三阶逆矩阵的求法

合集下载

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是线性代数中一个非常重要的概念,它在解线性方程组、求解矩阵方程等问题中具有重要作用。

本文将介绍解逆矩阵的三种常用方法:伴随矩阵法、初等变换法和分块矩阵法。

方法一:伴随矩阵法伴随矩阵法是一种直接求解逆矩阵的方法。

对于一个n阶方阵A,它的伴随矩阵记为adj(A)。

首先,计算矩阵A的代数余子式构成的余子式矩阵A*,即A* = [Cij],其中Cij是A的元素a_ij的代数余子式。

然后,将A*的转置矩阵记为adj(A)。

最后,计算逆矩阵A^-1 = adj(A) /det(A),其中det(A)是矩阵A的行列式。

方法二:初等变换法初等变换法是通过一系列的初等行变换将矩阵A变为单位矩阵I,同时对单位矩阵进行相同的变换,得到的矩阵就是原矩阵A的逆矩阵。

初等变换包括以下三种操作:1.对其中一行(列)乘以非零常数;2.交换两行(列);3.其中一行(列)乘以非零常数加到另一行(列)上。

具体步骤如下:1.构造增广矩阵[A,I],其中A是待求逆矩阵,I是单位矩阵;2.对增广矩阵进行初等行变换,使左侧的矩阵部分变为单位矩阵,右侧的部分就是待求的逆矩阵;3.如果左侧的矩阵部分无法变为单位矩阵,则矩阵A没有逆矩阵。

方法三:分块矩阵法当矩阵A有一些特殊的结构时,可以使用分块矩阵法来求解逆矩阵。

例如,当A是一个分块对角矩阵时,可以按照分块的大小和位置将其分解为几个小矩阵,然后利用分块矩阵的性质求解逆矩阵。

具体步骤如下:1.将方阵A进行分块,例如,将A分为4个分块:A=[A11A12;A21A22];2.根据分块矩阵的性质,逆矩阵也是可以分块的,即A的逆矩阵为A^-1=[B11B12;B21B22];3.通过求解分块矩阵的逆矩阵,可以得到原矩阵的逆矩阵。

以上就是解逆矩阵的常用三种方法:伴随矩阵法、初等变换法和分块矩阵法。

无论是在理论研究还是在实际应用中,这些方法都具有重要的作用。

在求逆矩阵时,我们可以根据具体的情况选择合适的方法,以获得高效、准确的计算结果。

求二_三阶矩阵逆矩阵的记忆口诀

求二_三阶矩阵逆矩阵的记忆口诀
-1
2. 二阶矩阵的逆矩阵记忆口诀 按照引理 1.3 我们得到下列结论 . * a b 结 论 2.1 设 A= ,a ,b ,c ,d ∈R , 且 A 可 逆 , 那 么 A c d d -b , 所以 -c a -1 1 d -b (2.1 ) A = |A| -c a 由 以 上 结 论 我 们 可 以 得 到 记 忆 口 诀:主 对 调 ,次 变 号 ,除 行列 .
404000 )
称为矩阵 A 的伴随矩阵 . 引 理 1.3 [1] 方 阵 A 可 逆 的 充 分 必 要 条 件 是 |A|≠0 , 且 当 A 可逆时 ,A =
-1 * 1 * A , 其中 A 是 A 的伴随矩阵 . |A|
1. 问题提出及准备知识
在各类理工科数学考试题目中均有求矩阵逆矩阵的题 目 , 这个题目虽然简单 , 但是要按照课本上给出的方法计算的 话 , 要费一些时间 , 更可怕的是 , 计算过程中难免有失误 , 容易 造成结果出错 . 我们研究了一些考试试卷 , 发现大部分求逆矩阵的题目 都是求二阶或者三阶矩阵 的 逆 矩 阵 . 针 对 此 , 我 们 给 出 了 相 应 的记忆口诀 , 按照这记忆口诀学生可以快速计算出矩阵的逆 矩阵 . 首先给出一 些 准 备 知 识 . 本 文 所 用 的 其 他 概 念 和 符 号 请 参考文献 [1 ]. 定义 1.1[1] 对于阶方阵 , 如果有一个阶方阵 , 使 AB=BA=E , 则称 A 是可逆的 , 并把方阵 B 称为 A 的逆矩阵 , 记为 A . 定义 1.2[1] 阶行列式 |A| 的各个元的代数余子式所构成的 如下矩阵 A11 A21 … An1 n n … …
213164 )
作为应用数学的投入产出分析课 , 要上好它 , 我认为主要 应解决好四个方面的问题 , 分别是教学常识问题 、 数学基础问 中间需求 最终需求 产出 题 、经 济 基 础 问 题 和 实 际 应 用 问 题 ,这 几 个 问 题 环 环 相 扣 ,缺 流量 总产出 一不可 。 12 …n 消费累计出口 合计 1. 教学常识问题 投入 教 学 中 ,教 师 是 主 导 ,学 生 是 主 体 ,要 想 学 生 这 个 主 体 学 x11 x12 … x1n y1 x1 1 中 得好 , 教师的主导很重要 。 而要导好一节课 , 我认为主要应解 x21 x22 … x2n y2 x2 2 间 决 以 下 方 面 的 问 题 。 第 一 ,要 有 完 备 的 授 课 计 划 、教 材 、参 考 投 书 、 备课笔记 、 教案等教学资料 , 还要有课后练习 , 以及相应的 n 入 yn xn x n1 x n2 … x nn 测试题目 , 以测试教师的教的效果和学生学的效果 。 特别是要 新 有很好的授课计划 , 不谋全局者不谋局部 , 不设计好整个学期 v1 v2 … v n 工资 创 乃至整个学生整体所需的知识结构的话 , 也是不能很好地上 m1 m2 … m n 纯收入 价 好一节课的 。 具体来说 , 投入产出分析这节课 , 既涉及线性代 合计 z1 z2 … z n 值 数知识 , 又涉及宏观经济学方面的知识 , 还涉及具体的生活应 用等 。 所以必须要分析好学生的已有知识结构 , 才能更好地备 x1 x2 … x n 总投入 好这节课 。 第二 , 要有很好的教学设计 , 教学设计不仅体现在 摇摇 以上的静的教学资料方面 , 而且体现在动的整个教学过程的 其中 xij 表示第 i 部门到第 j 部门的价值流量 。 从表的每一行 消耗部门 把控上 , 以及具体的教学方法的选择上 。 如何开头 , 如何介绍 来看 , 某一生产部门分配给其他部门的生产性消耗加上该部 最终需求 总产出 数 学 基 础 知 识 ,如 何 介 绍 经 济 含 义 ,如 何 介 绍 日 常 应 用 问 题 , 煤矿 电厂 铁路 门最终产品的价值等于它的总产品 ; 从表的每一列来看 , 每一 如 何 小 结 ;如 何 和 学 生 互 动 ;如 何 控 制 时 间 ,分 配 一 段 时 间 让 消耗部门消耗其他部门的生产性消耗加上该部门新创造的价 0 36506 15582 50000 102088 煤矿 学生来提问题等都要有很好的思考和布局 。 要求学生对基本 值。 又由于总的中间投入等于总的中间需求 , 所以新创造价值 生产 概念必须深刻理解 , 对基本理论必须彻底弄清 , 对基本方法必 电厂 25522 2808 2833 25000 56163 应该等与最终需求 。 部门 须牢固掌握 。 铁路 25522 2808 0 0 28330 x 2. 数学基础问题 进一步 , 我们可以定义直接消 耗 系 数 aij= ij , 表 示 第 j 部 门 xj 在线性代数里面 , 大家都知道矩阵这个工具可以求解线 新创造价值 51044 14041 9915 表 3.1

(完整版)逆矩阵的几种求法与解析(很全很经典)

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

矩阵的逆矩阵与行列式计算

矩阵的逆矩阵与行列式计算

矩阵的逆矩阵与行列式计算矩阵是线性代数中的一项重要概念,它在各种领域中都有广泛的应用。

矩阵的逆矩阵和行列式是矩阵理论中的两个关键概念,本文将介绍逆矩阵和行列式的计算方法及其重要性。

一、逆矩阵逆矩阵是矩阵理论中非常重要的一个概念。

对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=I(其中I表示单位阵),那么我们称B为A的逆矩阵,记作A的倒数。

对于可逆矩阵A,它的逆矩阵是唯一的。

逆矩阵的计算方法如下:设A为一个n阶方阵,如果存在n阶方阵B,使得AB=BA=I,则B为A的逆矩阵。

求矩阵A的逆矩阵的方法有多种,以下是其中两个常用的方法:1. 初等行变换法通过利用矩阵初等行变换,将矩阵A变换成一个特殊形式,然后通过初等行变换得到B,使得AB=I。

具体步骤如下:a) 取A和单位阵I并排组成一个增广矩阵[A|I];b) 对[A|I]做行变换,将矩阵A变换为n阶单位矩阵;c) 当[A|I]变为[I|B]时,B就是A的逆矩阵。

2. 伴随矩阵法通过伴随矩阵的概念,求解矩阵A的逆矩阵。

设A为n阶方阵,A 的伴随矩阵记作Adj(A),则A的逆矩阵B的表达式如下:B = (1/det(A)) * Adj(A)其中,det(A)表示矩阵A的行列式,Adj(A)表示A的伴随矩阵。

二、行列式行列式是矩阵理论中用于刻画矩阵性质的一种特殊函数。

对于一个n阶方阵A,它的行列式记作det(A),其计算方法如下:1. 二阶方阵的行列式计算:A = [[a, b], [c, d]]det(A) = ad - bc2. 三阶方阵的行列式计算:A = [[a, b, c], [d, e, f], [g, h, i]]det(A) = aei + bfg + cdh - ceg - bdi - afh对于高阶方阵,通常使用行列式的性质和展开定理来计算。

行列式的计算过程相对繁琐,但是具有重要的应用价值。

行列式的性质有如下几个:a) 互换行列式的两行,行列式改变符号;b) 行列式某一行的公因子可以提到行列式的外面;c) 若行列式有两行(列)完全相同,则行列式的值为0;d) 行列式的某一行(列)可以表示成其他行(列)的线性组合。

如何求矩阵的逆矩阵

如何求矩阵的逆矩阵

如何求矩阵的逆矩阵求逆矩阵最有效的⽅法是初等变换法(虽然还有别的⽅法)。

如果要求⽅阵A的逆矩阵,标准的做法是:将矩阵A与单位矩阵I排成⼀个新的矩阵 (A I)将此新矩阵 (A I) 做初等⾏变换,将它化成 (I B) 的形式B=A−1若A是⼀个⼆阶⽅阵A=a b c d则它的逆矩阵可以直接使⽤公式A−1=1ad−bc d−b−c a来计算。

我们来看⼏个例⼦。

例1:求⼆阶矩阵A=86 54的逆矩阵。

解:因为矩阵是⼆阶矩阵,我们可以直接利⽤⼆阶逆矩阵的公式来求解。

A−1=18⋅4−6⋅54−6−58=124−6−58=2−3−524例2:求矩阵A=10−2−314 2−34的逆矩阵。

解:这是⼀个三阶的矩阵,最简便有效的⽅法是初等变换法。

(你可以试试⽤伴随矩阵的⽅法来求,计算量⽐初等变换法相差多⼤)我们将矩阵与单位矩阵排在⼀起,然后做初等变换(A I)=10−2⋮100−314⋮0102−34⋮001∼10−2⋮10001−2⋮3100−38⋮−201∼10−2⋮10001−2⋮310002⋮731∼100⋮831010⋮1041002⋮731∼100⋮831 010⋮1041001⋮723212所以我们得到()()()()()()() ()() ()() ()A−1=831 1041 723212我们看到的这个矩阵是三阶的,利⽤初等变换计算逆矩阵已经⽐伴随矩阵法少了很多的计算量了。

实际上,矩阵的阶数越⾼,节约下来的计算量越多。

利⽤伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算⼀个三阶⾏列式,九个⼆阶⾏列式。

四阶的话,需要计算⼀个四阶⾏列式,⼗六个三阶⾏列式,⼿算的话,已经让⼈难以接受了。

我们来看⼀个四阶矩阵的逆矩阵。

例3:求矩阵A=1234 2312 111−1 10−2−6的逆矩阵。

解:我们将下述矩阵做初等变换(A I)=1234⋮10002312⋮0100111−1⋮001010−2−6⋮0001∼10−2−6⋮00012312⋮0100111−1⋮00101234⋮1000∼10−2−6⋮000103514⋮010−20135⋮001−102510⋮100−1∼10−2−6⋮00010135⋮001−103514⋮010−202510⋮100−1∼10−2−6⋮00010135⋮001−100−4−1⋮01−3100−10⋮10−21∼10−2−6⋮00010135⋮001−100−10⋮10−2100−4−1⋮01−31∼10−2−6⋮00010135⋮001−100−10⋮10−21000−1⋮−415−3∼10−20⋮24−6−30190130⋮−20526−1600−10⋮10−21000−1⋮−415−3∼1000⋮22−6−26170100⋮−17520−1300−10⋮10−21000−1⋮−415−3∼1000⋮22−6−26170100⋮−17520−130010⋮−102−10001⋮4−1−53所以,我们得到A−1=22−6−2617−17520−13−102−1 4−1−53 () ()()()()()()()()()()()()Processing math: 100%。

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法

求矩阵逆矩阵的常用方法矩阵逆矩阵是一个非常重要的概念,在许多数学和工程应用中都有广泛的应用。

下面介绍了三种求矩阵逆矩阵的常见方法,以及它们的拓展。

方法一:行列式求解法行列式求解法是最常用的方法之一,它基于矩阵逆矩阵的定义,即矩阵的逆矩阵等于其转置矩阵与原矩阵相乘的行列式。

具体步骤如下:1. 计算矩阵 A 的行列式;2. 将行列式乘以矩阵 A 的列向量,得到矩阵 A 的逆矩阵。

方法二:高斯 - 约旦消元法高斯 - 约旦消元法是一种用于求解矩阵逆矩阵的线性代数算法,它基于矩阵乘法的可逆性。

具体步骤如下:1. 将矩阵 A 分解成阶梯形矩阵;2. 对阶梯形矩阵的每一列进行高斯 - 约旦消元,得到一个新的矩阵;3. 将新的矩阵与原矩阵 A 相乘,得到矩阵 A 的逆矩阵。

方法三:奇异值分解法奇异值分解法是一种用于求解矩阵逆矩阵的非常规方法,它基于矩阵的奇异值分解。

具体步骤如下:1. 将矩阵 A 分解成奇异值分解;2. 对分解后的矩阵分别进行逆矩阵运算,得到矩阵 A 的逆矩阵。

拓展:矩阵逆矩阵的应用矩阵逆矩阵在许多数学和工程应用中都有广泛的应用,下面列举了其中的几个应用领域:1. 信号处理:矩阵逆矩阵在数字信号处理中被用来求解信号的逆变换,即信号的逆变换。

2. 量子力学:矩阵逆矩阵在量子力学中被用作求解系统的能级和波函数。

3. 控制理论:矩阵逆矩阵在控制理论中被用作求解系统的控制器,即控制器的逆矩阵。

4. 统计学:矩阵逆矩阵在统计学中被用于求解协方差矩阵的逆矩阵,即协方差矩阵的逆矩阵。

5. 计算机科学:矩阵逆矩阵在计算机科学中被用于求解矩阵的逆矩阵,即矩阵的逆矩阵。

矩阵逆矩阵是一种非常重要的数学概念,在许多数学和工程应用中都有广泛的应用。

了解不同方法求解矩阵逆矩阵的原理和过程,有助于更好地理解和应用矩阵逆矩阵的概念。

三阶矩阵逆矩阵的口诀

三阶矩阵逆矩阵的口诀

三阶矩阵逆矩阵的口诀嘿,大家好,今天我们聊聊三阶矩阵逆矩阵的那些事儿。

别看它名字听起来复杂,实际上就像一碗热腾腾的牛肉面,里面有很多简单的配料,搞明白了就好吃得很。

想象一下,三阶矩阵就像一块拼图,里面有九个小方格,排列得整整齐齐。

每个数字都有自己的位置,像家里的成员,各司其职,互相配合。

可是,当你需要找到它的逆矩阵时,就像在寻找失散多年的亲戚,得仔细推理。

先说说什么是逆矩阵。

简单来说,逆矩阵就像是解决问题的药方,能够帮助你把一个麻烦的方程变得简单。

假如你有个矩阵A,想要找到它的逆矩阵A的逆,哎呀,这可不是随便找个方子就行的,得按部就班来。

听起来是不是有点复杂?别着急,慢慢来,一步一步走。

第一步,求出行列式。

行列式就像是一个神奇的数字,能告诉你这个矩阵能不能逆。

如果行列式不等于零,那就说明你这块拼图是完整的,可以找到它的逆。

如果是零,那就真是完蛋了,拼图缺了一块,没法拼了。

行列式的计算就像是做饭,得把所有材料都准备齐全,最后再来个混合,才有可能出好菜。

得求伴随矩阵。

伴随矩阵其实就像是你做菜时的调料,能提升整体的味道。

先得求出每个元素的余子式,然后再加上个符号,最后转置,哎呀,伴随矩阵就出来了!听起来是不是有点繁琐?可别担心,慢慢来,一步一步,咱们都能搞定。

有了伴随矩阵,就能求出逆矩阵啦!只需把伴随矩阵除以行列式,就像把美味的酱汁浇在面上,瞬间让这道菜变得诱人无比。

逆矩阵的求法其实没那么难,记住“行列式不为零,伴随矩阵来相助”,就可以顺利搞定。

哎,有时候就像我上次做饭,结果最后忘了加盐,整道菜淡得像清汤。

逆矩阵的求法也得小心翼翼,任何一步出错,最后的结果就会大打折扣。

所以,多练习,才能把这道“菜”做得更好。

除了这些公式,还有一些小技巧,比如使用口诀。

比如说“行列式计算,伴随矩阵跟随”,这句口诀就可以帮助你记住求逆的步骤。

再来个“行列式非零,逆矩阵不愁”,这就提醒你一定要先检查行列式。

在实际应用中,逆矩阵可是个好帮手哦。

3.3逆矩阵及其求法ppt课件

3.3逆矩阵及其求法ppt课件

0 1 52 1 1
例3 设方阵A满足A2A2E=0,证明:A, A+2E都可逆,并求它们的逆阵.
[证] A2A2E=0
A(AE)=2E
AAE E 2
A A E 1 2
|A|0
A可逆
, A1 1(AE) 2
A2A2E=0
(A+2E)(A3E)+4E=0
(A2E) [1(A3E)]E 4
A2E1(A3E)1 4
1 4 1 4 X 1 4 14
1 513 2 4 53 2 X1 4 1 41 11 4
17 28
4
6
1 1 1 1 2 3
(2)X1 1 02 0 4
2 1 1 0 1 5
1 1 1 1
解: 方程两端右乘矩阵
1Байду номын сангаас
1
0
2 1 1
1 2 31 1 11
得 X2 0 41 1 0
注: AA*=A*A=|A|E
推论 若AB=E(或BA=E),则B=A1.
[证] ∵|A||B|=|E|
=1
|A|0
A1存在
B=EB
=(A1A)B
=A1(AB)
=A1E
=A1
二、逆矩阵的性质
1.若A可逆,则有|A1|=|A|1 [证] ∵AA1=E
|A||A1|=1 |A1|=|A|1
2.若A可逆,则现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
§3.3 逆阵及其求法
1.逆矩阵的概念及其求法 2.逆矩阵的性质
一、逆矩阵的概念及其求法
定义10 对于n阶方阵A,若有一个n阶方阵B,使AB=BA=E,则称方阵A可逆,并称方阵B为 A的逆阵,记作A1.

(完整word版)逆矩阵的几种求法与解析(很全很经典)

(完整word版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A )1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E- A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E ,因此E-A 是可逆矩阵,且(E-A)1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K .由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解 容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使(1)s p p p Λ21A=I ,用A 1-右乘上式两端,得:(2) s p p p Λ21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (212221212111)其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A 3,于是有A 1-=A 1A 3.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1A 3. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡W ZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00,其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A 4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A ⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡22110A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。

三阶矩阵的转置 逆矩阵行列式

三阶矩阵的转置 逆矩阵行列式

三阶矩阵的转置逆矩阵行列式1.引言1.1 概述概述部分将介绍本篇文章的主题和主要内容。

本篇文章将探讨关于三阶矩阵的转置,逆矩阵和行列式的相关知识。

在线性代数中,矩阵是一个重要的概念,被广泛应用于各个领域。

其中,三阶矩阵是最简单且常见的一种矩阵类型。

转置、逆矩阵和行列式是三阶矩阵的重要性质和计算方法,对于矩阵的运算和分析起着关键作用。

在本文的第一部分,我们将探讨三阶矩阵的转置。

转置是矩阵运算中常见的一种操作,可以通过交换矩阵的行和列来得到新的矩阵。

我们将介绍转置的定义和性质,并提供三阶矩阵转置的具体计算方法。

在第二部分,我们将研究三阶矩阵的逆矩阵。

逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A与B的乘积等于单位矩阵。

我们将介绍逆矩阵的定义和性质,并提供三阶矩阵逆矩阵的计算方法。

最后,在第三部分,我们将研究三阶矩阵的行列式。

行列式是一个与矩阵相关的重要概念,用于计算矩阵的特征值和特征向量。

我们将介绍行列式的定义和性质,并提供三阶矩阵行列式的具体计算方法。

通过全面了解三阶矩阵的转置、逆矩阵和行列式,我们可以更好地理解和应用矩阵运算。

本文旨在为读者提供一个清晰的概念和计算方法,并帮助读者在实际问题中运用到这些知识。

希望读者通过阅读本文能够对三阶矩阵的转置、逆矩阵和行列式有更深入的理解。

1.2文章结构文章结构部分的内容可以包括以下内容:在文章结构部分,我们将介绍本文的组织结构,以帮助读者更好地理解和阅读本文。

本文主要分为两个部分:正文和结论。

正文部分将围绕三阶矩阵的转置、逆矩阵和行列式展开讨论。

首先,我们将介绍三阶矩阵的转置,包括其定义和性质。

然后,我们将详细介绍三阶矩阵转置的计算方法。

接下来,我们将转向三阶矩阵的逆矩阵,在这一部分中,我们将讨论逆矩阵的定义和性质,并探讨三阶矩阵逆矩阵的计算方法。

最后,我们将进入三阶矩阵的行列式部分,包括行列式的定义和性质,以及三阶矩阵行列式的计算方法。

在结论部分,我们将简要总结本文的内容,并提出一些结论和观点。

逆矩阵三个公式

逆矩阵三个公式

逆矩阵三个公式逆矩阵是线性代数中一个重要的概念,它在求解线性方程组、计算矩阵的行列式、求解线性变换等问题中都有广泛的应用。

在本文中,我们将介绍逆矩阵的三个公式,并通过实例展示其应用。

一、逆矩阵的定义逆矩阵是指对于一个给定的方阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。

如果一个矩阵存在逆矩阵,则称之为可逆矩阵或非奇异矩阵,反之则称为奇异矩阵。

二、逆矩阵的计算公式1. 克拉默法则克拉默法则是求解线性方程组的一种方法,它可以通过逆矩阵的概念来推导。

对于一个n阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·adj(A),其中det(A)为A的行列式,adj(A)为A的伴随矩阵。

2. 初等变换法通过初等变换法,我们可以将方阵A通过一系列初等行变换或初等列变换转化为单位矩阵I,此时我们所做的变换操作在另一个矩阵上执行,得到的矩阵即为A的逆矩阵。

具体而言,设A经过一系列初等行变换得到I,则对应的初等行变换矩阵记为E1,同理,设A经过一系列初等列变换得到I,则对应的初等列变换矩阵记为E2,则A的逆矩阵为A^-1=E1·E2。

3. 公式法对于一个2阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[d -b;-c a],其中a、b、c、d分别为A的元素。

对于一个3阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[A11 A12 A13;A21 A22 A23;A31 A32 A33]的转置矩阵,其中Aij为A的代数余子式。

三、逆矩阵的应用实例为了更好地理解逆矩阵的应用,我们以线性方程组的求解为例进行说明。

考虑一个线性方程组:2x + 3y = 84x - 2y = 2我们可以将其表示为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。

我们可以通过求解逆矩阵来解得未知数向量x。

求逆矩阵的三种方法

求逆矩阵的三种方法

求逆矩阵的三种方法求逆矩阵是线性代数中的一个重要问题,对于给定的一个方阵A,求解出一个方阵B,使得A与B的乘积为单位矩阵,即A乘以B等于单位矩阵。

本文将介绍三种常见的求逆矩阵的方法:伴随矩阵法、初等变换法和高斯-约当消元法。

一、伴随矩阵法:伴随矩阵法是求解逆矩阵最常用的方法之一、给定一个n阶方阵A,首先计算出其伴随矩阵Adj(A),然后用其行列式D,A,除以A的行列式,A,得到矩阵的逆矩阵A^(-1)。

具体步骤如下:步骤1:计算A的行列式,A。

步骤2:对A的每个元素a(ij),计算其代数余子式A(ij)。

A(ij)是将A的第i行和第j列删除后得到的矩阵的行列式。

步骤3:根据代数余子式A(ij)计算伴随矩阵Adj(A)。

Adj(A)的第i行第j列的元素等于A(ij)乘以(-1)^(i+j)。

步骤4:计算逆矩阵A^(-1) = Adj(A)/,A。

伴随矩阵法求逆矩阵的优点是简单易懂,但是对于大型矩阵来说,计算量较大。

二、初等变换法:初等变换法是通过一系列矩阵的变换,将原矩阵变换为单位矩阵的同时,将单位矩阵进行相同变换,最终得到的矩阵就是原矩阵的逆矩阵。

具体步骤如下:步骤1:将原矩阵A和单位矩阵I进行横向拼接,得到一个n阶矩阵[A,I]。

步骤2:通过一系列的初等行变换,将矩阵[A,I]变换为一个左边是单位矩阵的矩阵[E,B]。

此时,原矩阵A的逆矩阵就是右边的矩阵B。

步骤3:将右边的矩阵B拆分出来,即得到A的逆矩阵A^(-1)=B。

初等变换法求逆矩阵的优点是可以直观地通过初等行变换的方式来求解,但是对于一些特殊矩阵而言,可能需要执行大量的行变换操作。

三、高斯-约当消元法:高斯-约当消元法是通过消元的方式,将原矩阵A变换为一个上三角矩阵的同时,将单位矩阵进行相同变换,最终得到的矩阵就是原矩阵的逆矩阵。

具体步骤如下:步骤1:将原矩阵A和单位矩阵I进行横向拼接,得到一个n阶矩阵[A,I]。

步骤2:通过高斯-约当消元的方式,将矩阵[A,I]转化为一个上三角矩阵[U,C]。

逆矩阵的计算公式

逆矩阵的计算公式

逆矩阵的计算公式逆矩阵计算公式:1. 基本定义:一个矩阵$A$的逆矩阵记作$A^{-1}$,若$A、B$都是$n$阶方阵,当且仅当满足$AB=BA=I_n$时,称$B$为$A$的逆矩阵,其中$I_n$是$n$阶单位方阵;2. 求解方法:(1)数域方式:矩阵$A$不在复数域或实数域中求解,可以建立$A$的伴随矩阵,用高斯-约旦消去法来求出逆矩阵$A^{-1}$。

(2)矩阵的分块:矩阵$A$分成子矩阵,其每部分的逆矩阵都是可以算出的,因此可以将大矩阵的逆分解成子矩阵逆的乘积,求解大矩阵的逆矩阵;(3)矩阵的隐式函数法:该法是使用函数的思想来求关系矩阵A的逆矩阵$A^{-1}$,在前面假定$AX=B$有解的前提下,进行一系列推导,解出$A^{-1}$;(4)矩阵朴素算法:如果矩阵$A$是一个$n$阶方阵,可以利用矩阵$A$的特殊形态对其求逆的同时消元,并利用行变换整理出$A$的逆矩阵;(5)范数方法:它是针对正定矩阵的,首先将正定矩阵按范数排列成一系列小矩阵,然后通过小矩阵式求出正定矩阵的逆矩阵;(6)LU分解:LU矩阵分解又称为Crout分解,是一种对非奇异方阵求逆矩阵的有效方法,它是利用下三角求逆和上三角求逆相结合可以求出矩阵的逆矩阵;(7)QR分解:它是基于矩阵的Q矩阵去求逆的,是利用正交分解的齐次系数特征值问题可以求出模糊Hessenberg矩阵的逆,进而迭代求出原矩阵的逆矩阵;(8)对称正定矩阵的求逆:如果需要求解的矩阵是一个对称正定矩阵,那么可以用Cholesky分解的方法计算矩阵的逆;(9)龙贝格(Löwner)方法:也叫做增量方法,可以用来求矩阵$A$的逆矩阵,计算公式是:$A^{-1}=A^{T}+A^{T}AA^{-1}$;(10)改进的共轭梯度法:可以用于求一般方阵的逆矩阵,也可以用于求一般非完全可逆矩阵的逆,可以求出较为精确的结果。

阶、三阶矩阵逆矩阵的口诀

阶、三阶矩阵逆矩阵的口诀

1、问题的提出在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。

经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。

针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。

2、知识储备对于n 阶方阵,如果同时存在一个n 阶方阵,使得 AB=BA=E 则称A 阵可逆,并把方阵B 成为方阵A 的逆矩阵,记作A -1n 阶行列式A 的各个元素的代数余子式构成的矩阵,叫做A 的伴随矩阵,如下:112111222212......*.......n n n n nn A A A A A A A A A A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 方阵A 可逆的充分必要条件是0A ≠,当A 可逆时,*1A A A -= 3、二阶矩阵的逆矩阵的记忆口诀记忆口诀:主对调,次换号,除以行列式推导: 假设a b A c d ⎡⎤=⎢⎥⎣⎦,,,,a b c d R ∈,且A 可逆,那么根据知识储备 *d b A c a -⎡⎤=⎢⎥-⎣⎦所以呢,*1d b c a A A A A--⎡⎤⎢⎥-⎣⎦== 4、三阶矩阵的逆矩阵的记忆口诀记忆口诀:除以行列式,别忘记。

去一行,得一列,二变号,余不变,231 3121) 整体要除以行列式,不能忘记2) 去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列3) 所求得的逆矩阵的第二列是按照231 312 规律得到数字加了一个负号,其余的第一列,第三列不加负号对于三阶矩阵33,ab c A de f A R g h i ⨯⎡⎤⎢⎥=∈⎢⎥⎢⎥⎣⎦,且A 可逆 1()1()()ei hf bi hc bf ce A fg id cg ia cd af A dh ge ah gb ae hd -----⎡⎤⎢⎥=----⎢⎥⎢⎥----⎣⎦(1) 先分析公式(1)的第一列,研究如下表格表1公式(1)矩阵的第一列是表1所有元素的组合,组合规律称为(231312规律)Step1: 表格 1 第一行的第二、三、一列乘以第二行的三、一、二列得到ei , fg , dhStep2: 表格1中第二行的二、三、一列乘以第一行的三、一、二列得到hf , id , geStep3: 由step1得到的数据减去step2得到的数据,得到公式(1)的第一列。

(2021年整理)逆矩阵的几种求法与解析(很全很经典)

(2021年整理)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析(很全很经典)(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(逆矩阵的几种求法与解析(很全很经典)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为逆矩阵的几种求法与解析(很全很经典)(推荐完整)的全部内容。

逆矩阵的几种求法与解析(很全很经典)(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望逆矩阵的几种求法与解析(很全很经典)(推荐完整) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈逆矩阵的几种求法与解析(很全很经典)(推荐完整)〉这篇文档的全部内容.逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。

逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法。

1。

利用定义求逆矩阵定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E , 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用.例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且(E-A)1-= E + A + A 2+…+A 1-K证明 因为E 与A 可以交换, 所以(E — A )(E+A + A 2+…+ A 1-K )= E-A K ,因A K = 0 ,于是得(E —A)(E+A+A 2+…+A 1-K )=E ,同理可得(E + A + A 2+…+A 1-K )(E —A )=E ,因此E-A 是可逆矩阵,且(E-A )1-= E + A + A 2+…+A 1-K .同理可以证明(E+ A)也可逆,且(E+ A )1-= E —A + A 2+…+(-1)1-K A 1-K 。

二阶、三阶矩阵逆矩阵地口诀

二阶、三阶矩阵逆矩阵地口诀

求二、三阶矩阵逆矩阵的记忆口诀1、问题的提出在各类理工科的课程中,往往有求解矩阵逆矩阵的问题,题目本身虽然简单,但是如果按照教材给出的方法计算的话,要费一些时间,更可怕的是计算过程难免有误,容易造成结果出错。

经过一些研究,我们发现,大部分求解逆矩阵的题目,都是要求解二阶、三阶矩阵的逆。

针对此问题,给出学生相应的记忆口诀,帮助学生快速求解。

2、知识储备1.1 对于n 阶方阵,如果同时存在一个n 阶方阵,使得AB=BA=E-1 则称A 阵可逆,并把方阵 B 成为方阵 A 的逆矩阵,记作 A1.2 n 阶行列式 A 的各个元素的代数余子式构成的矩阵,叫做 A 的伴随矩阵,如下:A A ... A11 21 n1A* A A ... A12 22 n 2 . . . .A A ... A 1n 2n nn1.3 方阵A 可逆的充分必要条件是 A 0 ,当 A 可逆时, A* 1 AA3、二阶矩阵的逆矩阵的记忆口诀记忆口诀:主对调,次换号,除以行列式推导:假设A a bc d ,a,b,c, d R,且A 可逆,那么根据知识储备 1.2 *d bAc ad b所以呢, A 1*Ac a A A4、三阶矩阵的逆矩阵的记忆口诀记忆口诀:除以行列式,别忘记。

去一行,得一列,二变号,余不变,231 3121)整体要除以行列式,不能忘记2)去掉第一行,得到矩阵剩余两行,求得逆矩阵第一列3)所求得的逆矩阵的第二列是按照231 312 规律得到数字加了一个负号,其余的第一列,第三列不加负号a b c对于三阶矩阵 3 3,且 A 可逆A d e f , A Rg h i(1)ei hf (bi hc) bf ce11A fg id (cg ia) cd afAdh ge (ah gb) ae hd先分析公式(1)的第一列,研究如下表格表11 2 31 d e f2 g h i公式(1)矩阵的第一列是表 1 所有元素的组合,组合规律称为(231312 规律)Step1: 表格1 第一行的第二、三、一列乘以第二行的三、一、二列得到ei , fg , dhStep2:表格1 中第二行的二、三、一列乘以第一行的三、一、二列得到hf , id , geStep3:由step1 得到的数据减去step2 得到的数据,得到公式(1)的第一列。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三阶逆矩阵的求法
三阶逆矩阵的求法
三阶逆矩阵是指三阶方阵的逆矩阵,又称为3阶矩阵的逆,它是一种数学工具,用于解决线性方程组,将线性方程组化简为一个特殊的形式,从而更容易解决。

求解三阶逆矩阵的方法可以分为两种:一种是使用行列式、代数余子式和行列式的展开式,另一种是使用矩阵分块的相似变换。

1、使用行列式、代数余子式和行列式的展开式计算三阶逆矩阵
首先,我们需要先计算出原矩阵A的行列式的值det(A),然后将A的行列式展开,计算出A的代数余子式,即每一行每一列都乘上一个系数,这个系数就是对应行列式中这一行这一列元素的求导系数,最后将每个代数余子式乘以det(A)的倒数,就得到了A的逆矩阵。

2、使用矩阵分块的相似变换计算三阶逆矩阵
先将原矩阵A分块,分别标记为
A11、A12、A21、A22,然后计算出A11的逆矩阵,用A11的逆矩阵与A12乘积,计算出A12A11的逆矩阵,分别标记为B12和B21,然后计算A22-A21B12,如果A22-A21B12的行列式不为0,则A22-A21B12的逆矩阵分别标记为C11和
C22,最后将C11、C22、B12和B21加起来,就得到了A的逆矩阵。

以上就是三阶逆矩阵的求法。

可以看出,三阶逆矩阵的求法比较复杂,需要掌握相应的矩阵运算知识和数学技巧,才能正确求解得出三阶逆矩阵。

在实际应用中,三阶逆矩阵的求法可以用于解决各类线性方程组,可以极大地节省时间,增加工作效率。

相关文档
最新文档