高考数学 玩转压轴题 专题3.1 复杂数列的通项公式求解问题
高中数学核心考点:数列 难点1 复杂数列求通项 - 解析
进阶:复杂数列求通项公式一、取导数 1.)0(,11≠+=--mkb b ka ma a n n n 型,两边取导数得:mka mb a n n +=-11,当m b =时可以构造na 1的等差数列, 当m b ≠,可构造公比为m b 的等比数列⎪⎪⎭⎫⎝⎛-+m b k a n 1求解 例1:已知数列{}n a 满足:132a =,且()1132,21n n n na a n n N a n *--=≥∈+-,则数列{}n a 的通项公式为_________思路:观察到递推公式的分子只有1n a -,所以考虑两边同取倒数,再进行变形:111111312121212133333n n n n n n n n n na a n n n n a a n a na n na a a ------+---=⇒==+⇒=++-,从而找到同构特点,并设为辅助数列:n nnb a =,求出{}n b 通项公式后即可解出n a 解:11321n n n na a a n --=+- 11112121333n n n n a n n a na n na ---+--∴==+12133n n n n a a --∴=+ 设n n n b a =,则11233n n b b -=+,11123b a ==而()1112111333n n n n b b b b --=+⇒-=- {}1n b ∴-为公比是13的等比数列 ()111113n n b b -⎛⎫∴-=-⋅ ⎪⎝⎭ 113n n b ⎛⎫∴=- ⎪⎝⎭即113nn n a ⎛⎫=- ⎪⎝⎭331113n n nn nn a ⋅∴==-⎛⎫- ⎪⎝⎭变式:在数列{}n a 中,11=a ,131+=+n nn a a a ,求数列{}n a 的通项公式2.)0(,11≠++=--mkbc bka cma a n n n 型对于一个函数f (x ),我们把满足f (m )=m 的值x =m 称为函数f (x )的“不动点”.类似地,利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1)若)(x f 有两个相异的不动点q p ,,则qa p a k q a p a n n n n --⋅=----11(这里qc a pca k --=) (2)若)(x f 只有唯一不动点p ,则k pa p a n n +-=--111 (这里d a c k +=2) 例2:已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,求该数列的通项公式.解 由方程x =7x -2x +4,得数列{a n }的不动点为1和2,a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎨⎧⎭⎬⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2·⎝⎛⎭⎫65n -1,解得a n =12·⎝⎛⎭⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.变式:已知数列{a n }满足a 1=2,a n =a n -1+22a n -1+1(n ≥2),求数列{a n }的通项公式.解 解方程x =x +22x +1,化简得2x 2-2=0,解得x 1=1,x 2=-1,令a n +1-1a n +1+1=c ·a n -1a n +1,由a 1=2,得a 2=45,可得c =-13,∴数列⎩⎨⎧⎭⎬⎫a n -1a n +1是以a 1-1a 1+1=13为首项,以-13为公比的等比数列,∴a n -1a n +1=13·⎝⎛⎭⎫-13n -1,∴a n =3n -(-1)n3n +(-1)n .二、取对数)0,0(,1>>=-q p pa a q n n 型,两边取对数p a q a n n lg lg lg 1+=-,划归为熟知的问题求解,取对数实质是降次。
高考数学技巧如何快速计算复杂的数列题
高考数学技巧如何快速计算复杂的数列题数列是高考数学中常见的考点之一,也是很多同学感到头疼的难题。
在高考中,能够快速而准确地计算数列题目是取得高分的关键之一。
本文将介绍几种应用数学技巧的方法,以便快速计算复杂的数列题目。
一、等差数列等差数列是高考数学中最基础且常见的数列之一。
在解决等差数列的题目时,可以运用以下技巧:1. 求通项公式如果给定了等差数列的前几项或者某一项的值,我们可以通过求解通项公式来快速计算任意项的值。
通项公式的一般形式为:An = a1 + (n-1)d,其中An表示第n项,a1为首项,d为公差。
将已知条件代入,就可以得到计算结果。
2. 利用性质等差数列有一些性质,比如相邻两项的差值始终为常数,前n项和的公式等。
在解决题目时,可以善用这些性质,简化计算步骤,提高计算速度。
二、等比数列等比数列是高考数学中另一个常见的数列。
解决等比数列题目时,可以运用以下技巧:1. 求通项公式与等差数列类似,等比数列也有通项公式。
通项公式的一般形式为:An = a1 * q^(n-1),其中An表示第n项,a1为首项,q为公比。
通过将已知条件代入通项公式,可以求得任意项的值。
2. 利用性质等比数列也有一些性质,如相邻两项的比值为常数,前n项和的公式等。
在解决题目时,利用这些性质可以简化计算过程,提高效率。
三、斐波那契数列斐波那契数列是一种特殊的数列,其定义为:F(1) = 1,F(2) = 1,F(n) = F(n-1) + F(n-2)(n ≥ 3)。
在解决斐波那契数列问题时,可以运用以下技巧:1. 利用递推关系斐波那契数列的递推关系非常明显,每一项都是前两项的和。
这个特点可以帮助我们快速计算第n项的值。
如果需要计算较大的斐波那契数列的项数,可以利用循环或递归的方法进行计算。
2. 利用性质斐波那契数列也有一些特殊性质,如相邻两项的比值逐渐趋近于黄金比例等。
在解决题目时,利用这些性质可以得到更多的信息,进一步简化计算过程。
求复杂地推关系数列通项公式,这个新方法高考前必看!
求复杂地推关系数列通项公式,这个新方法高考前必看!
超级高考生APP独家评星:★★★
建议100以上的同学掌握
高考中根据数列的递推公式求出通项公式问题是必考题型,通常在大题的第一问,而第一问能否快速求解直接影响到后面的计算,所以今天讲解的方法从方法技巧和解决速度的提升对同学们都是非常有用的。
常见求通项公式的方法有观察法,前n项和法,累加累乘法,构造辅助数列的待定系数法,取倒法,相除法
其中又以构造法最为复杂难懂,是求解数列通项公式的一个难点,通常会给出递推关系的一般形式,再配以相应的解决方法,加以练习,就能突破这个难点。
平时学习中不要把这个问题想的过于抽象复杂,其实很简单,打个比方,一般人见到红灯就会停,绿灯就行,这是一种惯性,见多了,自然就会做出最熟悉又正确的选择。
做题也是一样,解题首先要看这是属于那一类型的题目,相对应的有哪些解决方法,如果常规方法解决不出来,这个时候如何找到一直解决方法和未知题型之间的相通之处。
当然,这个就是老师今天要给同学们讲的重点课本的公式结论大多都是思维的结果,得到过程是很简略的,有的甚至没有,看看下面课本中的原题《人教A版必修五复习参考题二B组第6题》
一、题目:
先看教学参考书上给出的参考答案:
对于文中提到的课本中的解决办法,对于这个“神来之笔”,很多同学是想不到的,
下面给出老师思考分析解决这类问题的方法技巧
二、一般化
三、应用举例
符合“特征方程”的形式,解决办法就同上,直接代入公式得道通项公式,是不是非常简单呢,求解的过程中要注意复杂的根式计算,
避免出现计算错误。
2020届高考数学复习冲刺热点题型之数列的通项公式的求解方法
((A.2016一.【学习目标】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.3.会利用已知数列的通项公式或递推关系式求数列的某项.4.会用数列的递推关系求其通项公式.二.【方法总结】1.利用通项公式,应用函数思想是研究数列特征的基本方法之一,应善于运用函数观点认识数列,用函数的图象与性质研究数列性质.练习 1. 已知数列 {a n}满足 a 1= 1 ,,则数列{-1)n a }的前 40 项的和为n)A. 19 325 41 20B.C.D.20 462 84 41【答案】D【方法总结】:这个题目考查的是数列的求和问题。
首先数列求和选用的方法有,裂项求和,主要用于分式能够通过写成两项相减的形式从而消掉中间的项;分组求和,用于相邻两项之和是定值,或者有规律的;错位相减求和,用于一个等差一个等比乘在一起求和的数列。
练习 2. 数列{a n}满足 a 1= 1 ,且对于任意的 n ∈ N * 都有 ,则 等于()4032 2017 4034 B.C.D.20172017 2018 20183,则数列{a则,数列 ⎨⎧ 1 ⎩ n +1 a ⎭【答案】D【方法总结】:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.练习 3. 已知数列{an}满足 a 1= 1 , a =21,若n }的通项 a = ()n A.1 111B. C. D.2n -1 2n - 13n -1 2n -1 + 1【答案】B【解析】, , ,1 ⎫- ⎬ 是首项为 2,公比为 2 的等比数列,a n,利用叠加法,,2n-1(B.(-1)n D.(-1)n-1..,则a=1n.选B.【方法总结】:由前几项归纳数列通项或变化规律的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同.对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用处理.练习1.数列的一个通项公式可能是()A.(-1)n112n2nC.(-1)n-1112n2n【答案】D练习2.数列0.3,0.33,0.333,0.3333,…的通项公式是a n=()A.(10n-1)B.C.(10n-1)D.(10n-1).【答案】B【解析】1-=0.9,1-=0.99,…,故原数列的通项公式为a n=.选B.练习3.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类如下图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2017项为a2017,则a2017-5=()A. ⋅ ⎪B. ⋅ ⎪C. 2 ⋅ ⎪ -D. ⎪A.【答案】CB. C. 1008⨯ 2023 D. 2017⨯1008【方法总结】:根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:相邻项的变化特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.4.项和互化求通项例 4.设是数列 的前 项和,且,则 a =( )n1 ⎛ 1 ⎫n -13 ⎝ 2 ⎭ 1 ⎛ 2 ⎫n -12 ⎝3 ⎭⎛ 1 ⎫n 1 ⎛ 1 ⎫n⎝ 3 ⎭ 3 ⎝ 3 ⎭【答案】D【解析】由题意可得:,考查所给选项:,则选项 B 错误;当 n = 2 时:,即 ,考查 ACD 选项: ,2n2n-12n2n+12n2n-12n2n+12(1)-(2)得:2n-1a=122n22n则选项AC错误,本题选择D选项.【方法规律总结】:给出Sn与an的递推关系,求a n,常用思路是:一是利用转化为a n的递推关系,再求其通项公式;二是转化为S n的递推关系,先求出S n与n之间的关系,再求a n.练习1.设数列{a}满足n,通项公式是()A.a=n1111B.a=C.a=D.a=n n n【答案】C练习2.设数列{an}满足,通项公式是()A.a=n1111B.a=C.a=D.a=n n n【答案】C【解析】当n=1时,a=11,…………...(1),……....(2), n n1n,a=,a=符合,则通项公式是a=111,选C.练习3.已知正项数列{an}的前n项和为Sn,且,a=m,现有如下说法:1①a=5;②当n为奇数时,2则上述说法正确的个数为()A.0个B.1个C.2个D.3个;③.5【方法总结】:给出S与a的递推关系求a,常用思路是:一是利用转化为a的递n n n n推关系,再求其通项公式;二是转化为S的递推关系,先求出S与n之间的关系,再求a.应用关系式n n n时,一定要注意分n=1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.5.构造辅助数列求通项(1)的形式例5.数列{a}满足nA.33B.32C.31D.34【答案】A【解析】数列{a}满足n项为1,得到则a=()6,是以2为公比的等比数列,首a=33.6故答案为:A。
2022-2023学年度高考数学专题突破《数列通项公式的多种妙解方式》含十六大经典题型附答案解析
数列通项公式的多种妙解方式经典题型一:观察法经典题型二:叠加法经典题型三:叠乘法经典题型四:待定系数法经典题型五:同除以指数经典题型六:取倒数法经典题型七:取对数法经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题经典题型九:周期数列经典题型十:前n 项积型经典题型十一:“和”型求通项经典题型十二:正负相间讨论、奇偶讨论型经典题型十三:因式分解型求通项经典题型十四:其他几类特殊数列求通项经典题型十五:双数列问题经典题型十六:通过递推关系求通项(2022·全国·高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【解析】(1)∵a 1=1,∴S 1=a 1=1,∴S 1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×⋯×a n -1a n -2×a n a n -1=1×31×42×⋯×n n -2×n +1n -1=n n +1 2,显然对于n =1也成立,∴a n 的通项公式a n =n n +1 2;(2)1a n =2n n +1 =21n -1n +1 , ∴1a 1+1a 2+⋯+1a n=21-12 +12-13 +⋯1n -1n +1 =21-1n+1<2(2022·全国·高考真题(理))记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n-1+n-12=2n-1a n-1+n-1②,①-②得,2S n+n2-2S n-1-n-12=2na n+n-2n-1a n-1-n-1,即2a n+2n-1= 2na n-2n-1a n-1+1,即2n-1a n-2n-1a n-1=2n-1,所以a n-a n-1=1,n≥2且n∈N*,所以a n是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,所以S n=-12n+nn-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时S n min=-78.类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.类型Ⅱ公式法:若已知数列的前项和与a n的关系,求数列a n的通项a n可用公式a n=S1,(n=1)S n-S n-1,(n≥2)构造两式作差求解.用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a1和a n合为一个表达,(要先分n=1和n≥2两种情况分别进行运算,然后验证能否统一).类型Ⅲ累加法:形如a n+1=a n+f(n)型的递推数列(其中f(n)是关于n的函数)可构造:a n-a n-1=f(n-1)a n-1-a n-2=f(n-2)...a2-a1=f(1)将上述m2个式子两边分别相加,可得:a n=f(n-1)+f(n-2)+...f(2)+f(1)+a1,(n≥2)①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的二次函数,累加后可分组求和;④若f(n)是关于n的分式函数,累加后可裂项求和.类型Ⅳ累乘法:形如a n +1=a n ⋅f (n )a n +1a n=f (n )型的递推数列(其中f (n )是关于n 的函数)可构造:a n a n -1=f (n -1)a n -1a n -2=f (n -2)...a 2a 1=f (1)将上述m 2个式子两边分别相乘,可得:a n =f (n -1)⋅f (n -2)⋅...⋅f (2)f (1)a 1,(n ≥2)有时若不能直接用,可变形成这种形式,然后用这种方法求解.类型Ⅴ构造数列法:(一)形如a n +1=pa n +q (其中p ,q 均为常数且p ≠0)型的递推式:(1)若p =1时,数列{a n }为等差数列;(2)若q =0时,数列{a n }为等比数列;(3)若p ≠1且q ≠0时,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设a n +1+λ=p (a n +λ),展开移项整理得a n +1=pa n +(p -1)λ,与题设a n +1=pa n +q 比较系数(待定系数法)得λ=q p -1,(p ≠0)⇒a n +1+q p -1=p a n +q p -1 ⇒a n +q p -1=p a n -1+qp -1 ,即a n +q p -1 构成以a 1+qp -1为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出a n +qp -1 的通项整理可得a n .法二:由a n +1=pa n +q 得a n =pa n -1+q (n ≥2)两式相减并整理得a n +1-a na n -a n -1=p ,即a n +1-a n 构成以a 2-a 1为首项,以p 为公比的等比数列.求出a n +1-a n 的通项再转化为类型Ⅲ(累加法)便可求出a n .(二)形如a n +1=pa n +f (n )(p ≠1)型的递推式:(1)当f (n )为一次函数类型(即等差数列)时:法一:设a n +An +B =p a n -1+A (n -1)+B ,通过待定系数法确定A 、B 的值,转化成以a 1+A +B 为首项,以A m n =n !n -m !为公比的等比数列a n +An +B ,再利用等比数列的通项公式求出a n +An +B 的通项整理可得a n .法二:当f (n )的公差为d 时,由递推式得:a n +1=pa n +f (n ),a n =pa n -1+f (n -1)两式相减得:a n +1-a n =p (a n -a n -1)+d ,令b n =a n +1-a n 得:b n =pb n -1+d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出a n .(2)当f (n )为指数函数类型(即等比数列)时:法一:设a n +λf (n )=p a n -1+λf (n -1) ,通过待定系数法确定λ的值,转化成以a 1+λf (1)为首项,以A m n =n !n -m !为公比的等比数列a n +λf (n ) ,再利用等比数列的通项公式求出a n +λf (n ) 的通项整理可得a n .法二:当f (n )的公比为q 时,由递推式得:a n +1=pa n +f (n )--①,a n =pa n -1+f (n -1),两边同时乘以q 得a n q =pqa n -1+qf (n -1)--②,由①②两式相减得a n +1-a n q =p (a n -qa n -1),即a n +1-qa na n -qa n -1=p ,在转化为类型Ⅴ㈠便可求出a n .法三:递推公式为a n +1=pa n +q n (其中p ,q 均为常数)或a n +1=pa n +rq n (其中p ,q , r 均为常数)时,要先在原递推公式两边同时除以q n +1,得:a n +1q n +1=p q ⋅a n q n +1q ,引入辅助数列b n (其中b n=a n q n),得:b n +1=p q b n +1q 再应用类型Ⅴ㈠的方法解决.(3)当f (n )为任意数列时,可用通法:在a n +1=pa n +f (n )两边同时除以p n +1可得到a n +1p n +1=a n p n +f (n )p n +1,令an p n =b n ,则b n +1=b n +f (n )pn +1,在转化为类型Ⅲ(累加法),求出b n 之后得a n =p n b n .类型Ⅵ对数变换法:形如a n +1=pa q (p >0,a n >0)型的递推式:在原递推式a n +1=pa q 两边取对数得lg a n +1=q lg a n +lg p ,令b n =lg a n 得:b n +1=qb n +lg p ,化归为a n +1=pa n +q 型,求出b n 之后得a n =10b n.(注意:底数不一定要取10,可根据题意选择).类型Ⅶ倒数变换法:形如a n -1-a n =pa n -1a n (p 为常数且p ≠0)的递推式:两边同除于a n -1a n ,转化为1a n =1a n -1+p 形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n ;还有形如a n +1=ma n pa n +q 的递推式,也可采用取倒数方法转化成1a n +1=m q 1a n +mp形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n .类型Ⅷ形如a n +2=pa n +1+qa n 型的递推式:用待定系数法,化为特殊数列{a n -a n -1}的形式求解.方法为:设a n +2-ka n +1=h (a n +1-ka n ),比较系数得h +k =p ,-hk =q ,可解得h 、k ,于是{a n +1-ka n }是公比为h 的等比数列,这样就化归为a n +1=pa n +q 型.总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式a n .(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =S 1,n =1S n -S n -1,n ≥2,n ∈N ∗注意:根据S n 求a n 时,不要忽视对n =1的验证.(2)在数列{a n }中,若a n 最大,则a n ≥a n -1a n ≥a n +1 ,若a n 最小,则a n≤a n -1a n ≤a n +1 .经典题型一:观察法1.(2022·全国·高三专题练习)数列a n 的前4项为:12,15,18,111,则它的一个通项公式是( )A.12n -1B.12n +1C.13n -1D.13n +1【答案】C【解析】将12,15,18,111可以写成13×1-1,13×2-1,13×3-1,13×4-1,所以a n 的通项公式为13n -1;故选:C2.(2022·全国·高三专题练习(文))如图所示是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为( )A.2nB.2n -1C.2n +2D.2n +1【答案】B【解析】依题意,每一行第一个数依次排成一列为:1,3,5,7,9,⋯,它们成等差数列,通项为2n -1,所以第n 行的首尾两个数均为2n -1.故选:B3.(2022·全国·高三专题练习)“一朵雪花”是2022年北京冬奥会开幕式贯穿始终的一个设计理念,每片“雪花”均以中国结为基础造型构造而成,每一朵雪花都闪耀着奥运精神,理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1901年研究的一种分形曲线,如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分划向外作正三角形,再去掉底边,反复进行这一过程.若第一个正三角形(图①)的边长为1,则第5个图形的周长为___________.【答案】25627【解析】由题意知下一个图形的边长是上一个图形边长的13,边数是上一个图形的4倍,则周长之间的关系为b n =13⋅4⋅b n -1=43b n -1,所以{b n }是公比为q =43的等比数列,而首项b 1=3,所以b n =3⋅43n -1,当n =5时,“雪花”状多边形的周长为b 5=25627.故答案为:25627经典题型二:叠加法4.(2022·全国·高三专题练习)在数列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.若p =1,求数列{a n }的通项公式.【解析】由题意,a n +1=a n na n +1 ,得:1a n +1-1a n=n ,运用累加法:1a 2-1a 1+1a 3-1a 2+⋯+1a n -1a n -1=1+2+⋯+n -1=n n -1 2,n ≥2∴1a n -1a 1=n n -1 2,即1a n =n n -1 2+p ,n ≥2 ,当p =1时,a n =2n 2-n +2,n ≥2 ,当n =1时,a n =1成立,所以a n =2n 2-n +25.(2022·全国·高三专题练习)已知数列a n 满足a n +1n +1-a n n =1n n +1n ∈N *,且a 1=1,求数列a n 的通项公式;【解析】因为a n +1n +1-a n n =1n n +1=1n -1n +1,所以a n n -a n -1n -1=1n -1-1n n ≥2 ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯a 22-a 11=1-12,所以累加可得a n n -a 1=1-1nn ≥2 .又a 1=1,所以a n n =2n -1n,所以a n =2n -1n ≥2 .经检验,a 1=1,也符合上式,所以a n =2n -1.6.(2022·全国·高三专题练习)已知数列a n 中,a 1=1中,a n +1=a n +n (n ∈N *)中,则a 4=________,a n =________.【答案】 7n 2-n +22【解析】依题意,n ∈N *,n ≥2,a n -a n -1=n -1,而a 1=1,则a n =a 1+(a 2-a 1)+(a 3-a 2)+⋯+(a n -a n -1)=1+1+2+⋯+(n -1)=1+1+n -12⋅n -1 =n 2-n +22,而a 1=1满足上式,所以a n =n 2-n +22,a 4=42-4+22=7.故答案为:7;n 2-n +22经典题型三:叠乘法7.(2022·全国·高三专题练习)在数列a n 中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列a n 的通项公式a n =________.【答案】8n n +1【解析】由a n +1=n n +2a n ,得a n +1a n =nn +2,则a 2a 1=13,a 3a 2=24,a 4a 3=35,⋮a n a n -1=n -1n +1n ≥2 ,累乘得a n a 1=13×24×35×⋯×n -3n -1×n -2n ×n -1n +1=2n n +1,所以a n =8n n +1.故答案为:8n n +1 .8.(2022·全国·高三专题练习)设a n 是首项为1的正项数列,且(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),求通项公式a n =___________【答案】2n (n +1)【解析】由(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),得[(n +2)a n +1-na n ](a n +1+a n )=0,∵a n >0,∴a n +1+a n >0,∴(n +2)a n +1-na n =0 ,∴a n +1a n =nn +2,∴a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅⋅a n a n -1=1×13×24×35×⋅⋅⋅×n -2n ×n -1n +1=2n (n +1)(n ≥2),又a 1=1满足上式,∴a n =2n (n +1).故答案为:2n (n +1).9.(2022·全国·高三专题练习)数列a n 满足:a 1=23,2n +2-1 a n +1=2n +1-2 a n n ∈N * ,则a n 的通项公式为_____________.【答案】a n =2n2n -1 2n +1-1【解析】由2n +2-1 a n +1=2n +1-2 a n 得,a n +1a n =2n +1-22n +2-1=2⋅2n -12n +2-1,则a n a n -1⋅a n -1a n -2⋅a n -2a n -3⋅⋅⋅a 2a 1=2⋅2n -1-12n +1-1⋅2⋅2n -2-12n -1⋅2⋅2n -3-12n -1-1⋅⋅⋅2⋅21-123-1=2n -1⋅32n +1-1 2n -1,即a n a 1=3⋅2n -12n -1 2n +1-1 ,又a 1=23,所以a n =2n 2n -1 2n +1-1.故答案为:a n =2n2n -1 2n +1-1.经典题型四:待定系数法10.(多选题)(2022·广东惠州·高三阶段练习)数列a n 的首项为1,且a n +1=2a n +1,S n 是数列a n 的前n 项和,则下列结论正确的是( )A.a 3=7 B.数列a n +1 是等比数列C.a n =2n -1 D.S n =2n +1-n -1【答案】AB【解析】∵a n +1=2a n +1,可得a n +1+1=2a n +1 ,又a 1+1=2∴数列a n +1 是以2为首项,2为公比的等比数列,故B 正确;则a n +1=2n ,∴a n =2n -1,故C 错误;则a 3=7,故A 正确;∴S n =21-2n1-2-n =2n +1-n -2,故D 错误.故选:AB .11.(2022·河南安阳·三模(文))已知数列a n 满足a n +1=2a n +12,且前8项和为506,则a 1=___________.【答案】32【解析】由题意得:∵a n +1=2a n +12∴a n +1+12=2a n +12 ,即a n +1+12a n +12=2∴数列a n +12 是以a 1+12为首项,2为公比的等比数列,记数列a n +12 的前n 项和为T n T 8=a 1+12 (1-28)1-2=a 1+12+a 2+12+a 3+12+⋯+a 8+12=(a 1+a 2+a 3+⋯a 8)+12×8=506+4=510解得:a 1=32故答案为:3212.(2022·河北衡水·高三阶段练习)已知数列a n 的前n 项和为S n ,且满足2S n +n =3a n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =a 2n ,求数列b n 的前10项和T 10.【解析】(1)当n =1时,2S 1+1=3a 1,即2a 1+1=3a 1,解得a 1=1;当n ≥2时,∵2S n +n =3a n ,∴2S n -1+n -1=3a n -1,两式作差得2a n +1=3a n -3a n -1,即a n =3a n -1+1,a n +12=3a n -1+12,∴a n +12a n -1+12=3,又a 1+12=32,∴数列a n +12 是以32为首项,3为公比的等比数列,∴a n +12=32×3n -1=3n 2,a n =3n 2-12=123n -1 .(2)∵b n =a 2n ,则T 10=b 1+b 2+b 3+⋯+b 10=a 2+a 4+⋯+a 20=1232-1 +34-1 +⋯+320-1=1232+34+⋯+320 -10=12321-910 1-9-10 =911-8916.13.(2022·全国·高三专题练习)设数列a n 满足a 1=2,a n -2a n -1=2-n n ∈N * .(1)求证:a n -n 为等比数列,并求a n 的通项公式;(2)若b n =a n -n ⋅n ,求数列b n 的前n 项和T n .【解析】(1)因为a 1=2,a n -2a n -1=2-n n ∈N * ,所以a n =2a n -1+2-n ,即a n -n =2a n -1-n -1又a 1-1=2-1=1,所以a n -n 是以1为首项,2为公比的等比数列,所以a n -n =1×2n -1,所以a n =2n -1+n (2)由(1)可得b n =a n -n ⋅n =n ×2n -1,所以T n =1×20+2×21+3×22+⋯+n ×2n -1①,所以2T n =1×21+2×22+3×23+⋯+n ×2n ②,①-②得-T n =1+1×21+1×22+1×23+⋯+1×2n -1-n ×2n即-T n =1-2n1-2-n ×2n ,所以T n =n -1 ×2n +1;14.(2022·全国·高三专题练习)在数列a n 中,a 1=5,且a n +1=2a n -1n ∈N * .(1)证明:a n -1 为等比数列,并求a n 的通项公式;(2)令b n =(-1)n ⋅a n ,求数列b n 的前n 项和S n .【解析】(1)因为a n +1=2a n -1,所以a n +1-1=2a n -1 ,又a 1-1=4,所以a n +1-1a n -1=2,所以a n -1 是以4为首项,2为公比的等比数列.故a n -1=4×2n -1,即a n =2n +1+1.(2)由(1)得b n =(-1)n⋅2n +1+1 ,则b n =2n +1+1,n =2k ,k ∈N *-2n +1+1 ,n =2k -1,k ∈N* ,①当n =2k ,k ∈N *时,S n =-22-1 +23+1 -24+1 +⋯+-2n -1 +2n +1+1 =-22+23-24+25+⋯-2n +2n +1=22+24+⋯+2n =432n -1 ;②当n =2k -1,k ∈N *时,S n =S n +1-b n +1=432n +1-1 -2n +2+1 =-2n +2+73,综上所述,S n =432n -1 ,n =2k ,k ∈N*-2n +2+73,n =2k -1,k ∈N *经典题型五:同除以指数15.(2022·广东·模拟预测)已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列______的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n 2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n=1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+216.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=2a n +3n ,求数列a n 的通项公式.【解析】由a n +1=2a n +3n 两边同除以3n +1得a n +13n +1=23⋅a n 3n +13,令b n =a n 3n ,则b n +1=23b n +13,设b n +1+λ=23(b n +λ),解得λ=-1,b n +1-1=23(b n -1),而b 1-1=-23,∴数列{b n -1}是以-23为首项,23为公比的等比数列,b n -1=-23 n ,得a n =3n -2n17.(2022·全国·高三专题练习)在数列a n 中,a 1=1,S n +1=4a n +2,则a 2019的值为( )A.757×22020B.757×22019C.757×22018D.无法确定【答案】A【解析】∵a 1=1,S n +1=4a n +2,∴S 2=a 1+a 2=4a 1+2,解得a 2=5.∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减得,a n +2=4a n +1-4a n ,∴a n +2-2a n +1=2a n +1-2a n ,∴a n +1-2a n 是以a 2-2a 1=3为首项,2为公比的等比数列,∴a n +1-2a n =3×2n -1,两边同除以2n +1,则a n +12n +1-a n 2n=34,∴a n 2n 是以34为公差,a 121=12为首项的等差数列,∴a n 2n =12+n -1 ×34=3n -14,∴a n =3n -14×2n =3n -1 ×2n -2,∴a 2019=3×2019-1 ×22017=757×22020.故选:A .经典题型六:取倒数法18.(2022·全国·高三竞赛)数列a n 满足a 1=p ,a n +1=a 2n +2a n .则通项a n =______.【答案】p +1 2n -1-1【解析】∵a n =a 2n -1+2a n -1,∴a n +1=a n -1+1 2=a n -2+1 22=⋯=a 1+1 2n -1=p +1 2n -1.即a n =p +1 2n -1-1.故答案为p +1 2n -1-119.(2022·全国·高三专题练习)已知数列a n 满足a 1=12,且a n +1=a n 3a n +1,则数列a n =__________【答案】13n -1【解析】由a n +1=a n 3a n +1两边取倒数可得1a n +1=1a n +3,即1a n +1-1a n=3所以数列1a n 是等差数列,且首项为2,公差为3,所以1a n=3n -1,所以a n =13n -1;故答案为:13n -120.(2022·全国·高三专题练习)数列a n 满足a n +1=a n 1+2a nn ∈N ∗,a 1=1,则下列结论错误的是( )A.2a 10=1a 3+1a 17B.21an是等比数列C.2n -1 a n =1D.3a 5a 17=a 49【答案】D 【解析】由a n +1=a n 1+2a n ,且a 1=1,则a 2=a 12a 1+1>0,a 3=a 21+2a 2>0,⋯,以此类推可知,对任意的n ∈N ∗,a n >0,所以,1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以,数列1a n 是等差数列,且该数列的首项为1,公差为2,所以,1a n =1+2n -1 =2n -1,则2n -1 a n =1,其中n ∈N ∗,C 对;21a n +121a n=21an +1-1a n=22=4,所以,数列21an是等比数列,B 对;由等差中项的性质可得2a 10=1a 3+1a 17,A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以,3a 5a 17≠a 49,D 错.故选:D .21.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=a n 4a n +1,(n ∈N *),则满足a n >137的n 的最大取值为( )A.7 B.8C.9D.10【答案】C【解析】因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,数列1a n是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大值为9;故选:C 经典题型七:取对数法22.(2022·湖南·长郡中学高三阶段练习)若在数列的每相邻两项之间插入此两项的积,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;依次构造,第n n ∈N * 次得到的数列的所有项的积记为a n ,令b n =log 2a n ,则b 3=___________,b n =___________.【答案】 143n +12【解析】设第n 次构造后得到的数列为1,x 1,x 2,⋯,x k ,2.则a n =2x 1x 2⋯x k ,则第n +1次构造后得到的数列为1,x 1,x 1,x 1x 2,x 2,⋯,x k -1x k ,x k ,2x k ,2.则a n +1=4x 1x 2⋯x k 3=4×a n 2 3=12a 3n ,∴b n +1=log 2a n +1=log 212a 3n=-1+3b n ,∴b n +1-12=3b n -12 ,又∵b 1=log 222=2,∴数列b n -12 是以32为首项,3为公比的等比数列,∴b n -12=32×3n -1=3n 2,b n =3n +12,b 3=14.故答案为:14;3n +1223.(2022·全国·高三专题练习(文))英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列x n 满足x n +1=x n -f x nf x n,则称数列x n 为牛顿数列.如果函数f x =2x 2-8,数列x n 为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列a n 的前n 项和为S n ,则S n =______.【答案】2n -1【解析】∵f x =2x 2-8,∴f x =4x ,又∵x n +1=x n -f x n f x n=x n -2x n 2-84x n =x n 2+42x n ,∴x n +1+2=x n +2 22x n ,x n +1-2=x n -222x n,∴x n +1-2x n +1-2=x n +2x n -2 2,又x n >2∴ln x n +1+2x n +1-2=ln x n +2x n -2 2=2ln x n +2x n -2 ,又a n =ln x n +2x n -2,且a 1=1,所以a n +1=2a n ,∴数列a n 是首项为1,公比为2的等比数列,∴a n 的前n 项和为S n ,则S n =1×1-2n1-2=2n -1.故答案为:2n -1.经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题24.(2022·江苏南通·高三开学考试)从条件①2S n =n +1 a n ,②a 2n +a n =2S n ,a n >0,③S n +S n -1=a n n ≥2 ,中任选一个,补充到下面问题中,并给出解答.已知数列a n 的前n 项和为S n ,a 1=1,___________.(1)求a n 的通项公式;(2)设b n =a n +1+12n +1,记数列b n 的前n 项和为T n ,是否存在正整数n 使得T n >83.【解析】(1)若选择①,因为2S n =n +1 a n ,n ∈N *,所以2S n -1=na n -1,n ≥2,两式相减得2a n =n +1 a n -na n -1,整理得n -1 a n =na n -1,n ≥2,即a n n =a n -1n -1,n ≥2,所以a n n 为常数列,而a n n =a 11=1,所以a n =n ;若选择②,因为a 2n +a n =2S n n ∈N *,所以a 2n -1+a n -1=2S n -1n ≥2 ,两式相减a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n n ≥2 ,得a n -a n -1 a n +a n -1 =a n +a n -1n ≥2 ,因为a n >0,∴a n +a n -1>0,∴a n -a n -1=1n ≥2 ,所以a n 是等差数列,所以a n =1+n -1 ×1=n ;若选择③,由S n +S n -1=a n n ≥2 变形得,S n +S n -1=S n -S n -1,所以S n +S n -1=S n +S n -1 S n -S n -1 ,由题意知S n >0,所以S n -S n -1=1,所以S n 为等差数列,又S 1=a 1=1,所以S n =n ,S n =n 2,∴a n =S n -S n -1=2n -1n ≥2 ,又n =1时,a 1=1也满足上式,所以a n =2n -1;(2)若选择①或②,b n =n +1+12n +1=n +22n +1,所以T n =3×12 2+4×12 3+5×12 4+⋯+n +2 ×12n +1,所以12T n =3×12 3+4×12 4+5×12 5+⋯+n +2 ×12n +2,两式相减得12T n =3×12 2+12 3+12 4+⋯+12 n +1-n +2 ×12n +2=34+181-12n -1 1-12-n +2 ×12 n +2=1-n +42n +2,则T n =2-n +42n +1,故要使得T n >83,即2-n +42n +1>83,整理得,n +42n +1<-23,当n ∈N *时,n +42n +1>0,所以不存在n ∈N *,使得T n >83.若选择③,依题意,b n =a n +1+12n +1=n +12n,所以T n =2×12+3×12 2+4×12 3+⋯+n +1 ×12n,故12T n =2×12 2+3×12 3+4×12 4+⋯+n +1 ×12 n +1,两式相减得:12T n =1+12 2+12 3+⋯+12 n -n +1 ×12 n +1=1+141-12n -1 1-12-n +1 ×12 n +1=32-n +32n +1,则T n =3-n +32n ,令T n =3-n +32n >83,则n +32n <13,即2n -3n -9>0,令c n =2n -3n -9,则c 1=-10<0,当n ≥2时,c n +1-c n =2n +1-3n +1 -9-2n -3n -9 =2n -3>0,又c 4<0,c 5>0,故c 2<c 3<c 4<0<c 5<c 6⋯,综上,使得T n >83成立的最小正整数n 的值为5.25.(2022·河南省上蔡第一高级中学高三阶段练习(文))记各项均为正数的等比数列a n 的前n 项和是S n ,已S n =a n +43a n +1-4n ∈N * .(1)求a n 的通项公式;(2)求数列na n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q .因为S n =a n +43a n +1-4n ∈N * ,所以当n =1时,a 1=a 1+43a 2-4,解得a 2=3;当n =2时,a 1+a 2=a 2+43a 3-4,则a 1=43a 3-4.因为a n 是等比数列,所以a 1a 3=a 22,即43a 3-4 a 3=9,整理得4a 23-12a 3-27=0,解得a 3=-32(舍去)或a 3=92.所以q =a 3a 2=32,a 1=a 2q=2,所以a n =2×32n -1.(2)由(1)得na n =2n ×32 n -1,所以T n =2×1+2×32+3×32 2+⋯+n -1 × 32 n -2+n ×32 n -1①则32T n =2×1×32+2×32 2+3×32 3+⋯+ n -1 ×32 n -1+n ×32 n ②①-②得-T n 2=2×1+32+32 2+323+⋯+ 32 n -1 -2n ×32 n=2×1-32 n1-32-2n ×32 n =-4+4-2n ×32 n ,所以T n =4n -8 ×32n+8.26.(2022·全国·高三专题练习)设数列{a n }的前n 项和为S n ,a n +1=-S n S n +1n ∈N * ,a 1=1. 求证:数列1S n是等差数列.【解析】∵-S n S n +1=a n +1=S n +1-S n ,S 1=1≠0,则S n ≠0,所以-1=S n +1-S nS n S n +1,有1S n +1-1S n=1,所以数列1S n 是以1为首项,1为公差的等差数列.经典题型九:周期数列27.(2022·上海中学高二期末)数列{x n }满足x n +1=x n -x n -1,n ≥2,n ∈N *,x 1=a ,x 2=b ,则x 2019=_________.【答案】b -a .【解析】由题干中递推公式,可得:x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=b -a -b =-a ,x 5=x 4-x 3=-a -(b -a )=-b ,x 6=x 5-x 4=-b -(-a )=a -b ,x 7=x 6-x 5=a -b -(-b )=a ,x 8=x 7-x 6=a -(a -b )=b ,x 9=x 8-x 7=b -a ,⋯∴数列{x n }是以6为最小正周期的周期数列.∵2019÷6=336⋯3,∴x 2019=x 3=b -a .故答案为b -a .28.(2022·全国·高三专题练习)数列{a n }满足a 1=2,a 2=11-a 1,若对于大于2的正整数n ,a n =11-a n -1,则a 102=__________.【答案】12【解析】由题意知:a 2=11-2=-1,a 3=11--1 =12,a 4=11-12=2,a 5=11-2=-1,故{a n }是周期为3的周期数列,则a 102=a 3×34=a 3=12.故答案为:12.29.(2022·河南·模拟预测(文))设数列a n 满足a n +1=1+a n 1-a n ,且a 1=12,则a 2022=( )A.-2 B.-13C.12D.3【答案】D【解析】由题意可得:a 2=1+a 11-a 1=1+121-12=3,a 3=1+a 21-a 2=1+31-3=-2,a 4=1+a 31-a 3=1+-2 1--2 =-13,a 5=1+a 41-a 4=1-131+13=12=a 1,据此可得数列a n 是周期为4的周期数列,则a 2022=a 505×4+2=a 2=3.故选:D30.(2022·全国·高三专题练习)设数列a n 的通项公式为a n =-1 n 2n -1 ⋅cos n π2+1n ∈N * ,其前n 项和为S n ,则S 120=( )A.-60 B.-120C.180D.240【答案】D【解析】当n =4k -3,k ∈N *时,cos n π2=0,a 4k -3=1;当n =4k -2,k ∈N *时,cosn π2=-1,a 4k -2=2×4k -2 -1 ×-1 +1=-8k +6;当n =4k -1,k ∈N *时,cos n π2=0,a 4k -1=1;当n =4k ,k ∈N *时,cos n π2=1,a 4k =2×4k -1+1=8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =1+-8k +6 +1+8k =8,∴S 120=1204×8=240.故选:D 经典题型十:前n 项积型31.(2022·全国·高三专题练习)设数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * .(1)求证数列1T n 是等差数列;(2)设b n =1-a n 1-a n +1 ,求数列b n 的前n 项和S n .【解析】(1)因为数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * ,∴当n =1时,T 1=a 1=2-2a 1,则a 1=23,1T 1=32.当n ≥2时,T n =2-2T n T n -1⇒1=2T n -2T n -1,∴1T n -1T n -1=12,所以1T n 是以1T 1=32为首项,12为公差的等差数列;(2)由(1)知数列1T n =n +22,则由T n =2-2a n 得a n =n +1n +2,所以b n =1n +2 n +3=1n +2-1n +3,所以S n =13-14 +14-15 +⋯+1n +2-1n +3 =13-1n +3=n 3n +9.32.(2022·全国·高三专题练习)记T n 为数列a n 的前n 项积,已知1T n +3a n=3,则T 10=( )A.163B.154C.133D.114【答案】C 【解析】n =1,T 1=43,T n =a 1a 2a 3⋯a n ,则a n =T n T n -1(n ≥2),代入1T n +3a n =3,化简得:T n -T n -1=13,则T n =n +33,T 10=133.故选:C .33.(2022·全国·高三专题练习)记S n 为数列a n 的前n 项和,b n 为数列S n 的前n 项积,已知2S n +b n =2,则a 9=___________.【答案】1110【解析】因为b n =S 1∙S 2∙⋯S n ,所以b 1=S 1=a 1,b n -1=S 1∙S 2∙⋯S n -1(n ≥2),S n =b nb n -1(n ≥2), 又因为2S n +b n =2,当n =1时,得 a 1=23,所以b 1=S 1=a 1=23, 当n ≥2时, 2×b nb n -1+b n =2,即2b n =2b n -1+1,所以2b n 是等差数列,首项为2b 1=3,公差d =1, 所以2b n=3+(n -1)×1=n +2,所以b n =2n +2,满足 b 1=23,故b n =2n +2,即S 1∙S 2∙⋯S n =2n +2,所以S 1∙S 2∙⋯S n -1=2n +1(n ≥2),两式相除得:S n =n +1n +2,所以S n -1=nn +1(n ≥2),所以a n =S n -S n -1=n +1n +2-n n +1=1(n +1)(n +2),所以a 9=111×10=1110.故答案为:1110.经典题型十一:“和”型求通项34.(2022·山西·太原市外国语学校高三开学考试)在数列a n 中,a 1=1,且n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n .(1)求a n 的通项公式;(2)若b n =1a n a n +1,且数列b n 的前项n 和为S n ,证明:S n <3.【解析】(1)因为n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n ,所以当n ≥3,a 1+12a 2+13a 3+⋯+1n -2a n -2=a n -1,两式相减,得1n -1a n -1=a n -a n -1,即nn -1a n -1=a n ,当n =2时,a 2=a 1=1,所以当n ≥3时,a n a n -1=nn -1,所以当n ≥3时,a n =a n a n -1×a n -1a n -2×⋯×a 3a 2×a 2=n n -1×n -1n -2×⋯×32×1=n2,当n =2时,上式成立;当n =1时,上式不成立,所以a n =1,n =1n2,n ≥2.(2)证明:由(1)知b n =1,n =14n (n +1),n ≥2当n ≥2时,b n =4n (n +1)=41n -1n +1 ,所以当n =1,S 1=1<3;当n ≥2时,S n =1+412-13 +413-14 +⋯+41n -1n +1=1+412-13+13-14+⋯+1n -1n +1 =1+412-1n +1 =3-4n +1<3.综上,S n <3.35.(2022·全国·高三专题练习)数列a n 满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m =( )A.99 B.103C.107D.198【答案】B【解析】由a n +1+a n =2n +3得a n +1-(n +1)-1=-a n -n -1 ,∴a n-n-1为等比数列,∴a n-n-1=(-1)n-1a1-2,∴a n=(-1)n-1a1-2+n+1,a m=(-1)m-1a1-2+m+1,∴S13=a1+a2+a3+⋯+a12+a13=a1+2×(2+4+⋯+12)+3×6=a1+102,①m为奇数时,a1-2+m+1=a1+102,m=103;②m为偶数时,-a1-2+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解,综上所述,m=103.故选:B.36.(2022·黑龙江·哈师大附中高三阶段练习(理))已知数列a n的前n项和为S n,若S n+1+S n=2n2n∈N*,且a1≠0,a10=28,则a1的值为A.-8B.6C.-5D.4【答案】C【解析】对于S n+1+S n=2n2,当n=1时有S2+S1=2,即a2-2=-2a1∵S n+1+S n=2n2,∴S n+S n-1=2(n-1)2,(n≥2)两式相减得:a n+1+a n=4n-2a n+1-2n=-a n-2(n-1),(n≥2)由a1≠0可得a2-2=-2a1≠0,∴a n+1-2na n-2(n-1)=-1(n≥2)即a n-2(n-1)从第二项起是等比数列,所以a n-2(n-1)=a2-2(-1)n-2,即a n=a2-2(-1)n-2+2(n-1),则a10=a2-2+18=28,故a2=12,由a2-2=-2a1可得a1=-5,故选C.经典题型十二:正负相间讨论、奇偶讨论型37.(2022·河南·高二阶段练习(文))数列a n满足a1=1,a n+a n+1=3n n∈N*,则a2018=__________ _.【答案】3026【解析】∵a n+a n+1=3n,∴a n+1+a n+2=3n+1,得a n+2-a n=3,∵a1=1,a n+a n+1=3n n∈N*,∴a1+ a2=3⇒a2=2,所以a n的偶数项构成等差数列,首项为2,公差为3,∴a2018=a2+1008×3=2+3024= 3026.故答案为:302638.(2022·全国·高三专题练习)已知数列a n中,a1=1,a2=2,a n+2=-1n+1a n+2,则a18a19=( )A.3B.113C.213D.219【答案】D【解析】当n为奇数时,a n+2-a n=2,即数列a n中的奇数项依次构成首项为1,公差为2的等差数列,所以,a19=1+10-1×2=19,当n为偶数时,a n+2+a n=2,则a n+4+a n+2=2,两式相减得a n+4-a n=0,所以,a18=a4×4+2=a2=2,故a18a19=219,故选:D.39.(2022·广东·高三开学考试)已知数列a n满足a1=3,a2=2,a n+2=a n-1,n=2k-1 3a n,n=2k .(1)求数列a n的通项公式;(2)求数列a n的前2n项的和S2n.【解析】(1)当n为奇数时,a n+2-a n=-1,所以所有奇数项构成以a1=3为首项,公差为-1的等差数列,所以a n=3+(n-1)⋅-12=7-n2,当n为偶数时,a n+2=3a n,所以所有偶数项构成以a2=2为首项,公比为3的等比数列,所以a n=2×(3)n-2=2×3n-22,所以a n=7-n2,n=2k-1 2×3n-22,n=2k ;(2)S2n=a1+a2+⋯+a2n=a1+a3+a5+⋯+a2n-1+a2+a4+⋯+a2n=3n+(-1)⋅n(n-1)2+21-3n1-3=(7-n)n2+3n-1=-12n2+72n+3n-1.40.数列{a n}满足a n+2+(-1)n+1a n=3n-1,前16项和为540,则a2= .【解析】解:因为数列{a n}满足a n+2+(-1)n+1a n=3n-1,当n为奇数时,a n+2+a n=3n-1,所以a3+a1=2,a7+a5=14,a11+a9=26,a15+a13=38,则a1+a3+a5+a7+a9+a11+a13+a15=80,当n为偶数时,a n+2-a n=3n-1,所以a4-a2=5,a6-a4=11,a8-a6=17,a10-a8=23,a12-a10=29,a14-a12=35,a16-a14=41,故a4=5+a2,a6=16+a2,a8=33+a2,a10=56+a2,a12=85+a2,a14=120+a2,a16=161+a2,因为前16项和为540,所以a2+a4+a6+a8+a10+a12+a14+a16=540-80=460,所以8a2+476=460,解得a2=-2.故答案为:-2.41.(2022•夏津县校级开学)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为508,则a1= .【解析】解:由a n+2+(-1)n a n=3n-1,当n为奇数时,有a n+2-a n=3n-1,可得a n-a n-2=3(n-2)-1,⋯a3-a1=3⋅1-1,累加可得a n-a1=3[1+3+⋯+(n-2)]-n-12=(n-1)(3n-5)4;当n为偶数时,a n+2+a n=3n-1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+⋯+a16=92.∴a 1+a 3+⋯+a 15=416.∴8a 1+14(0+8+40+96+176+280+408+560)=416,∴8a 1=24,即a 1=3.故答案为:3.经典题型十三:因式分解型求通项42.(2022秋•安徽月考)已知正项数列{a n }满足:a 1=a ,a 2n +1-4a 2n +a n +1-2a n =0,n ∈N *.(Ⅰ)判断数列{a n }是否是等比数列,并说明理由;(Ⅱ)若a =2,设a n =b n -n .n ∈N *,求数列{b n }的前n 项和S n .【解析】解:(Ⅰ)∵a 2n +1-4a 2n +a n +1-2a n =0,∴(a n +1-2a n )(a n +1+2a n +1)=0,又∵数列{a n }为正项数列,∴a n +1=2a n ,∴①当a =0时,数列{a n }不是等比数列;②当a ≠0时,an +1a n=2,此时数列{a n }是首项为a ,公比为2的等比数列.(Ⅱ)由(Ⅰ)可知:a n =2n ,∴b n =2n +n ,∴S n =(21+22+⋯+2n)+(1+2+⋯+n )=2(1-2n )1-2+n (1+n )2=2n +1-2+n (n +1)2.43.(2022•怀化模拟)已知正项数列{a n }满足a 1=1,2a 2n -a n -1a n -6a 2n -1=0(n ≥2,n ∈N *)设b n =log 2a n .(1)求b 1,b 2b 3;(2)判断数列{b n }是否为等差数列,并说明理由;(3){b n }的通项公式,并求其前n 项和为S n .【解析】解:(1)a 1=1,2a 2n -a n -1a n -6a 2n -1=0,a n >0,可得(2a n +3a n -1)(a n -2a n -1)=0,则a n =2a n -1,数列{a n }为首项为1,公比为2的等比数列,可得a n =2n -1;b n =log 2a n =n -1,b 1=0,b 2b 3=1×2=2;(2)数列{b n }为等差数列,理由:b n +1-b n =n -(n -1)=1,则数列{b n }为首项为0,公差为1的等差数列;(3)b n =log 2a n =log 22n -1=n -1,前n 项和为S n =12n (0+n -1)=n 2-n2.44.(2022秋•仓山区校级月考)已知正项数列{a n }满足a 1=2且(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *)(Ⅰ)证明数列{a n }为等差数列;(Ⅱ)若记b n =4a n a n +1,求数列{b n }的前n 项和S n .【解析】(I )证明:由(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *),变形得:(a n +a n +1)[(n +1)a n -na n +1]=0,由于{a n }为正项数列,∴a n +1a n =n +1n,利用累乘法得:a n =2n (n ∈N *)从而得知:数列{a n }是以2为首项,以2为公差的等差数列.(Ⅱ)解:由(Ⅰ)知:b n=42n∙2(n+1)=1n(n+1)=1n-1n+1,从而S n=b1+b2+⋯+b n=1-1 2+12-13+13-15+⋯+1n-1-1n+1=1-1n+1=n n+1.经典题型十四:其他几类特殊数列求通项45.(2022·全国·高三专题练习)在数列{a n}中,已知各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0.(1)证明数列{a n+a n+1}为等比数列;(2)若a1=15,a2=125,求{a n}的通项公式.【解析】(1)各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0,得a n+1+a n+2=15(a n+1+a n),即a n+1+a n+2 a n+a n+1=15所以数列{a n+a n+1}是公比为15的等比数列;(2)因为a1=15,a2=125,所以a1+a2=625,由(1)知数列{a n+a n+1}是首项为625,公比为15的等比数列,所以a n+a n+1=625×15n-1,于是a n+1-15n+1=-an-15 n=(-1)n a1-15,又因为a1-15=0,所以a n-15 n=0,即a n=15 n.46.(2022·湖北·天门市教育科学研究院模拟预测)已知数列a n满足a1=1,a2=6,且a n+1=4a n-4a n-1, n≥2,n∈N*.(1)证明数列a n+1-2a n是等比数列,并求数列a n的通项公式;(2)求数列a n的前n项和S n.【解析】(1)因为a n+1=4a n-4a n-1,n≥2,n∈N*所以a n+1-2a n=2a n-4a n-1=2(a n-2a n-1)又因为a2-2a1=4所以a n+1-2a n是以4为首项,2为公比的等比数列.所以a n+1-2a n=4×2n-1=2n+1变形得a n+12n+1-a n2n=1所以a n2n是以a12=12为首项,1为公差的等差数列所以a n2n=12+n-1=n-12,所以a n=(2n-1)2n-1(2)因为T n=1×20+3×21+5×22+⋅⋅⋅+(2n-1)2n-1⋯①所以2T n=1×21+3×22+5×23+⋅⋅⋅+(2n-1)2n⋯②①-②得:-T n=1+22+23+⋅⋅⋅+2n-1-(2n-1)2n=1+22(1-2n-1)1-2-(2n-1)2n所以T n=(2n-1)2n-2n+1+3=(2n-3)2n+347.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))设数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,则下列说法正确的是( )A.a2021⋅a2022<1B.a2021⋅a2022>1C.a2022<-22022D.a2022>22022【答案】A【解析】因为数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,。
专题 数列的通项公式、求和及数列的综合问题 2018届高考数学三轮透析专题
2018届高考数学三轮透析专题 数列的通项公式、求和及数列的综合问题【主题考法】本主题考题形式为选择题、填空题,主要考查求数列通项公式、数列求和及数列的综合问题,考查运算求解能力、转化与化归思想,难度为中档或难题,分数为5分. 【主题回扣】1.求数列的通项公式的常见类型和解法:(1)观察法:对已知数列前几项或求出数列前几项求通项公式问题,常用观察法,通过观察数列前几项特征,找出各项共同构成的规律,横向看各项的关系结构,纵向看各项与项数n 的关系时,分解所给数列的前几项,观察这几项的分解式中,哪些部分是变化的,哪些部分是不变化的,变化部分与序号的关系,,归纳出n a 的通项公式,再用数学归纳法证明.(2)累加法:对于可转化为)(1n f a a n n +=+形式数列的通项公式问题,化为1()n n a a f n +-=,通过累加得n a =112211()()()n n n n a a a a a a a ----+-++-+ =1(1)(2)(1)f n f n f a -+-+++,求出数列的通项公式,注意相加等式的个数(3)累积法:对于可转化为1()n n a a f n +=形式数列的通项公式问题,化为1()n na f n a +=,通过累积得n a =121121n n n n a a a a a a a ---⨯⨯⨯⨯ =1(1)(2)(1)f n f n f a -⨯-⨯⨯⨯,求出数列的通项公式,注意相乘等式的个数(4)构造法:对于化为1()n n a pa f n +=+(其中p 是常数)型,常用待定系数法将其化为1(1)[()]n n a Af n p a Af n +++=+,由等比数列定义知{()n a Af n +}是公比为p 的等比数列,由等比数列的通项公式先求出()n a Af n +通项公式,再求出n a 的通项公式.(5)利用前n 项和n S 与第n 项n a 关系求通项:对递推公式为n S 与n a 的关系式(或()n n S f a =),利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n 进行求解.注意n a =1n n S S --成立的条件是n ≥2,求n a 时不要漏掉n =1即n a =1S 的情况,当1a =1S 适合n a =1n n S S --时,n a =1n n S S --;当1a =1S 不适合n a =1n n S S --时,用分段函数表示.2.数列求和的主要方法:(1)分组求和:若给出的数列不是特殊数列,但把数列的每一项分成两项,或把数列的项重新组合,使之转化为等比或等差数列,分组利用等比或等差数列的前n 和公式求前n 项和.(2)拆项相消法:若数列的每一项都可拆成两项之差,求和时中间的一些项正好相互抵消,于是将前n 项和转化为首尾若干项和,注意未消去的项是哪些项.常用拆相公式: ①若{}n a 是各项都不为0公差为(0)d d ≠的等差数列,则11nn a a+=1111()n n d a a +=- ②n a(3)倒序相加法:如果一个数列与首尾两相距离相等的两项之和等于首尾两项之和,则正着写和与到序写和的两式对应项相加,就转化为一个常数列的前n 项和.推导等差数列的前项和公式正是应用了此法,体现了转化与化归数学思想(4)错位相减法:若数列{}n a 是公差为(0)d d ≠的等差数列,{}n b 是公比为(1)q q ≠的等比数列,则在数列{}n n a b 的前项和n S =112233n n a b a b a b a b ++++= 211121311n n a b a b q a b q a b q -++++ ①,两边同乘以公比q 得n qS =231121311n n a b q a b q a b q a b q ++++② ,①式与②式错位相减得(1)n q S -=221111211131211111()()()n n n n n n a b a b q a b q a b q a b q a b q a b q a b q ---+-+-++-- =21111(1)n n n a b d q q q a b q -++++-,转化为等比数列211,,,,n q q q -,的前n 项和问题,注意转化出的等比数列的首项及项数.(5)并项求和法:若数列某项组合相加可将其化为等比数列或等差数列的和问题,常用并项法,即通过并项化为特殊数列,利用公式求和. 【易错提醒】1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项. 7.裂项相消法求和时,一注意分裂前后的值要相等,如1n n +≠1n -1n +2,而是1n n +=12)111(+-n n ;二注意要注意消去了哪些项,保留了哪些项. 8.通项中含有(-1)n 的数列求和时,要把结果写成n 为奇数和n 为偶数两种情况的分段形式. 【主题考向】考向一 数列的通项公式【解决法宝】对数列求通项公式问题要熟练掌握常见的求通项公式方法,根据题中条件,选择合适的方法求解,特别是已知数列的递推公式求通项公式问题,常需要对所给条件进行变形,如两边去倒数等,转化为常见形式,在选择合适的方法求解. 例1 【甘肃省兰州市2018届高三一诊】数列中,,对任意,有,令,,则( )A. B. C.D.【分析】由得,用累加法即可求出n a ,从而求出n b ,再利用拆项消去法即可求出{n b }的前2018项和.【解析】,∴,,,∴,,故选D.考向二 数列求和【解决法宝】1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.3.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.4.用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.在写“Sn ”与“qSn ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“Sn -qSn ”的表达式. 例2.【广东省中山纪念等六校2018届第一次联考】数列满足,且,则等于( ).A.B.C.D.【分析】先用累加法求出na 的通项公式,再用拆项消去法求和.【解析】∵,∴212=-a a ,323=-a a ,……,n a a n n =--1,∴)()()(123121--++-+-=-n n n a a a a a a a a =n ++++ 432=2)1)(2(-+n n ,∴n a =12)1)(2(+-+n n =2)1(+n n ,∴,∴,故选A .考向三 数列综合问题【解题法宝】1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视; (2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理. 例3.等差数列的前项和为,已知,,则的最小值为( ).A.B.C.D. 无最小值【分析】先由等差数列的通项公式与前n 项和公式求出首项与公差,即求出数列的前n 项和,即可用n 将表示出来,利用导数或单调性即可求出其最小值.∴当时,.当时,.∴为最小项,,故选.【主题集训】1.【云南省昆明市一中2018届第六次月考】已知数列的前项和为,则的值是( )A.B.C.D.【答案】C【解析】当时,;当时,,所以12-=n a n ,所以2015583=+=+a a ,故选C .2.【江西抚州七校2017届高三上学期联考,10】若数列{}n a 满足()()()()1123252325lg 1n n n a n a n n n +⎛⎫+-+=+++⎪⎝⎭,且15a =,则数列23n a n ⎧⎫⎨⎬+⎩⎭的第100项为( ) A .2 B .3 C .1lg99+ D .2lg99+ 【答案】B【解析】由()()()()1123252325lg 1n n n a n a n n n +⎛⎫+-+=+++⎪⎝⎭可得:)11lg(32521n n a n a n n +=+-++,记32b +=n a n n ,有)11lg(b 1n b n n +=-+,由累加法得:1lgn b n +=,数列23n a n ⎧⎫⎨⎬+⎩⎭的第100项为31100lg =+,故选B.3.【福建省厦门外国语学校2018届下学期第一次月考】已知函数,且,则等于( )A. -2013B. -2014C. 2013D. 2014 【答案】D4.【河南百校联盟2017届高三11月质检】已知正项数列{}n a 中,11a =,22a =,222112n n n a a a -+=+(2n ≥),11n n n b a a +=+,记数列{}n b 的前n 项和为n S ,则33S 的值是( )【答案】D 【解析】222n n a a -=3.21n a =∴1则)33133S ==.故选D .5.【河南省南阳市2018届高三上学期期末】设数列的通项公式,若数列的前项积为,则使成立的最小正整数为( ) A. 9 B. 10 C. 11 D. 12 【答案】C【解析】因为,所以,该数列的前项积为,由题意知,使成立的最小正整数为,故选C.6.【河南中原名校2017届高三上学期第三次质检,5】记数列{}n a 的前n 项和为n S ,若31n n S a =+,则10a =( )A .91032-B .101032- C. 91032 D .101032【答案】A【解析】由31n n S a =+①,得1131n n S a ++=+②,②-①,得1133n n n a a a ++=-,得132n n a a +=,又1131a a =+,所以112a =-,故数列{}n a 是以12-为首项,32为公比的等比数列,所以11323n n a -⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭,故991010133222a ⎛⎫=-⨯=- ⎪⎝⎭.故选A.7.【广东省华南师范大学附属中学2018届综合测试(三)】等比数列的前项和(为常数),若n n S a 23+≤λ恒成立,则实数的最大值是( ) A. B. C. D. 【答案】C 【解析】由题知,所以,,所以,得,所以,得,所以时,,故选C 。
浅谈高考中数列求通项公式的常见题型与解题方法
浅谈高考中数列求通项公式的常见题型与解题方法高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.特别是求递推数列通项公式更是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为中学中所研究的等差或等比数列,下面就我对求递推数列通向公式的常用方法做一个浅显的分析与提炼: 一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、 公式法利用熟知的的公式求通项公式的方法称为公式法,已知数列的前n 项和n S 与n a 的关系,n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a ,当2≥n 时,有nn n n n n a a S S a )1(2)(211-⨯+-=-=--22,)1(22,)1(221222111-=-⨯+=-⨯+=∴-----a a a a a a n n n n n n 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-经验证11=a 也满足上式,所以])1(2[3212---+=n n n a 点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、累加法:由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
【高考数学数列通项公式解题方法】高考数学数列大题题型
【高考数学数列通项公式解题方法】高考数学数列大题题型求数列的通项公式一直都是高考数学考试的重点与难点,找到解题方法对考生来说很重要,下面是给大家带来的高考数学数列通项公式解题方法,希望对你有帮助。
高考数学求数列通项公式方法(一)题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。
所以an=2n-1。
此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
高考数学求数列通项公式方法(二)已知数列的前n项和,用公式S1 (n=1)Sn-Sn-1 (n2)例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5(A) 9 (B) 8 (C) 7 (D) 6解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8∴k=8 选 (B)此类题在解时要注意考虑n=1的情况。
高考数学求数列通项公式方法(三)已知an与Sn的关系时,通常用转化的方法,先求出Sn 与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,- (n=1)- (n2)高考数学求数列通项公式方法(四)用累加、累积的方法求通项公式对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
高考数学复习专题讲座数列通项公式的求法
高考数学复习专题讲座数列通项公式的求法(总15页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高考数学复习专题讲座 数列通项公式的求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解。
例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。
解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n na a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。
高考数学玩转压轴题专题3.1复杂数列的通项公式求解问题 (1)
专题3.1 复杂数列的通项公式求解问题一.方法综述数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略类型一 数阵(数表)中涉及到的数列通项公式问题【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____.【答案】12【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1⋯⋯=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(⋯⋯=i A ij ,最后根据整数解方程的解法列举所有解即可.2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列.【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________.【答案】1030类型二 点列问题中涉及到的数列通项公式问题 【例2】已知点1122(1,),(2,),,(,),n n A y A y A ny 顺次为直线11412y x =+上的点,点1122(,0),(,0),,(,0),n nB x B x B x 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点1,,n n n B A B +构成以n A 为顶点的等腰三角形.则数列{}n x 的通项公式为____________.【答案】,(1,(n n a n x n a n -⎧=⎨+-⎩为偶数)为奇数)【指点迷津】对于点列问题,要根据图像上点与点之间的关系,以及平面几何知识加以分析,找出关系式即可,本题是直线上的点列,已知点列n A 的通项公式,求点列n B 的通项公式,并研究等腰三角形是否为特殊的等腰直角三角形.【举一反三】在直角坐标平面中,已知点列111,2A ⎛⎫-⎪⎝⎭,2212,2A ⎛⎫ ⎪⎝⎭,3313,2A ⎛⎫- ⎪⎝⎭,…,1,(1)2n n n A n ⎛⎫- ⎪⎝⎭,…,其中n 是正整数.连接12A A 的直线与x 轴交于点()11,0B x ,连接23A A 的直线与x 轴交于点()22,0B x ,…,连接1n n A A +的直线与x 轴交于点(),0n n B x ,….则数列{}n x 的通项公式为___________.【解析】直线1n n A A +的斜率为11121(1)(1)3(1)222n n n n n n k ++++---=-=, 所以111(1)3(1):()22n n n n n n A A y x n +++-⋅--=-,23n x n =+. 【答案】23n x n =+类型三 函数问题中涉及到的数列通项公式问题【例3】【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ⎛⎫=-⎪⎝⎭,若一个各项均为正数的数列{}n a 满足()()()()*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =( ) A.136B. 9C. 18D. 36【答案】C【指点迷津】本题主要考查抽象函数的解析式以及数列通项与前n 项和之间的关系以及公式()12n n n a S S n -=-≥的应用,属于难题.已知n S 求n a 的一般步骤:(1)当1n =时,由11a S =求1a 的值;(2)当2n ≥时,由1n n n a S S -=-,求得n a 的表达式;(3)检验1a 的值是否满足(2)中的表达式,若不满足则分段表示n a ;(4)写出n a 的完整表达式.【举一反三】【北京西城35中2017届高三上学期期中数学】已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, ()()()*12101n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的通项公式为( ). A. n a n = B. 2n a n = C. 1n a n =+ D. 223n a n n =-+ 【解析】∵()112F x f x ⎛⎫=+- ⎪⎝⎭是奇函数,∴11022F F ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令12x =, ()1112F f ⎛⎫=- ⎪⎝⎭,令12x =-, ()1012F f ⎛⎫-=- ⎪⎝⎭,∴()()012f f +=,∴()()1012a f f =+=,令112x n =-,∴11112F f n n ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令112x n =-,∴11112n F f n n -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, ∵1111022F F n n ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,同理可得222n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 332n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,∴1221(n n a n n N n +-=+⨯=+∈), 故选C【答案】C类型四 由复杂递推公式求解数列通项公式问题【例4】【重庆市第一中学2018届高三上学期第一次月考】我们把满足的数列叫做牛顿数列,已知函数,且数列为牛顿数列,设,则( )A.B.C. D.【答案】C【指点迷津】对于复杂的递推公式,关键是进行化简和变形,适当的时候需要换元,本题通过题意,可求得 即数列{a n }是以2为公比的等比数列,又a 1=2,利用等比数列的通项公式即可求得答案.【举一反三】【辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三中学2018届高三第二次联考】设数列{}n a 中, 11222,,11nn n n n a a a b a a ++===+-, *n N ∈,则数列{}n b 的通项公式为__________. 【解析】111222124222211111n n n n n n n n n n a a a a b b a a a a ++++++++====⨯=--+--+, 所以2q =, 12b =,所以12n n b +=. 【答案】12n +类型五 两边夹问题中的数列通项公式问题【例5】【2017届浙江省杭州地区(含周边)重点中学联考】设数列{}n a 满足123a =,且对任意的*n N ∈,满足22n n n a a +-≤, 452n n n a a +-≥⨯,则2017a =_________【答案】201723【答案】201723【指点迷津】解题的关键是要通过所给的不等关系找到数列的项的特征,即452n n n a a +-=⨯,然后经过恰当的变形,将求2017a 的问题转化为数列求和的问题去处理,对于求和问题要把握准数列的公比和数列的项数,这是比较容易出现错误的地方.【举一反三】【福建省莆田第六中学2017届高三下学期第一次模拟】已知各项都为整数的数列{}n a 中,12a =,且对任意的*N n ∈,满足1n n a a +-< 122n +, 2n n a a +- 321n >⨯-,则2017a =__________.【答案】20172类型六 下标为n a 形式的数列通项公式问题【例6】【浙江省湖州、衢州、丽水三市2017届高三4月联考】已知等差数列{}n a ,等比数列{}n b 的公比为()*,q n q N ∈,设{}n a , {}n b 的前n 项和分别为n S ,n T .若21n n q T S +=,则n a __________.【答案】21n a n =-【解析】()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, ()1111111n n n b q b b T q q q q -==-⋅---, 因为21n n q T S +=,所以2211111122n n n b b d d q q a q q q ⎛⎫-⋅+=+- ⎪--⎝⎭,这是关于n 的恒等式,所以111101{0212b qda b d q +=--=-=-,解得12{1d a ==,所以()12121n a n n =+-=-.【指点迷津】本题要求等差数列的通项公式,既没有首项也没有公差,有的只是等差数列与等比数列的一个关系21n n q T S +=,这是一个关于正整数n 的恒等式,因此我们可把等差数列与等比数列的前n 项用基本量表示,并化已知等式为n q 的恒等式,利用恒等式的知识求解1,a d . 【举一反三】【2018届安徽皖江名校联盟12月份联考改编】等差数列和等比数列的各项均为正整数,且的前项和为,数列是公比为16的等比数列,.则}{n b 的通项公式____________.【答案】14-=n n b 三.强化训练1.【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3242549,15,23a a a ===,,,,若,2017i j a =,则i j +=( )A. 64B. 65C. 71D. 72 【答案】D【解析】奇数数列2120171009n a n n =-=⇒=,即2017为底1009个奇数. 按照蛇形排列,第1行到第i 行末共有()1122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==⇒+=,故选D.2.【湖南省衡阳县2018届高三12月联考】在数列{}n a 中, ()()()112141nn n n na n a n n +-+=+++,且11a =,记22ini n i a T i =+=∑,则( ) A. 19T 能被41整除 B. 19T 能被43整除 C. 19T 能被51整除 D. 19T 能被57整除 【答案】A3.【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}n a 满足*1*,2{,2n n n na d N a nqa N ++∉=∈(q 为非零常数),若{}n a 为等比数列,且首项为()0a a ≠,公比为q ,则{}n a 的通项公式为( )A. n a a =或1n n a q -=B. ()11n n a a -=- C. n a a =或()11n n a a -=- D. 1n n a q -=【答案】C4.【浙江省湖州市2017届高三联考】对任意的n∈N *,数列{a n }满足21cos 3na n ≤﹣且22sin 3n a n +≤,则a n 等于( ) A.22sin 3n - B. 22sin 3n - C. 21cos 3n - D. 21cos 3n + 【答案】A 【解析】∵21cos 3n a n ≤﹣且22sin 3n a n +≤,∴2211cos 33n n a cos n -≤≤+, 2222sin sin 33n n a n --≤≤-+,即2251cos cos 33n n a n -≤≤-,∴2212cos sin 33n a n n =-=-,故选A.5.【2016届河北省衡水中学高三下学期猜题】已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12n n n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( ) A .201421- B .201421+ C .201521- D .201521+【答案】A. 【解析】试题分析:∵12n n n a a +-≤,∴1212n n n a a +++-≤,两式相加,可得122232n n n n n a a ++-≤+=⋅, 又∵232n n n a a +-≥⨯,∴需232n n n a a +-=⋅,等号成立的条件为:12n n n a a +-=, ∴2n ≥时,1112111(21)()()2212121n n n n n n a a a a a a --⋅-=-+⋅⋅⋅+-+=+⋅⋅⋅++==--,∴2014201421a =-,故选A.6.【湖北省武汉市2017届高三四月调研】已知数列{}n a 满足11a =, 213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A.112n - B. 121n - C. 113n - D. 1121n -+ 【答案】B7.【九江市2017年第三次高考模拟统一考试】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数: 1,1,2,3,5,8,…,该数列的特点是:前两个数均为 1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列.则()8822111i i i i i a a a++==-=∑∑( ) A. 0 B. 1- C. 1 D. 2 【答案】A【解析】由题意,得2221322433541211,1341,2591a a a a a a a a a -=⨯-=-=⨯-=--=⨯-=,222465810938251,,2155341a a a a a a -=⨯-=-⋅⋅⋅-=⨯-=-,所以()88221110i i i i i a a a ++==-=∑∑;故选A.6.8.【天津市第一中学2018届高三上学期第二次月考改编】已知数列{}n a 满足22,{ 2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.则{}n a 的通项公式__________.【答案】()()2{2nn n n a n ∴=为奇数为偶数9. 【2016届西藏日喀则一中高三下学期二模改编】已知正项数列{}n a 的前n 项和为n S ,且21111,n n n a S S a ++=+=,数列{}n b 满足13n a n n b b +⋅=,且11b =.则{}n b 的通项公式__________.【答案】()()1223{3n n n n b n -=为奇数为偶数【解析】∵,①()212n n n S S a n -+=≥,②①-②得:2211n n n n a a a a +++=-,∴()()1110n n n n a a a a +++--=,∵,∴10n n a a ++≠,∴()11,2n n a a n +-=≥ 又由得,即22220a a --=,∴222,1a a ==-(舍去).∴211a a -=,∴{}n a 是以1为首项,1为公差的等差数列, ∴n a n =. 又∵13na n nb b +⋅=③ ()1132n n n b b n --⋅=≥④③④得:又由,可求,故是首项为1,公比为3的等比数列,是首项为3,公比为3的等比数列.∴112123,333n n n n n b b ---==⋅=.∴()()1223{3n n n n b n -=为奇数为偶数.10.【湖北省黄石市第三中学(稳派教育)2018届高三阶段性检测】下表给出一个“三角形数阵”:18 14, 18 38, 316, 332……已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i 行第j 列的数为i j a -,则(1)83a -=_________;(2)前20行中14这个数共出现了________次. 【答案】14411.【2017届吉林省吉林市普通中学高三毕业班第二次调研测试】艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,,则的通项公式__________.【答案】12.【2017届河南郑州一中网校高三入学测试】设数列{}n a是首项为0的递增数列,()()[]*11sin,,,n n n n f x x a x a a n N n+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 【答案】()12n n n a π-=。
2023高考数学----数列的通项公式规律方法与典型例题讲解
2023高考数学----数列的通项公式规律方法与典型例题讲解【规律方法】常见求解数列通项公式的方法有如下六种:(1)观察法:根据所给的一列数、式、图形等,通过观察法猜想其通项公式. (2)累加法:形如1()n n a a f n +=+的解析式.(3)累乘法:形如()()*1()02,?n n n a f n a a n n −=⋅≠∈N … (4)公式法(5)取倒数法:形如11n n n p ta a ma −−=+的关系式(6)构造辅助数列法:通过变换递推关系,将非等差(比)数列构造为等差(比)数列来求通项公式.【典型例题】例1.(2022·上海市南洋模范中学高三期中)在数列{}*(N )n a n ∈中.12a =,n S 是其前n 项和,当2n ≥时,恒有n a 、n S 、2n S −成等比数列,则n a =___________ 【答案】22122n n n n=⎧⎪⎨≥⎪−⎩,,【解析】当2n ≥时,由题可得()22n n n S a S =−,即()()212n n n n S S S S −=−−,化简得1122n n n n S S S S −−+=,得1122n n n S S S −−=+,两边取倒数得11111211222n n n n n S S S S S −−−−=+=+, 11112n n S S −∴−=, 所以,数列1n S ⎧⎫⎨⎬⎩⎭是以111112S a ==为首项,以12为公差的等差数列,()1111222n nn S ∴=+−⋅=,2n S n∴=, 当2n ≥时,()12222211n n n a S S n n n n n n−=−=−=−=−−−−, 所以,22122n n a n n n =⎧⎪=⎨≥⎪−⎩,,.故答案为:22122n n n n =⎧⎪⎨≥⎪−⎩,,.例2.(2022·黑龙江·肇州县第二中学高三阶段练习)已知数列{}n a 的前n 项和为n S ,11a =,()21(21)2,N n n n S n S n a n n *−−−=≥∈,则数列n S =_____________. 【答案】2(1)n n +【解析】由题意可得2*11(21)(),(2,N )n n n n S n S n S S n n −−−−=−≥∈, 所以221(1)(1)n n n S n S −−=−,所以21(1)1(1)(1)1n n S n n S n n n −−−==+−+, 所以32121121(1)!2(1)!341(1)2n n S S S n n n S S S n n n −−−⨯⨯⋅⋅⋅⨯=⨯⨯⋅⋅⋅⨯==+++,又因为111S a ==,所以2(1)n S n n =+,故答案为:2(1)n n +例3.(2022·福建·高三阶段练习)设等差数列{}n a 的前n 项和为n S ,若226n n S n a =+−,则n a =______. 【答案】23n +【解析】当1n =时,11126a a =+−,则15a =; 当2n ≥时,()211126n n S n a −−=−+−,两式相减,整理得1212n n a a n −=−+,设公差为d ,则1121n n n a a d a n −−−==−+,即()5221n d n d +−=+−, 所以2d =, 所以23n a n =+. 故答案为:23n +.例4.(2022·全国·高三专题练习)已知数列{}n a 满足112a =,且+1=3+1n n n a a a ,则数列{}n a 的通项公式为=n a ______. 【答案】131n − 【解析】由+1=3+1n n n a a a 两边取倒数可得+111=3n n a a +,即+1113n na a −=. 所以数列是首项为2,公差为3等差数列. 所以()123131n n n a =+−=−,所以131n a n =−. 故答案为:131n −. 例5.(2022·全国·高三专题练习)已知在数列{}n a 中,12a =,3211223nn a a a a a n+++++=−,则n a =__________. 【答案】2n 【解析】因为3211223n n a a a a a n +++++=−,当2n ≥时,31212231n n a a a a a n −++++=−−, 则1n n n a a a n +=−,即有11n n a a n n +=+,当1n =时,122a a =−,得24a =,2121a a=满足上式, N n *∈,11n n a a n n +=+,因此数列{}n a n是常数列,即121n a an ==,所以2n a n =. 故答案为:2n例6.(2022·全国·高三专题练习)已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =______.【答案】3223n n− 【解析】因为156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,所以1122213n n n n a a ++=⨯+,整理得()11223233n n n n a a ++−=−,所以数列{}23n n a −是以14233a −=−为首项, 23为公比的等比数列,所以1422333n n n a −⎛⎫−=− ⎪⎝⎭,解得3223n n na =−. 故答案为:3223nn −. 例7.(2022·全国·高三专题练习)设{}n a 是首项为1的正项数列且22*11(1)(21)0(N )n n n n na n a n a a n ++++−+=∈,且1+≠n n a a ,求数列{}n a 的通项公式_________ 【答案】n a n =【解析】依题意11a =,22*11(1)(21)0(N )n n n n na n a n a a n ++++−+=∈,所以()()1110n n n n a a na n a ++−−+=⎡⎤⎣⎦, 又因为1+≠n n a a ,所以10n n a a +−≠,所以()101n n na n a +−+=,()111,21n n n n a a n nn a n a n +−+==≥−, 所以13211221n n n n n a a a a a a a a a a −−−=⋅⋅⋅⋅⋅13211221n n n n n −=⋅⋅⋅⋅⋅=−−, 经检验,11a =也符合上式. 所以()*N n a n n =∈.综上所述, n a n =. 故答案为: n a n =.例8.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*N n ∈),则n S =___________ 【答案】2n n ⋅【解析】因为12n n n a S n ++=,则12n n na S n +=+,当2n ≥时,1(1)1n n n a S n −−=+,因此1(1)21n n n na n a a n n +−=−++, 化简整理得1221n n a a n n +=⋅++,而211336a S a ===,有21232a a=⋅,即有*N n ∈,1221n n a a n n +=⋅++, 因此,数列{}1n a n +是以112a=为首项,2为公比的等比数列,则121n n a n −=+,即1(1)2n n a n −=+⋅, 所以1(2)2222n n n n n n S a n n n n +==⋅+⋅=⋅++. 故答案为:2n n ⋅例9.(2022·全国·高三专题练习)数列{}n a 满足:123a =,()()()21*12122N n n n n a a n +++−=−∈,则{}n a 的通项公式为_____________.【答案】()()122121nn nn a +=−− 【解析】由()()2112122n n n n a a +++−=−得,1122222122121n n n n n n a a ++++−−==⋅−−, 则1231122113123121212121222221212121n n n n n n n n n n n n a a a a a a a a −−−−−+−−−−−−−−⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅=−−−−()()11322121n n n −+⋅−−, 即()()111322121n n n n a a −+⋅=−−,又123a =,所以()()122121n n nn a +=−−. 故答案为:()()122121n n nn a +=−−.例10.(2022·全国·高三专题练习)甲、乙两人各拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数,原掷骰子的人再继续掷;若掷出的点数之和不是3的倍数,就由对方接着掷.第一次由甲开始掷,则第n 次由甲掷的概率n P =______(用含n 的式子表示). 【答案】1111223n −⎛⎫+− ⎪⎝⎭【解析】易知掷出的点数之和为3的倍数的概率为121363=.“第1n +次由甲掷”这一事件,包含事件“第n 次由甲掷,第1n +次继续由甲掷”和事件“第n 次由乙掷,第1n +次由甲掷”,这两个事件发生的概率分别为13n P ,()1113n P ⎛⎫−− ⎪⎝⎭,故()11112113333n n n n P P P P +⎛⎫=+−−=−+ ⎪⎝⎭(其中11P =), 所以1111232n n P P +⎛⎫−=−− ⎪⎝⎭, 所以数列12n P ⎧−⎫⎨⎬⎩⎭是以112P −为首项,13−为公比的等比数列, 于是11111223n n P P −⎛⎫⎛⎫−=−⋅− ⎪ ⎪⎝⎭⎝⎭,即1111223n n P −⎛⎫=+− ⎪⎝⎭.故答案为:1111223n −⎛⎫+− ⎪⎝⎭。
江苏专版2019届高三数学备考冲刺问题08由复杂递推关系式求解数列的通项公式问题含解析
问题8由复杂递推关系式求解数列的通项公式问题一、考情分析递推公式是给出数列的一种重要方法,常出现在客观题压轴题或解答题中,难度中等或中等以上.利用递推关系式求数列的通项时,通常将所给递推关系式进行适当的变形整理,如累加、累乘、待定系数等,构造或转化为等差数列或等比数列,然后求通项.二、经验分享(1) 已知S n,求a n的步骤当n=1时,a1=S1;当n≥2时,a n=S n-S n-1;(3)对n=1时的情况进行检验,若适合n≥2的通项则可以合并;若不适合则写成分段函数形式.(2)已知数列的前几项,写出数列的通项公式,主要从以下几个方面考虑:如果符号正负相间,则符号可用(-1)n或 (-1)n+1调节.分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系解决.对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法解决.(3)已知数列的递推关系求通项公式的典型方法当出现a n=a n-1+m时,构造等差数列;当出现a n=a n-1+y时,构造等比数列;当出现a n=a n-1+f(n)时,用累加法求解;当出现a na n-1=f(n)时,用累乘法求解.三、知识拓展若数列n a满足,则数列都是公差为a的等差数列,若数列n a满足,则数列都是公比为b的等比数列.四、题型分析(一) 用累加法求数列的通项【例1.】在数列n a中,11 2a , ,则该数列的通项公式n a= .【分析】题目已知条件是,且n N)形式,用叠加原理求解.【解析】因为,所以运用累加法即可得到:,所以,故应填4342n n .【点评】当,且nN)满足一定条件时,可用…求通项n a ,这种方法通常叫累加法. 本题用到裂项相消求和,相消时应注意消去的项规律,及消去哪些项,保留哪些项,于是前n 项的和变成首尾若干少数项之和.还有不少同学会出现的错误,认为21dnn或21dnn是常数,实际上21dnn或21dnn是个变量,n 变化d 随之改变.【小试牛刀】数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.【解析】(1)证明:由a n +2=2a n +1-a n +2得,a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2. 又b 1=a 2-a 1=1.所以{b n }是首项为1,公差为2的等差数列.(2)由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1.于是∑nk =1 (a +1-a )=∑nk =1 (2-1), 所以a n +1-a 1=n 2, 即a n +1=n 2+a 1.又a 1=1, 所以{a n }的通项公式为a n =n 2-2n +2.【点评】本例是典型的由数列的递推公式求通项公式的问题.第(1)问中要注意对数列{a n +1-a n }的整体把握.第(2)问中用的是累加法.注意切忌忽略对a 1的验证.(二) 利用累乘法求数列的通项【例2】设{}n a 是首项为1的正项数列,且,则na .【分析】观察已知的递推式,用十字交叉法分解因式,可求得n a 与1n a 的关系式,再用累乘法求解.【解析】∵,∴,由于{}n a 得各项为正,∴,∴,即11n na n a n ,∴2112a a ,3223a a ,4334a a ,…,11n na n a n,将以上各式相乘得11n a a n,又11a ,∴. 【点评】形如1()n na f n a 型的递推公式常用累乘法.当()f n q 为常数且不等于0时,数列为等比数列,11n n a a q;当()f n 为n 函数时,. 本题可思考{}n na 为常数数列.【小试牛刀】数列n a 中,前n 项和为n S ,2n nna S (1)求数列n a 的通项公式;(2)令,证明:.【解析】(1) 2n nna S ,,两式相减得:,整理得:,(叠乘法)因为,所以3221a a ,4332a a ,…,112n na n a n,相乘得21n a n a ,且当n =1、2时,满足此式,所以.(2) ,因为nb 2,所以;.(三) 用构造法求数列的通项【例3】【江苏省泰州中学2018届高三12月月考2】已知数列n a 满足:11a ,,(*n N ),则数列n a 的通项公式为__________.【分析】变形为,构造新数列求解.【答案】121nna 【解析】由得:,变形得:,所以1{1}na 是以2为公比的等比数列,所以,所以121nna .【点评】数列是一种特殊的函数,通过递推公式写出数列的前几项再猜想数列的通项时,要验证通项的正确性. 易出现的错误是只考虑了前3项,就猜想出n a .用构造法求数列的通项,要仔细观察递推等式,选准要构造的新数列的形式,再确定系数.【小试牛刀】已知数列}{}{n n b a ,满足211a ,1n nb a ,,N n,则2015b .【答案】20152016.【解析】1n na b ∵且121nnnb b a ,,又112b ,1121b ∴,11nb ∴是首项为2,公差为1的等差数列,,1nn b n ∴,.故应填20152016.(四) 利用n S 与n a 的关系求数列的通项【例4】【江苏省南通市基地学校2019届高三3月联考】已知数列的各项均不为0,其前n 项和为.若,,,.(1)求的值;(2)求数列的通项公式;(3)若数列满足,,求证:数列是等差数列.【分析】(1)将代入,可求得;(2)由可求得,进而,两式作差可得,进而推得,可得数列及数列均为等差数列,进而求得通项;(3)由与关系可得:,即,两式作差可得:,进而推得,即,则证明结束.【解析】(1)时,由得解得(2)时,由,得则因为,所以……①所以……②②①得所以,两式相减得即数列及数列都成公差为的等差数列由,得,可求得所以数列的通项公式为(3)由,,得所以因为,所以所以两式相减得,即所以两式相减得所以因为,可得所以所以数列是等差数列【点评】由S n和a n的关系求通项的注意问题:(1)应重视分类讨论的思想,分n=1和n≥2两种情况讨论.当n=1时,a1不适合a n的情况要分开写,即a n=S n,n=1,S n-S n-1,n≥2.(2)要注意a n和S n互化具有双向性,既可由a n化为S n,也可由S n求a n.【小试牛刀】已知数列为单调递增数列,为其前项和,. (1)求的通项公式;(2)若,为数列的前项和,证明:.【解析】(Ⅰ)当n=1时,2S1=2a1=a+1,所以(a1-1)2=0,即a1=1,又{a n}为单调递增数列,所以a n≥1.由2S n=a+n得2S n+1=a+n+1,所以2S n+1-2S n=a-a+1,整理得2a n+1=a-a+1,所以a=(a n+1-1)2.所以a n=a n+1-1,即a n+1-a n=1,所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.(Ⅱ)b n===-所以T n=(-)+(-)+…+[-]=-<.(五) 递推公式为(其中p ,q 均为常数).解法一(待定系数——迭加法)【例5.】数列n a :, ,求数列n a 的通项公式.【分析一】解法一(待定系数法):先把原递推公式转化为其中s,t满足qstp t s .【分析二】(特征根法):对于由递推公式,给出的数列n a ,方程,叫做数列n a 的特征方程. 若21,x x 是特征方程的两个根,当21x x 时,数列n a 的通项为,其中A,B 由决定(即把2121,,,x x a a 和2,1n,代入,得到关于A 、B 的方程组);当21x x 时,数列n a 的通项为,其中A,B 由决定(即把2121,,,x x a a 和2,1n,代入,得到关于A 、B 的方程组).【解法一】(待定系数——迭加法)由,得,且.则数列n na a 1是以a b 为首项,32为公比的等比数列,于是.把代入,得, , ,,.把以上各式相加,得..【解法二】(特征根法):数列n a:,的特征方程是:.,.又由,于是故.【小试牛刀】【江苏省常州市2019届高三上学期期末】已知数列中,,且.(1)求证:是等比数列,并求数列的通项公式;(2)数列中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求满足条件的项;若不存在,说明理由.【解析】(1)因为,所以,因为,所以数列是以2为首项,以-3为公比的等比数列,所以,即;(2)假设存在三项按一定顺序重新排列后成等差.①若,则,整理得,两边同除以,可得,等式右边是-3的整数倍,左边不是-3的整数倍,故等式不成立.②若,则,整理得,两边同除以,可得,等式右边是-3的整数倍,左边不是-3的整数倍,故等式不成立.③若,则,整理得,两边同除以,可得,等式左边是-3的整数倍,右边不是-3的整数倍,故等式不成立;综上,不存在不同的三项符合题意.五、迁移运用1.【江苏省泰州中学2018届高三12月月考】已知数列n a 满足:11a ,,(*n N ),则数列n a 的通项公式为__________.【答案】121nna 【解析】由得:,变形得:,所以1{1}na 是以2为公比的等比数列,所以,所以121nna .2.【江苏省前黄高级中学、如东高级中学、姜堰中学等五校2018届高三上学期第一次学情监测】设数列na 的首项11a ,且满足与,则数列n a 的前20项和为__________.【答案】2056【解析】考查数列的奇数项,结合递推关系有:,且112a ,则数列21na 构成首项为2公比为2的等比数列,令:,则:,即:,而,据此可得:数列n a 的前20项和为.3.【江苏省淮安市盱眙中学2018届高三第一次学情调研】设函数f x 满足且12f ,则10f ________.【答案】492【解析】f x满足,,,,各式相加可得,,,故答案为49 2.4.【2019年3月2019届高三第一次全国大联考(江苏卷)】已知数列对任意满足.(1)求数列的通项公式;(2)设数列的前项和为,求使得成立的正整数的最小值.【解析】(1)因为①,所以②,①②两式相减,得,所以③.又当时,得,不满足上式.所以数列的通项公式为.(2)由(1)知,,所以不成立,当时,,由,得.令,则为增函数,又.因此要使成立,只需,故使成立的正整数的最小值为7.5.【江苏省南京市、盐城市2019届高三第二次模拟】已知数列各项为正数,且对任意,都有.(1)若,,成等差数列,求的值;(2)①求证:数列为等比数列;②若对任意,都有,求数列的公比的取值范围.【解析】(1)因为,所以,因此,,成等比数列.设公比为,因为,,成等差数列,所以,即,于是,解得或,所以或.(2)①因为,所以,两式相除得,即,由,得,两式相除得,即,所以,即,,,由(1)知,所以,,因此数列为等比数列.②当时,由时,可得,所以,因此,所以满足条件.当时,由,得,整理得.因为,,所以,因此,即,由于,因此,与任意恒成立相矛盾,所以不满足条件.综上,公比的取值范围为.6.【江苏省如皋市2018-2019学年高三年级第一学期期末】已知等差数列的前n项和为S n,若为等差数列,且.(1)求数列的通项公式;(2)是否存在正整数,使成等比数列?若存在,请求出这个等比数列;若不存在,请说明理由;(3)若数列满足,,且对任意的,都有,求正整数的最小值.【解析】(1)设等差数列的公差d,则,.又是等差数列,所以,即,解得d=2.此时,,符合数列是等差数列,所以.(2)假设存在,使得,,成等比数列.则,由(1)可知,,代入上式,得,整理得.(*)法一:令,≥1.则,所以在上单调增,所以在上至少有一个根.又,故是方程(*)的唯一解.所以存在,使得,,成等比数列,且该等比数列为3,9,27.法二:,即,所以方程(*)可整理为.因为,所以无解,故.所以存在,使得,,成等比数列,且该等比数列为3,9,27.(3)由可知,.又,,故,所以.依题意,对任意恒成立,所以,即,故.若,据,可得当,时,.由及可得.所以,当,时,,即.故当,时,,故不合题意.若,据,可得,即.所以,当,时,,当时,,得,所以.当,时,,所以,故.故当时,对任意都成立.所以正整数的最小值为3.7.【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知数列的首项,其前n项和为,对于任意正整数,都有.(1)求数列的通项公式;(2)设数列满足.①若,求证:数列是等差数列;②若数列都是等比数列,求证:数列中至多存在三项.【解析】(1)令,则由,得因为,所以,当时,,且当n=1时,此式也成立.所以数列的通项公式为(2)①【证法一】因为,,所以.由得,所以,所以,所以,所以,所以数列是等差数列.【证法二】因为所以所以.所以,所以,记,两式相减得,所以,所以,当时,,由得,所以,当时,,当n=1时,上式也成立,所以,(iii)所以数列是等差数列.【证法三】因为所以,(i)所以,(ii)(i)-(ii)得,(iii)所以,(iv)(iii)-(iv)得,所以.由知.所以,所以数列是等差数列②不妨设数列超过三项,令,由题意,则有,即,代入,整理得(*),若p=q=1,则,与条件矛盾;若,当n=1时,,①当n=2时,,②②÷①得,p=q,代入(*)得b=c,所以,与条件矛盾.故这样的数列至多存在三项.8.【江苏省泰州市2019届高三上学期期末】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有。
高中数学解题模板专题训练:数列通项公式的求解策略高中数学黄金解题模板
【变式演练 1】已 知数列{an}满足 an+1 = an + (2n +81()n2 (+21n)+ 3)2 ,a1 = 98 ,求数列{an}的通项公式。
由此可知,当 n= k +1 时等式也成立。 根据(1),(2)可知,等式对任何 n ∈ N * 都成立。
第三步,根据 a1 = S1 求出 a1 ,并代入{an}的通项公式进 行验证,若成立,则合并;若不成立,则写出分段 形式或根据 a1 和{an}的递推公式求出 an .学/科网
【变式演练 2】已知数列{an} 的前 n 项和= Sn
1 3
an
+
2 3
,则
{an} 的通项公式 an
=(
)
A.
an =
【答案】
an
=
n2
−n 2
+
2
学科*网
方法四 累乘法
使用情景:型如 an+1 an
=
f (n) 或 an+=1
an × f (n)
解题模板:第一步 将递推公式写成 an+1 = f (n) ; an
第二步 依次写出 an ,⋅⋅⋅, a2 ,并将它们累加起来;
an−1
a1
第三步
得到 an a1
的值,解出 an ;
an
满足 a1
=
1 2
,且 an+1
=
2an 2 + an
.
1
(1)求证:数列
an
是等差数列;
{ } (2)若 b=n an ⋅ an+1 ,求数列 bn 的前 n 项和 Sn .
高三数学:2024新高考新试卷结构数列的通项公式的9种题型总结(解析版)
2024新高考新试卷结构数列的通项公式的9种题型总结考点一:已知()n f S n =,求na 利用()()⎩⎨⎧≥-==-2,1,11n S S n a S n nn ,注意一定要验证当1=n 时是否成立【精选例题】【例1】已知n S 为数列{}n a 的前n 项和,且121n n S +=-,则数列{}n a 的通项公式为()A .2n n a =B .3,12,2n nn a n =⎧=⎨≥⎩C .12n n a -=D .12n n a +=【答案】B【详解】当2n ≥时,121nn S -=-,1112212n n n n n n a S S +---+=-==;当1n =时,1111213a S +==-=,不符合2n n a =,则3,12,2n n n a n =⎧=⎨≥⎩.故选:B.【例2】定义123nnp p p p +++⋅⋅⋅+为n 个正数123,,,,n p p p p ⋅⋅⋅的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为15n,则10a 等于()A .85B .90C .95D .100【例3】(多选题)定义12n n H n-+++= 为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有()A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S =D .2S ,4S ,6S 成等差数列【答案】ABC【详解】由已知可得112222n n n n a a a H n -+++== ,所以112222n nn a a a n -+++=⋅ ,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅ ,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以()32n n n S +=,所以32n S n n +=,故2022202520222S =,故C 正确.25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .【例4】设数列{}n a 满足123211111222n n a a a a n -+++⋅⋅⋅+=+,则{}n a 的前n 项和()A .21n -B .21n +C .2nD .121n +-【答案】C【详解】解:当1n =时,12a =,当2n ≥时,由1231221111112222n n n n a a a a a n ---+++⋅⋅⋅++=+得123122111222n n a a a a n --+++⋅⋅⋅+=,两式相减得,1112n n a -=,即12n n a -=,综上,12,12,2n n n a n -=⎧=⎨≥⎩所以{}n a 的前n 项和为()11212224822212n n n ---+++++=+=- ,故选:C.【跟踪训练】1.无穷数列{}n a 的前n 项和为n S ,满足2nn S =,则下列结论中正确的有()A .{}n a 为等比数列B .{}n a 为递增数列C .{}n a 中存在三项成等差数列D .{}n a 中偶数项成等比数列【答案】D【详解】解:无穷数列{}n a 的前n 项和为n S ,满足2nn S =2n ∴≥,111222n n n n n n a S S ---=-=-=,当1n =时,11122a S ===,不符合上式,12,1,2,2,n n n a n -=⎧∴=⎨≥⎩所以{}n a 不是等比数列,故A 错误;又122a a ==,所以{}n a 不是递增数列,故B 错误;假设数列{}n a 中存在三项,,r m s a a a 成等差数列,由于122a a ==,则*,,N ,2r m s r m s ∈≤<<,所以得:11122222m r s m r s a a a ---=+⇒⨯=+11222m r s --∴=+,则11122r m s m ----∴=+,又11021s m s m ----≥⇒≥且120r m -->恒成立,故式子11122r m s m ----=+无解,{}n a 中找不到三项成等差数列,故C 错误;21*22(N )n n a n -∴=∈,212(1)21242n n n na a ++-∴=={}2n a ∴是等比数列,即{}n a 中偶数项成等比数列,故D 正确.故选:D .考点二:叠加法(累加法)求通项若数列{}n a 满足)()(*1N n n f a a n n ∈=-+,则称数列{}n a 为“变差数列”,求变差数列{}n a 的通项时,利用恒等式)2()1()3()2()1()()()(1123121≥-+⋅⋅⋅++++=-+⋅⋅⋅+-+-+=-n n f f f f a a a a a a a a a n n n 求通项公式的方法称为累加法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.1 复杂数列的通项公式求解问题一.方法综述数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略类型一 数阵(数表)中涉及到的数列通项公式问题【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____.【答案】12【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1⋯⋯=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(⋯⋯=i A ij ,最后根据整数解方程的解法列举所有解即可.2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列.【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________.【答案】1030类型二 点列问题中涉及到的数列通项公式问题【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y 顺次为直线11412y x =+上的点,点1122(,0),(,0),,(,0),n nB x B xB x 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点31,,n n n B A B +构成以n A 为顶点的等腰三角形.则数列{}n x 的通项公式为____________.【答案】,(1,(n n a n x n a n -⎧=⎨+-⎩为偶数)为奇数)【指点迷津】对于点列问题,要根据图像上点与点之间的关系,以及平面几何知识加以分析,找出关系式即可,本题是直线上的点列,已知点列n A 的通项公式,求点列n B 的通项公式,并研究等腰三角形是否为特殊的等腰直角三角形.【举一反三】在直角坐标平面中,已知点列111,2A ⎛⎫-⎪⎝⎭,2212,2A ⎛⎫ ⎪⎝⎭,3313,2A ⎛⎫- ⎪⎝⎭,…,1,(1)2n n n A n ⎛⎫- ⎪⎝⎭,…,其中n 是正整数.连接12A A 的直线与x 轴交于点()11,0B x ,连接23A A 的直线与x 轴交于点()22,0B x ,…,连接1n n A A +的直线与x 轴交于点(),0n n B x ,….则数列{}n x 的通项公式为___________.【解析】直线1n n A A +的斜率为11121(1)(1)3(1)222n n n n n n k ++++---=-=, 所以111(1)3(1):()22n n n n n n A A y x n +++-⋅--=-,23n x n =+. 【答案】23n x n =+类型三 函数问题中涉及到的数列通项公式问题【例3】【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ⎛⎫=-⎪⎝⎭,若一个各项均为正数的数列{}n a 满足()()()()*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =( ) A.136B. 9C. 18D. 36【答案】C【指点迷津】本题主要考查抽象函数的解析式以及数列通项与前n 项和之间的关系以及公式()12n n n a S S n -=-≥的应用,属于难题.已知n S 求n a 的一般步骤:(1)当1n =时,由11a S =求1a 的值;(2)当2n ≥时,由1n n n a S S -=-,求得n a 的表达式;(3)检验1a 的值是否满足(2)中的表达式,若不满足则分段表示n a ;(4)写出n a 的完整表达式.【举一反三】【北京西城35中2017届高三上学期期中数学】已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, ()()()*12101n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的通项公式为( ). A. n a n = B. 2n a n = C. 1n a n =+ D. 223n a n n =-+【解析】∵()112F x f x ⎛⎫=+- ⎪⎝⎭是奇函数,∴11022F F ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令12x =, ()1112F f ⎛⎫=- ⎪⎝⎭, 令12x =-, ()1012F f ⎛⎫-=- ⎪⎝⎭,∴()()012f f +=,∴()()1012a f f =+=,5令112x n =-,∴11112F f n n ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令112x n =-,∴11112n F f n n -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, ∵1111022F F n n ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,同理可得222n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,332n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,∴1221(n n a n n N n +-=+⨯=+∈), 故选C【答案】C类型四 由复杂递推公式求解数列通项公式问题【例4】【重庆市第一中学2018届高三上学期第一次月考】我们把满足的数列叫做牛顿数列,已知函数,且数列为牛顿数列,设,则( )A.B.C. D.【答案】C【指点迷津】对于复杂的递推公式,关键是进行化简和变形,适当的时候需要换元,本题通过题意,可求得即数列{a n }是以2为公比的等比数列,又a 1=2,利用等比数列的通项公式即可求得答案.【举一反三】【辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三中学2018届高三第二次联考】设数列{}n a 中, 11222,,11n n n n n a a a b a a ++===+-, *n N ∈,则数列{}n b 的通项公式为__________. 【解析】111222124222211111n n n n n n n n n n a a a a b b a a a a ++++++++====⨯=--+--+,所以2q =, 12b =,所以12n n b +=.【答案】12n +类型五 两边夹问题中的数列通项公式问题【例5】【2017届浙江省杭州地区(含周边)重点中学联考】设数列{}n a 满足123a =,且对任意的*n N ∈,满足22n n n a a +-≤, 452nn n a a +-≥⨯,则2017a =_________【答案】201723【答案】2017237【指点迷津】解题的关键是要通过所给的不等关系找到数列的项的特征,即452nn n a a +-=⨯,然后经过恰当的变形,将求2017a 的问题转化为数列求和的问题去处理,对于求和问题要把握准数列的公比和数列的项数,这是比较容易出现错误的地方.【举一反三】【福建省莆田第六中学2017届高三下学期第一次模拟】已知各项都为整数的数列{}n a 中,12a =,且对任意的*N n ∈,满足1n n a a +-< 122n +, 2n n a a +- 321n >⨯-,则2017a =__________.【答案】20172类型六 下标为n a 形式的数列通项公式问题【例6】【浙江省湖州、衢州、丽水三市2017届高三4月联考】已知等差数列{}n a ,等比数列{}n b 的公比为()*,q n q N ∈,设{}n a , {}n b 的前n 项和分别为n S ,n T .若21n n q T S +=,则n a __________. 【答案】21n a n =-【解析】()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, ()1111111n n n b q b bT q q q q -==-⋅---,因为21n n q T S +=,所以2211111122n n n b b d d q q a q q q ⎛⎫-⋅+=+- ⎪--⎝⎭,这是关于n 的恒等式,所以111101{0212b qda b d q +=--=-=-,解得12{1d a ==,所以()12121n a n n =+-=-.【指点迷津】本题要求等差数列的通项公式,既没有首项也没有公差,有的只是等差数列与等比数列的一个关系21n n q T S +=,这是一个关于正整数n 的恒等式,因此我们可把等差数列与等比数列的前n 项用基本量表示,并化已知等式为nq 的恒等式,利用恒等式的知识求解1,a d . 【举一反三】【2018届安徽皖江名校联盟12月份联考改编】等差数列和等比数列的各项均为正整数,且的前项和为,数列是公比为16的等比数列,.则}{n b 的通项公式____________.【答案】14-=n n b三.强化训练1.【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3242549,15,23a a a ===,,,,若,2017i j a =,则i j +=( )A. 64B. 65C. 71D. 72 【答案】D【解析】奇数数列2120171009n a n n =-=⇒=,即2017为底1009个奇数.按照蛇形排列,第1行到第i 行末共有()1122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==⇒+=,故选D.92.【湖南省衡阳县2018届高三12月联考】在数列{}n a 中, ()()()112141nn n n na n a n n +-+=+++,且11a =,记22ini n i a T i =+=∑,则( )A. 19T 能被41整除B. 19T 能被43整除C. 19T 能被51整除D. 19T 能被57整除 【答案】A3.【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}n a 满足*1*,2{ ,2n n n na d N a nqa N ++∉=∈(q 为非零常数),若{}n a 为等比数列,且首项为()0a a ≠,公比为q ,则{}n a 的通项公式为( )A. n a a =或1n n a q -= B. ()11n n a a -=- C. n a a =或()11n n a a -=- D. 1n n a q -=【答案】C4.【浙江省湖州市2017届高三联考】对任意的n∈N *,数列{a n }满足21cos 3n a n ≤﹣且22sin 3n a n +≤,则a n 等于( ) A.22sin 3n - B. 22sin 3n - C. 21cos 3n - D. 21cos 3n + 【答案】A 【解析】∵21cos 3n a n ≤﹣且22sin 3n a n +≤,∴2211cos 33n n a cos n -≤≤+, 2222sin sin 33n n a n --≤≤-+,即2251cos cos 33n n a n -≤≤-,∴2212cos sin 33n a n n =-=-,故选A.5.【2016届河北省衡水中学高三下学期猜题】已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12n n n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( ) A .201421- B .201421+ C .201521- D .201521+【答案】A. 【解析】试题分析:∵12n n n a a +-≤,∴1212n n n a a +++-≤,两式相加,可得122232n n nn n a a ++-≤+=⋅,又∵232n n n a a +-≥⨯,∴需232n n n a a +-=⋅,等号成立的条件为:12n n n a a +-=, ∴2n ≥时,1112111(21)()()2212121n n n n n n a a a a a a --⋅-=-+⋅⋅⋅+-+=+⋅⋅⋅++==--,∴2014201421a =-,故选A.6.【湖北省武汉市2017届高三四月调研】已知数列{}n a 满足11a =, 213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )11A.112n - B. 121n - C. 113n - D. 1121n -+ 【答案】B7.【九江市2017年第三次高考模拟统一考试】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数: 1,1,2,3,5,8,…,该数列的特点是:前两个数均为 1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列.则()8822111i i i i i a a a++==-=∑∑( )A. 0B. 1-C. 1D. 2 【答案】A【解析】由题意,得2221322433541211,1341,2591a a a a a a a a a -=⨯-=-=⨯-=--=⨯-=,222465810938251,,2155341a a a a a a -=⨯-=-⋅⋅⋅-=⨯-=-,所以()88221110i i i i i a a a ++==-=∑∑;故选A.6.8.【天津市第一中学2018届高三上学期第二次月考改编】已知数列{}n a 满足22,{2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.则{}n a 的通项公式__________.【答案】()()2{2n n n n a n ∴=为奇数为偶数9. 【2016届西藏日喀则一中高三下学期二模改编】已知正项数列{}n a 的前n 项和为n S ,且21111,n n n a S S a ++=+=,数列{}n b 满足13n a n n b b +⋅=,且11b =.则{}n b 的通项公式__________.【答案】()()1223{3n n n n b n -=为奇数为偶数【解析】∵,①()212n n n S S a n -+=≥,②①-②得:2211n n n n a a a a +++=-,∴()()1110n n n n a a a a +++--=,∵,∴10n n a a ++≠,∴()11,2n n a a n +-=≥ 又由得,即22220aa --=,∴222,1a a ==-(舍去).∴211a a -=,∴{}n a 是以1为首项,1为公差的等差数列, ∴n a n =. 又∵13na n nb b +⋅=③()1132n n n b b n --⋅=≥④13③④得:又由,可求,故是首项为1,公比为3的等比数列,是首项为3,公比为3的等比数列.∴112123,333n n nn n b b ---==⋅=.∴()()1223{3n n n n b n -=为奇数为偶数.10.【湖北省黄石市第三中学(稳派教育)2018届高三阶段性检测】下表给出一个“三角形数阵”:18 14, 18 38, 316, 332……已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i 行第j 列的数为i j a -,则(1)83a -=_________;(2)前20行中14这个数共出现了________次. 【答案】14411.【2017届吉林省吉林市普通中学高三毕业班第二次调研测试】艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,,则的通项公式__________.【答案】12.【2017届河南郑州一中网校高三入学测试】设数列{}n a是首项为0的递增数列,15()()[]*11sin,,,n n n n f x x a x a a n N n+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 【答案】()12n n n a π-=百度文库是百度发布的供网友在线分享文档的平台。