(a 1,b 2,c ),(a 2,b 1,c ),(a 2,b 2,c ),共4种,故P (A )=410=25.(2)由题中表格数据得x -=3,y -=0.15,5x - y -=2.25,5x -2=45,且由参考数据:∑5i =1x i y i =2.76,∑5i =1x 2i =55,得b ^=2.76-2.2555-45=0.051,a^=0.15-0.051×3=-0.003, 得线性回归方程为y ^=0.051x -0.003.当x =6时,代入得y ^=0.051×6-0.003=0.303, 所以六年级学生的近视率在0.303左右.[B 级 综合练]4.某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数、客户性别等进行统计,整理得到下表:组区间的中点值作代表,结果保留小数点后两位);(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率;(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视为“非十分爱好该课程者”,请根据已知条件完成以下2×2列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?附:K2=(a+b)(c+d)(a+c)(b+a),其中n=a+b+c+d.解:(1)依题意,在这100位购买该课程的客户中,男性客户购买该课程学时数的平均值x-=160×(7.5×18+12.5×12+17.5×9+22.5×9+27.5×6+32.5×4+37.5×2)≈16.92.所以估计男性客户购买该课程学时数的平均值为16.92.(2)设“所抽取的2人购买的学时数都不低于15”为事件A,依题意按照分层抽样的方式分别从学时数为[5,10),[10,15),[15,20)的女性客户中抽取1人(设为a),2人(分别设为b1,b2),4人(分别设为c1,c2,c3,c4).则从这7人中随机抽取2人所包含的基本事件为ab1,ab2,ac1,ac2,ac3,ac4,b1b2,b1c1,b1c2,b1c3,b1c4,b2c1,b2c2,b2c3,b2c4,c1c2,c1c3,c1c4,c2c3,c2c4,c3c4,共21个,其中事件A所包含的基本事件为c1c2,c1c3,c1c4,c2c3,c2c4,c3c4,共6个.所以事件A发生的概率P(A)=621=2 7.(3)依题意得2×2列联表如下,女性 16 24 40 总计6436100K 2=100×(48×24-16×12)264×36×60×40≈16.667>10.828.故有99.9%的把握认为“十分爱好该课程者”与性别有关.5.某客户考察了一款热销的净水器,使用寿命为十年,该款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换3个一级滤芯就需要更换1个二级滤芯,三级滤芯无需更换.其中一级滤芯每个200元,二级滤芯每个400元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为M .如图是根据100台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.(1)结合柱状图,写出集合M ;(2)根据以上信息,求一台净水器在使用期内更换二级滤芯的费用大于1 200元的概率(以100台净水器更换二级滤芯的频率代替1台净水器更换二级滤芯发生的概率);(3)若在购买净水器的同时购买滤芯,则滤芯可享受5折优惠(使用过程中如需再购买无优惠).假设上述100台净水器在购机的同时,每台均购买a 个一级滤芯、b 个二级滤芯作为备用滤芯(其中b ∈M ,a +b =14),计算这100台净水器在使用期内购买滤芯所需总费用的平均数,并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为14,则其中一级滤芯和二级滤芯的个数应分别是多少?解:(1)由题意可知,当一级滤芯更换9,10,11个时,二级滤芯需要更换3个,当一级滤芯更换12个时,二级滤芯需要更换4个,所以M={3,4}.(2)由题意可知,二级滤芯更换3个,需1 200元,二级滤芯更换4个,需1 600元,在100台净水器中,二级滤芯需要更换3个的净水器共70台,二级滤芯需要更换4个的净水器共30台,设“一台净水器在使用期内更换二级滤芯的费用大于1 200元”为事件A,则P(A)=30=0.3.100(3)a+b=14,b∈M,①若a=10,b=4,则这100台净水器更换滤芯所需费用的平均数为100×10×30+(100×10+200)×40+(100×10+400)×30+200×4×100100=2 000.②若a=11,b=3,则这100台净水器更换滤芯所需费用的平均数为100×11×70+(100×11+200)×30+200×3×70+(200×3+400)×30100=1 880.所以如果客户购买净水器的同时购买备用滤芯的总数为14,客户应该购买一级滤芯11个,二级滤芯3个.6.互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表,(1)业的经营状况;(2)据统计表明,y 与x 之间具有线性关系.①请用相关系数r 对y 与x 之间的相关性强弱进行判断(若|r |>0.75,则可认为y 与x 有较强的线性相关关系(r 值精确到0.001));②经计算求得y 与x 之间的回归方程为y ^=1.382x -2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x 值精确到0.01).相关公式:r =∑ni =1 (x i -x -)(y i -y -)∑ni =1(x i -x -)2∑ni =1(y i -y -)2.参考数据:∑5i =1(x i -x -)(y i -y -)=66,∑5i =1(x i -x -)2∑5i =1(y i -y -)2≈77.解:(1)由题可知x -=5+2+9+8+115=7(百单),y -=2+3+10+5+155=7(百单).外卖甲的日接单量的方差s 2甲=10,外卖乙的日接单量的方差s 2乙=23.6, 因为x -=y -,s 2甲<s 2乙,即外卖甲平均日接单量与外卖乙相同,且外卖甲日接单量更集中一些,所以外卖甲比外卖乙经营状况更好.(2)①计算可得,相关系数r ≈6677≈0.857>0.75, 所以可认为y 与x 之间有较强的线性相关关系. ②令y ≥25,得1.382x -2.674≥25,解得x ≥20.02, 又20.02×100×3=6 006,所以当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润大约不低于6 006元.。
高考数学数学建模练习题及答案

高考数学数学建模练习题及答案一、综合分析题某城市2019年的二氧化硫(SO2)和氮氧化物(NOx)排放量分别为15.2万吨和20.8万吨。
根据监测数据,该城市出现了严重的空气污染,为了改善空气质量,政府制定了下列措施:1. 实施尾气治理方案,使汽车尾气排放的SO2和NOx总量每年减少10%。
2. 推广清洁能源车辆,使其占机动车保有量的比例增加4%。
3. 建设新的绿化景观,增加每年吸收的SO2和NOx总量3%。
根据以上措施,解答以下问题:1. 计算2023年该城市汽车尾气排放的SO2和NOx总量。
2. 估计2023年该城市机动车保有量。
3. 计算新绿化景观每年吸收的SO2和NOx总量。
解答:1. 计算2023年汽车尾气排放的SO2和NOx总量:2019年汽车尾气排放的SO2总量:15.2万吨2019年汽车尾气排放的NOx总量:20.8万吨汽车尾气排放的SO2和NOx总量每年减少10%,即每年剩余原量的90%。
2023年汽车尾气排放的SO2总量:15.2万吨 * 0.9 = 13.68万吨 2023年汽车尾气排放的NOx总量:20.8万吨 * 0.9 = 18.72万吨因此,2023年该城市汽车尾气排放的SO2总量为13.68万吨,NOx总量为18.72万吨。
2. 估计2023年该城市机动车保有量:假设2019年该城市机动车保有量为A辆。
推广清洁能源车辆,使其占机动车保有量的比例每年增加4%。
这可以表示为公式:A * (1 + 0.04)^4 = 1.04^4 * A2023年该城市机动车保有量:1.04^4 * A因此,估计2023年该城市机动车保有量为1.1699A辆。
3. 计算新绿化景观每年吸收的SO2和NOx总量:新绿化景观每年吸收的SO2和NOx总量增加3%。
假设2019年新绿化景观每年吸收的SO2总量为B吨,NOx总量为C吨。
2023年新绿化景观每年吸收的SO2总量:B * (1 + 0.03)^42023年新绿化景观每年吸收的NOx总量:C * (1 + 0.03)^4因此,2023年新绿化景观每年吸收的SO2总量为B * 1.1255吨,NOx总量为C * 1.1255吨。
高考题中的常见数学建模方法

高考题中的常见数学建模方法高考题中的常见数学建模方法“数学建模”是指通过对实际问题的抽象、简化,确定变量和参数,是一种创造性活动,也是一种解决现实问题的量化手段,根据创造性人才成长和发展的规律以及现代社会对人才素质的要求,寓创新能力培养于数学建模之中,是培养学生创新能力的一条有效途径。
解答数学应用问题的核心是建立数学模型。
这就要求:认真分析题意,准确理解题意,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想、转化、抽象,建立数学模型。
中学数学建模的基本类型有:一、函数最值模型有关涉及用料最省、成本最低、利润最大等应用问题,可考虑建立目标函数,转化为函数最值问题结合导数来解决。
例1:某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x(单位:元/千克)满足关系式y=a/(x-3)+10(x-6)~(2),其中3<x<="">(I)求a的值(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
分析:本题是2011年福建高考题,是以函数最值为模型的一个实际问题。
考查运算求解能力、应用意识,函数建模的能力,关键是列出利润的目标函数,第(I)题,代入x=5,y=11,得a=2 (II)由(I)可知,该商品每日的销售量y=2/(x-3)+10(x-6)~(2),所以商场每日销售该商品所获得的利润的目标函数为f(x)=(x-3)[2/(x-3)+10(x-6)~(2)]=2+10(x-3)(x-6)~(2),3<x<6< p="">再利用导数求得三次函数的最大值。
二、不等式模型有关设计求最大、最小值问题的应用题时,考虑转化为不等式,应用不等式的性质及基本不等式来解。
例2;某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z=______A.4650元B.4700元C.4900元D.5000元分析:这是2011年四川高考题,是一道以不等式为模型的应用题,关键是列出线性约束条件及目标函数。
最新-数学建模存在的问题及对策 精品

数学建模存在的问题及对策1数学建模竞赛培训过程中存在的问题11学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区包括民族地区的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.12无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.13学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施21扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.22成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.23学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.作者杨仪向长城魏代俊单位湖北民族学院。
高考数学中的数学建模

高考数学中的数学建模高考数学是每个即将步入大学校门的学生都需要面对的一道门槛。
在这一科目中,数学建模已经成为了越来越重要的一部分。
那么,什么是数学建模?在高考数学中,又应该如何应对数学建模题目呢?数学建模是什么?数学建模是指运用数学知识和技巧来对现实生活中的问题和情境进行分析、描述、归纳和推理的过程。
在数学建模中,我们需要先将实际问题转化为数学问题,然后再通过分析和处理,获得有用的结论和信息,最终解决实际问题。
数学建模的应用范围非常广泛,例如天文学、地球科学、生物科学、金融经济等等领域都需要使用数学建模来解决实际问题。
在高考数学中,数学建模也已经成为了一个必考点。
当然,高考数学中的数学建模相对于实际生活问题来说比较简单,但也需要我们掌握一定的技巧和方法。
如何应对高考数学中的数学建模?在应对高考数学中的数学建模时,我们需要掌握以下几个方面的内容:1. 熟悉数学建模的一般解题思路数学建模的一般解题思路可以分为以下四步:问题的分析、模型的建立、方案的求解、结果的验证。
在分析问题时,我们需要了解问题的前提条件、要求的解决结果和限制条件。
在模型的建立时,我们需要根据问题的特点和要求选择适当的模型,同时需要考虑模型的简明性和可靠性。
在方案的求解时,我们需要运用数学知识和技能来对模型进行计算,得到有用的信息和结论。
最后,在结果的验证中,我们需要将计算结果与实际情况进行比较,看是否符合要求。
2. 熟练掌握数学方法和工具在数学建模中,我们需要熟练掌握一些数学方法和工具,例如函数求极值、微积分、矩阵和概率统计等。
同时,我们还需要掌握一些常用的数学软件和工具,例如MATLAB、Mathematica等。
3. 多实践,多尝试在掌握了数学建模的一般解题思路和数学方法和工具之后,我们需要进行多样性的实践和尝试。
不同类型的问题需要采用不同的思路和方法来解决,需要我们进行多种实践和尝试,从而掌握更多的解题思路和技巧。
4. 多交流,多探讨在解答数学建模中的问题时,我们不能单纯地依靠自己的能力,还需要多与他人交流和探讨。
浅谈数学建模思想在高考数学试题中的应用高斌博

浅谈数学建模思想在高考数学试题中的应用高斌博发布时间:2021-10-19T11:18:23.074Z 来源:《教育研究》2021年11月下作者:高斌博[导读] 随着科学技术的快速发展,数学建模的应用价值受到越来越多人的重视。
陕西省西咸新区秦汉中学高斌博 716000随着科学技术的快速发展,数学建模的应用价值受到越来越多人的重视,当今社会的快速发展带来的社会需求使得高中数学教育不能仅局限于课本知识的学习,更要注重培养学生应用课本知识解决生活实际问题的能力. 2017年发布的《高中数学课程标准》中明确指出数学建模作为数学六大核心素养之一,并提议在命制高考数学试题时应将数学建模思想融入试题中,以考查学生是否具备应有的数学建模素养.一、中学数学建模的研究现状2016年起由清华大学教育研究院、中国高等教育学会学习科学研究分会主办,中国工业与应用数学学会(CSIAM)承办每年一届的“登峰杯”全国中学生数学建模竞赛,目的是为了更好地引导学生认识数学并做好衔接高中数学与大学数学的学习.二.数学建模思想在高考数学试题中的体现新课程标准的理念之一是“注重数学与实际生活相联系,增强学生的应用意识,发展学生的应用能力”,进两年的高考数学试题加大了数学建模思想的考察力度(一)数列模型分析实际问题将其转化为数学问题,建立数列模型应用数列相关知识进行求解.例1.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()笔者将此题转化成为等差数列模型,结合必修5等差数列前项和的性质,依然成等差数列进行求解,将数学建模思想融入到解题过程中,使问题的求解过程更易理解,所以在日常教学过程中注意利用数列模型解决相关类型的实际问题,提高学生数学建模能力.(二)概率统计模型将实际问题与概率统计知识相融合,建立概率统计模型进行求解.例2.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名 B.18名 C.24名 D.32名解题过程:由题可知第二天新增订单数为,设需要志愿者为名,笔者将此题转化成为概率统计模型,结合必修3概率统计相关知识进行求解,将数学建模思想融入到解题过程中,使问题的求解过程更易理解,所以在日常教学过程中要注重培养学生利用数学建模思想解决实际问题的能力.(三)函数模型挖掘实际问题中的隐含条件,建立恰当的目标函数,把实际问题转为函数模型进行求解.例3.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为()(ln19≈3)A.60 B.63 C.66 D.69笔者将此题转化成为函数模型,结合必修1对数函数的相关知识进行求解,将数学建模思想融入到解题过程中,使问题的求解过程更易理解,所以在日常教学过程中要注重培养学生解决实际问题的能力.三、提高学生数学建模能力的策略笔者就如何提高学生的数学建模能力给出三点建议.1.立足学生现有的知识水平,多层面培养学生的数学应用意识.数学问题往往源自于生活中的实际问题,因此在数学知识的教授过程中要尽可能联系生活实际.数学概念多数由生活中的实际问题抽象而来,在讲授概念的时候应从生活中的实际问题引入概念,培养学生利用生活中的实际问题解释数学概念的能力.2.把握教材内容,立足课本知识,为培养学生的数学建模能力打下坚实的基础.要提高学生的数学建模能力除了在日常教学中应用数学建模思想解决实际问题外,还需要立足课堂知识,夯实数学基础知识.3.突破审题关,提高学生抽象概括能力,培养学生的数学建模能力.在日常教学过程中,我们经常见到部分学生在解决实际问题时,往往不知所措.解决生活中的实际问题的关键之一是将实际问题抽象转化为数学问题,建立合适的数学模型.要建立合适的数学模型必须突破审题关,抓住实际问题中关键信息,将关键信息转为数学问题.要解决上述问题,首先,教师要清楚学生现有的知识水平,选择适合学生难度的实际问题进行讲解.其次,要引导学生主动理解题意抓住关键信息,重视从自然语言转为数学语言.在实际问题转为数学问题的过程中,教师做好启发并引导学生建立合适数学模型,进而求解.参考文献:[1]汤晓春.高中数学教学培养学生数学建模素养的实践[J].教育理论与实践,2017,62-64.[2]吴承瑜.新课程标准下高中数学建模教学浅析[J].牡丹江教育学院学报,2006.05,61-63.[3]刘铁.中学数学建模方法[M].西南交通大学,2018.05,14-26.。
数学建模基础与应用 2024高考数学

数学建模基础与应用 2024高考数学数学建模是一门综合性学科,通过将数学方法和技术应用于实际问题的建模过程,从而解决或理解这些问题。
在2024年的高考数学中, 数学建模已成为一个重要的考点。
本文将介绍数学建模的基础知识和实际应用,帮助考生提高数学建模能力,为高考做好准备。
一、数学建模基础知识1.1 数学建模的定义数学建模是指将实际问题转化为数学问题,通过数学分析和求解,得到对问题的理解、描述和解决方案的过程。
数学建模需要有良好的数学基础,包括代数、几何、概率与统计等知识。
同时,还需要具备一定的实际问题分析和抽象能力。
1.2 数学模型的构建过程数学模型的构建过程包括问题的分析、建立数学模型、模型求解和结果的验证等几个步骤。
具体而言,问题的分析包括对问题的背景和要求进行理解和梳理;建立数学模型是将实际问题转化为数学问题,并提出假设和约束条件;模型求解是根据所建立的数学模型进行计算和求解;结果的验证是将求得的解通过实际情况进行检验和验证。
1.3 常用的数学建模方法数学建模有多种方法和技巧,常用的包括数理统计、微积分、最优化、概率论等。
在不同的问题情境下,适用的方法和技巧也有所不同。
因此,学生需要根据问题的性质和要求选择合适的数学方法和技巧。
二、数学建模的应用2.1 物理建模物理建模是数学建模的一个重要领域。
物理建模的研究对象包括各种物理现象和工程问题,如天体力学、流体力学、热传导等。
通过建立数学模型,可以对物理问题进行描述和求解,并为工程设计和科学研究提供理论依据。
2.2 经济建模经济建模是将数学方法应用于经济学领域的建模过程。
经济建模研究的问题包括市场分析、货币政策、经济增长等。
通过建立数学模型,可以对经济问题进行预测和分析,为决策提供参考和支持。
2.3 生物建模生物建模是在生物学领域应用数学方法进行建模的过程。
生物建模的研究内容包括生物进化、生物群体行为、生物传播等。
通过建立数学模型,可以对生物系统进行分析和研究,并为生物学研究提供新的思路和方法。
高考数学一轮复习练习 数学建模——函数模型及其应用

数学建模——函数模型及其应用基础巩固组1.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1小时,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油2.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台3.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=1t2米,那么,此人()2A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米5.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了(1.2x)%.若要保证产品A的年产值不减少,则最多能分流的人数是()A.15B.16C.17D.186.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质,至少应过滤次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)含量减少137.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt cm3,经过8 min后发现容器内还有一半的沙子,则再经过 min,容器中的沙子只有开始时的八分之一.8.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(单位:μg)与时间t(单位:h)之间的关系近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数解析式y=f(t);(2)据进一步测定:当每毫升血液中含药量不少于0.25 μg时,治疗有效,求服药一次后治疗有效的时间.综合提升组9.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4 m和a m(0<a<12).不考虑树的粗细,现用16 m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位:m2)的图像大致是()10.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2018年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年11.如图,直角边长为2 cm的等腰直角三角形ABC,以2 cm/s 的速度沿直线l向右运动,则该三角形与矩形CDEF重合部分面积y(单位:cm2)与时间t(单位:s)的函数关系(设0≤t≤3)为,y的最大值为.12.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下预测该海鲜将在哪几个月内价格下跌.创新应用组13.声强级Y(单位:分贝)由公式Y=10lg I给出,其中I为声强(单位:W/m2).10-12(1)平常人交谈时的声强约为10-6 W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?参考答案课时规范练13 数学建模——函数模型及其应用1.D 从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L 汽油的行驶路程可大于5 km,所以选项A 错误;由图可知以相同速度行驶相同路程甲车消耗汽油最少,所以选项B 错误;甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1小时的路程为80 km,消耗8 L 汽油,所以选项C 错误;当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以选项D 正确.2.C 设利润为f (x )万元,则f (x )=25x-(3 000+20x-0.1x 2)=0.1x 2+5x-3 000(0<x<240,x ∈N *).令f (x )≥0,得x ≥150,故生产者不亏本时的最低产量是150台.故选C .3.B 由题意,设利润为y 元,租金定为(3 000+50x )元(0≤x ≤70,x ∈N ),则y=(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤5058+x+70-x 22=204 800,当且仅当58+x=70-x ,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .4.D 已知s=12t 2,车与人的间距d=(s+25)-6t=12t 2-6t+25=12(t-6)2+7.当t=6时,d 取得最小值7.所以不能追上汽车,但期间最近距离为7米,故选D .5.B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x )[1+(1.2x )%]t ,则{0<x <100,x ∈N *,(100-x )[1+(1.2x )%]t ≥100t , 解得0<x ≤503.因为x ∈N *,所以x 的最大值为16,故选B . 6.8 设至少过滤n 次才能达到市场要求,则2%1-13n ≤0.1%,即23n ≤120, 所以n lg 23≤-1-lg 2,解得n ≥7.39,所以n=8.7.16 当t=0时,y=a ,当t=8时,y=a e -8b =12a ,所以e -8b =12,容器中的沙子只有开始时的八分之一时,即y=a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t=24,所以再经过24-8=16(min),容器中的沙子只有开始时的八分之一.8.解 (1)根据所给的曲线,可设y={kt ,0≤t ≤1,(12) t -a ,t >1.当t=1时,由y=4,得k=4,由121-a =4,得a=3.则y={4t ,0≤t ≤1,(12) t -3,t >1.(2)由y ≥0.25,得{0≤t ≤1,4t ≥0.25或{t >1,(12) t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗有效的时间为5-116=7916(h).9.B 设AD 的长为x m,则CD 的长为(16-x ) m,则矩形ABCD 的面积为x (16-x ) m 2.因为要将点P 围在矩形ABCD 内,所以a ≤x ≤12.当0<a ≤8时,当且仅当x=8时,u=64;当8<a<12时,u=a (16-a ).画出函数图像可得其形状与B 选项接近,故选B .10.C 若2019年是第1年,则第n 年全年投入的科研经费为1 300×1.12n 万元,由1 300×1.12n >2 000,可得lg 1.3+n lg 1.12>lg 2,所以n ×0.05>0.19,得n>3.8,所以第4年,即2022年全年投入的科研经费开始超过2 000万元,故选C .11.y={2t 2,0≤t <1,2,1≤t ≤2,2-12(2t -4)2,2<t ≤32 如题图,当0≤t<1时,重叠部分面积y=12×2t ×2t=2t 2;当1≤t ≤2时,重叠部分为直角三角形ABC ,重叠部分面积y=12×2×2=2(cm 2); 当2<t ≤3时,重叠部分为梯形,重叠部分面积y=S △ABC -12(2t-4)2=2-12(2t-4)2=-2t 2+8t-6. 综上,y={2t 2,0≤t <1,2,1≤t ≤2,-2t 2+8t -6,2<t ≤3,故可得y 的最大值为2.12.解 (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x-q )2+p.(2)对于f (x )=x (x-q )2+p ,由f (0)=4,f (2)=6,可得p=4,(2-q )2=1,又q>1,所以q=3,所以f (x )=x 3-6x 2+9x+4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x+4(0≤x ≤5),所以f'(x )=3x 2-12x+9, 令f'(x )<0,得1<x<3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月,10月两个月内价格下跌. 13.解 (1)当声强为10-6 W/m 2时,由公式Y=10lgI 10-12,得Y=10lg 10-610-12=10lg 106=60(分贝).(2)当Y=0时,由公式Y=10lg I 10-12,得10lgI 10-12=0.所以I10-12=1,即I=10-12 W/m 2,则最低声强为10-12 W/m 2.(3)当声强为5×10-7 W/m 2时,声强级为Y=10lg 5×10-710-12=10lg(5×105)=50+10lg 5(分贝),因为50+10lg 5>50,故这两位同学会影响其他同学休息.。
高考数学数学建模知识点梳理

高考数学数学建模知识点梳理在高考数学中,数学建模是一个重要的考点,它要求考生能够运用数学知识解决实际问题。
为了帮助考生更好地复习和准备高考数学数学建模,本文将对数学建模中的一些重要知识点进行梳理。
一、建模过程在进行数学建模时,我们需要遵循一定的建模过程,主要包括以下几个步骤:1.问题的理解与分析:仔细阅读问题,明确问题的目标和约束条件。
2.建立数学模型:根据问题的特点和要求,选择恰当的数学方法建立数学模型。
3.模型求解:运用数学方法解决所建立的数学模型,得到问题的解答。
4.模型检验与分析:对模型的解答进行检验,分析解答的合理性和可行性。
5.模型评价与改进:对模型的优缺点进行评价,进一步改进和优化模型。
二、数学建模中的数学知识点数学建模中所涉及的数学知识点较为广泛,包括但不限于以下几类:1.函数与方程:- 一元函数与方程:常见的一元函数类型、一元方程的求解方法。
- 多元函数与方程:常见的多元函数类型、多元方程的求解方法。
2.微积分:- 极限与连续:函数极限的定义与性质、连续函数的性质与判定。
- 导数与微分:函数导数的计算、微分的定义与应用。
- 积分与定积分:不定积分的计算、定积分的应用。
3.概率与统计:- 事件与概率:事件的定义与性质、概率的计算方法。
- 随机变量与概率分布:常见的离散型与连续型随机变量、概率分布的计算与应用。
- 统计与抽样:样本的收集与处理、统计指标的计算与分析。
4.线性代数:- 向量与线性方程组:向量的基本性质与运算、线性方程组的求解方法。
- 矩阵与行列式:矩阵的运算与性质、行列式的计算与应用。
5.图论与最优化:- 图的基本概念:图的表示方法、连通性与路径问题。
- 最优化问题:目标函数与约束条件、线性规划与整数规划问题。
三、数学建模实例为了进一步说明数学建模的应用,我们将给出一个具体的数学建模实例。
实例:某城市每天的交通拥堵情况会影响到学生的作息时间和学习效果,为了解决这个问题,需要设计一个优化模型来安排学生的作息时间,使得学生在交通拥堵最小时上学,同时又保证有足够的睡眠时间。
新高考背景下高中数学建模教学策略与案例分析

新高考背景下高中数学建模教学策略与案例分析随着社会的快速发展和人才需求的变化,中国高中教育也面临着新的挑战。
为了培养更多具有创新能力和实践能力的高素质人才,教育部在2017年正式推出了新高中课程改革,其中数学课程的改革尤为重要。
在新高中数学课程的改革中,数学建模已经成为一门重要的学科。
数学建模是将数学知识与实际问题相结合,通过数学模型对实际问题进行分析和解决的过程。
它旨在培养学生的实践能力、创新能力和解决问题的能力。
因此,如何在高中数学课程中有效地进行数学建模教学,成为了教师和学生面临的一个重要问题。
针对新高考背景下高中数学建模教学,教师可以采取一些策略来提高教学效果。
首先,教师应该把数学建模融入到课程教学的各个环节中去。
例如,在讲解数学知识的过程中,教师可以适当引入一些实际问题,并鼓励学生用数学方法来解决问题。
同时,教师还可以设计一些数学建模的课程项目,让学生在实际操作中培养解决问题的能力。
其次,教师应该注重培养学生的团队合作精神和实践能力。
数学建模通常需要学生们分工合作,将各自的专业知识和技能进行整合,形成一个完整的数学模型。
因此,教师可以让学生们组成小组,共同解决一个实际问题,并通过讨论和合作来改进和完善模型。
这样不仅可以培养学生的团队合作能力,还可以激发学生的学习兴趣和主动性。
另外,教师还可以通过案例分析的方式来提高数学建模教学的效果。
在课堂上,教师可以引入一些具体的案例,让学生们根据实际情况进行数学建模和解决问题。
通过对不同案例的分析和讨论,学生们可以更好地理解数学建模的过程和方法,并提高他们的应用能力。
为了更好地说明上述策略的实施效果,以下将以一道实例题为例进行分析。
某市的交通管理部门要对一个拟规划的新交通路线进行预测和评估。
他们需要确定该路线的交通流量、拥堵状况及安全性等指标。
教师可以将这个实际问题引入到数学课堂上,让学生们通过建立数学模型来解决。
首先,教师可以引导学生们收集相关数据,如不同时间段的车流量、道路长度、红绿灯设置等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中的数学建模问题【一】数学应用题的分析和处理(A)解应用题的基本程序:解应用题,首先要在阅读材料、理解题意的基础上,把实际问题抽象成数学问题,就是从实际出发,经过去粗取精、抽象概括,利用学过的数学知识建立相应的数学模型,再利用数学知识对数学模型进行分析、研究,得到数学结论后返回到实际问题中去验证。
思路如下图:转化为数学问题数学问题数学解答实际问题结论回到实际问题数学问题结论(B)解应用题的一般程序(1)读阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础(2)建将文字语言转化为数学语言,利用数学知识,建立相应的数学模型熟悉基本数学模型,正确进行建“模”是关键的一关(3)解求解数学模型,得到数学结论一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程(4)答将数学结论还原给实际问题的结果( C ) 中学数学中常见应用问题与数学模型(1)优化问题实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决(2)预测问题经济计划、市场预测这类问题通常设计成“数列模型”来解决(3)最(极)值问题工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值(4)等量关系问题建立“方程模型”解决(5)测量问题可设计成“图形模型”利用几何知识解决典型题例示范讲解题1:1.某大学的信息中心A 与大学各部门、各院系B ,C ,D ,E ,F , G ,H ,I 之间拟建立信息联网工程,实际测算的费用如图所示 (单位:万元)。
请观察图形,可以不建部分网线,而使得中心 与各部门、院系彼此都能连通(直接或中转),则最少的建网费 用(万元)是B A .12 B .13 C .14 D .162. 某商场在元旦促销期间规定,商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如,购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×0.2+30=110(元).若顾客购买一件标价为1000元的商品,则所能得到的优惠额为BA .130元 B.330元 C.360元 D.800元3. 我国发射的神舟6号飞船开始运行的轨道是以地球的中心F 为一个焦点的椭圆,测得近地点A 距地面200公里,远地点B 距地面350 公里,地球的半径为6371公里,则从椭圆轨道上一点看地球的最大 视角为 ( B ) (A )67216371arcsin 2 (B )65716371arcsin 2 (C )67216371arccos 2 (D )65716371arccos 24. 一张报纸的厚度为a ,面积为b ,现将报纸对折(即沿对边中点连线折叠)7次,这时报纸的厚度和面积分别为YCY ( C )A .b a 81,8B .b a 641,64 C .b a 1281,128 D .b a 2561,2565. 2006年度某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如下:人在6000,10000,14000,18000这四个数据中, 与成绩高于11级分的考生数最接近的是BA .6000B .10000C .14000D .180006.正四面体的四个表面上分别写有数字1,2,3,4.将3个这样均匀的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为 C A .641 B . 6413 C. 6437D . 6461 7.已知A ,B ,C 是平面上不共线上三点,O 为ABC ∆外心,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的DA 内心B 垂心C 重心D AB 边的中点8.一组数据中的每一个数据都减去80,得到一组新数据,若这组新数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别是 AA .81.2,4.4B .78.8,4.4C .81.2,84.4D .78.8,75.6题2.(06广西重点中学)某家用电器厂根据其产品在市场上的销售情况,决定对原来以每件2000元出售的一种产品进行调价,并按新单价的八折优惠销售。
结果每件产品仍可获得实际销售价20%的利润。
已知该产品每件的成本是原销售价的60%。
(1)求调价后这种产品的新单价是每件多少元?让利后的实际销售价是每件多少元?(2)为使今年按新单价让利销售后的利润总额不低于20万元,今年至少应销售这种产品多少件?(每件产品利润=每件产品的实际销售价一每件产品的成本价)解:(1)设每件产品的新单价为x 元…………………………………………1分由已知:该产品的成本是2000×60%=1200元………………………………2分 由题意:x ·80%-1200=20%(80%·x )……………………………………3分 解得:x=1875(元)……………………………………………………………4分 ∴80%·x=1500元………………………………………………………………5分所以,该产品调价后的新单价是每件1875元,让利后实际售价为每件1500元.……6分(2)设今年至少应生产这种电器m 件,则由题意,得m(1500-1200)≥200000…………………………………………………… 8分 解得:m ≥66632……………………………………………………………… 9分 ∵m ∈N ,∴m 的最小值应为667件…………………………………………11分 答:今年至少售出667件产品,才能使利润总额不低于20万元.……… 12分题3.(06北京海淀区)如图,a 是海面上一条南北方向的海防警戒线,在a 上一点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20km 和54km 处。
某时刻,监测点B 收到发自静止目标P 的一个声波,8s 后监测点A ,20s 后监测点C 相继收到这一信号。
在当时的气象条件下,声波在水中的传播速度是1.5km/s.(1)设A 到P 的距离为x km ,用x 表示B ,C 到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线a 的距离(结果精确到0.01km )。
(1)依题意,有PA-PB=1.5×8=12(km). PC-PB=1.5×20=30(km) ∴PB=(x-12)(km),PC=30+(x-12)=(18+x)(km). 在△PAB 中,AB=20kmAB PA PB AB PA PAB ⋅-+=∠2cos 222xx x x x 5323202)12(20222+=⋅--+=同理,xxPAC 372cos -=∠ ∵,cos cos PAC PAB ∠=∠∴xxx x 3725323-=+ 解之,得)(7132km x = (2)作PD D ,a 于⊥在△ADP 中,).(71.17532713235323cos km xx x APD PA PD ≈+⨯=+⋅=∠= 答:静止目标P 到海防警戒线a 的距离约为17.71km题4(06山东省潍坊)某地区的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数. ① f(x)=p · q x; ② f(x)=px 12++qx ;③ f(x)=x(x-q)2+p.(以上三式中p 、q 均为常数,且q >1). (1)为准确研究其价格走势,应选哪种价格模拟函数,为什么?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数的定义域是[0,5],其中x=0表示4月1日,x=1表示5月1日,…,以此类推);(3)为保证果农的收益,打算在价格下跌期间积极拓宽外销,请你预测该果品在哪几个月份内价格下跌.(1)应选f(x)=x(x-q)2+p.因为①f(x)=p ·q x 是单调函数;②f(x)=px 2+qx+1的图象不具有先升再降后升特征;③f(x)=x(x-q)2+p 中,f ′(x)=3x 2-4qx+q 2, 令f ′(x)=0,得x=q,x=3q,f(x)有两个零点. 可以出现两个递增区间和一个递减区间.(2)由f(0)=4,f(2)=6得⎩⎨⎧+-==,)2(26,42p q p 解之得⎩⎨⎧==,3,4q p (其中q=1舍去).∴函数f(x)=x(x-3)2+4,即f(x)=x 49623++-x x (0≤x <5) (3)由f(x) <0,解得1<x <3∴函数f(x)=x 49623++-x x 在区间(1,3)上单调递减, ∴这种果品在5月,6月份价格下跌.题5(06广西钦州)已知有三个居民小区A 、B 、C 构成△ABC ,AB =700m 、BC =800m 、AC =300m .现计划在与A 、B 、C 三个小区距离相等处建造一个工厂,为不影响小区居民的正常生活和休息,需在厂房的四周安装隔音窗或建造隔音墙.据测算,从厂房发出的噪音是85分贝,而维持居民正常生活和休息时的噪音不得超过50分贝.每安装一道隔音窗噪音降低3分贝,成本3万元,隔音窗不能超过3道;每建造一堵隔音墙噪音降低15分贝,成本10万元;距离厂房平均每25m 噪音均匀降低1分贝.(1)求∠C 的大小;(2)求加工厂与小区A 的距离.(精确到1m );(3)为了不影响小区居民的正常生活和休息且花费成本最低,需要安装几道隔音窗,建造几堵隔音墙?(计算时厂房和小区的大小忽略不计) 解:(1)由余弦定理得cos ∠C =12,∠C =60º; ························································ 3分 (2)由题设知,所求距离为△ABC 外接圆半径R ,··········································· 4分由正弦定理得R =7002sin C∠=404. ··························································· 6分答:加工厂与小区A 的距离约为404m ; ················································· 7分 (3)设需要安装x 道隔音窗,建造y 堵隔音墙,总成本为S 万元,由题意得:40485315150,2503,0,,N .x y x y x y *⎧---⨯≤⎪⎪⎪≤≤⎨⎪≥⎪∈⎪⎩即5 6.28,03,0,,N .x y x y x y *+≥⎧⎪≤≤⎪⎨≥⎪⎪∈⎩········································· 9分 其中S =3x +10y ,当x =2,y =1时,S 最小值为16万元.················· 11分 答:需安装2道隔音窗,建造1堵隔音墙即可. ····································· 12分题6(06上海徐汇区))人口问题其实是许多国家的政府都要面对的问题。