高一数学(必修一)《第五章-对数函数的图象和性质》练习题及答案解析-人教版
2023-2024学年高一上数学必修一:对数函数(附答案解析)
第1页共6页2023-2024学年高中数学必修一:对数函数一、选择题(每小题5分,共40分)1.已知a =log 213,b =5-3,c =212,则a ,b ,c 的大小关系为(A )A .a <b <cB .a <c <bC .c <b <aD .c <a <b解析:∵log 213<log 21=0,0<5-3<50=1,212=2>1,∴a <b <c .故选A.2.若a >b ,则(C )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.若log 34·log 8m =log 416,则m 等于(D )A .3B .9C .18D .27解析:原式可化为log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27.4.下列函数中,随着x 的不断增大,增长速度最慢的是(B )A .y =5x B .y =log 5x C .y =x 5D .y =5x。
人教版数学高一-人教版必修1练习 .1对数函数的图象及其性质
第二章 基本初等函数(Ⅰ)2.2 对数函数2.2.2 对数函数及其性质第1课时 对数函数的图象及其性质A 级 基础巩固一、选择题1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x ,x <0,则A ∩B =( )A .{y |0<y <1}B .{y |y >1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y <1 D .∅解析:因为A ={y |y >0},B ={y |y >1}.所以A ∩B ={y |y >1}.答案:B2.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x解析:因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x .答案:C3.函数f (x )=12-log 3x的定义域是( ) A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)解析:要使函数有意义,只需2-log 3x >0,即log 3x <2.所以0<x <9. 答案:D4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值范围为( )A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C .(2,+∞) D .(0,1)∪(2,+∞)解析:依题意有log 2x >1,所以x >2.答案:C5.函数f (x )=log 2(1-x )的图象为( )解析:由定义域知x <1,排除选项B 、D.又f (x )=log 2(1-x )是定义域上的减函数,所以选项A 正确.答案:A二、填空题6.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是________.解析:由题意,得⎩⎨⎧0<3-a <1,0<a <1,或⎩⎨⎧3-a >1,a >1,解得1<a <2.答案:(1,2)7.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________.解析:当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 答案:(2,1)8.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________. 解析:根据题意,得3x -a >0,所以x >a 3,所以a 3=23,解得a =2.答案:2三、解答题9.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,求实数a 的值. 解:因为a >1,所以f (x )=log a x 在(0,+∞)上是增函数. 所以最大值为f (2a ),最小值为f (a ).所以f (2a )-f (a )=log a 2a -log a a =12, 即log a 2=12,所以a =4. 10.已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,求实数t 的取值范围.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞),因为(3x -3)∈(0,+∞),所以值域为R.(2)因为h (x )=lg(3x -3)-lg(3x +3)=lg 3x -33x +3= lg ⎝ ⎛⎭⎪⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数, 所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值范围是t ≥0.B 级 能力提升1.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 1解析:作x 轴的平行线y =1,直线y =1与曲线C 1,C 2,C 3,C 4各有一个交点,则交点的横坐标分别为a 1,a 2,a 3,a 4.由图可知a 3<a 4<a 1<a 2.答案:B2.给出函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (log 23)=______. 解析:因为1<log 23<log 24=2,所以3+log 23∈(4,5), 所以f (log 23)=f (log 23+1)=f (log 23+2)=f (log 23+3)=f (log 224)=⎝ ⎛⎭⎪⎫12log 224=答案:1243.已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝ ⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫log 2x 4的值域.解:y =⎝ ⎛⎭⎪⎫log 2x 2⎝ ⎛⎭⎪⎫log 2x 4=(log 2x -1)(log 2x -2)= log 22x -3log 2x +2.因为-3≤log 12x ≤-12,所以12≤log 2x ≤3. 令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3, y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14, 所以t =32时,y min =-14;t =3时,y max =2. 故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.。
对数函数的图象和性质(教学课件)高一数学(人教A版2019)(1(完整版)5
其中[H ]表示溶液中氢离子的浓度,单位是摩尔 / 升.
(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度
与溶液中氢离子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为[H ] 10 7 摩尔 / 升,计算纯
净水的pH 值.
解: (1)根据对数的运算性质得 pH lg[H ] lg[H ] 1 lg 1 , [H ]
)
A.b<c<a
B.b<a<c
C.c<a<b
D.c<b<a
解析:由题知,a=log45>1,b=120=1,c=log30.4<0,故 c<b<a. 答案:D
4.已知 log 1 m<log 1 n<0,则
2
2
A.n<m<1
B.m<n<1
C.1<m<n
D.1<n<m
解析:因为
0<12<1,log
1 2
题型二:比较对数值的大小
【例2】比较下列各组数的大小.
比较对数值大小的策略: 1.同底时,根据单调性比较两真数的大小; 2.同底但底数是字母时,需对字母进行分类讨论,再根据单调性比较两真数 的大小; 3.同真数但不同底时,可利用“底大图低”的口诀来直接判断大小; 4.不同底且不同真时,常借助中间值,如-1,0,1等进行比较.
解:在同一平面直角坐标系中,函数 y log3 x ,
y log1 x 的图象如图所示.它们的图象关于 x 轴对称. 3
说明:画对数函数 y loga x(a 0,且a 1) 的图象,可以抓住三个关
键点:
(
1 a
,
1),
(1,
0),
(
a,1)
,采用“三点法”来画简图.
2.比较下列各题中两个值的大小: (1) lg 0.6,lg 0.8 ; (2) log0.5 6,log0.5 4 ; (3) logm 5,logm 7 ; (4) log3 5 与 log6 4 .
2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析
2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。
高一数学(必修一)《第五章-正弦函数、余弦函数的图象》练习题及答案解析-人教版
高一数学(必修一)《第五章 正弦函数、余弦函数的图象》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.已知函数()sin(2)f x x ϕ=+(其中02πϕ<<)的图象经过1(,)42P π,则ϕ的值为( ) A .512π B .3πC .4π D .6π2.已知函数()cos f x x x =和()()g x f x '=,则( ). A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪⎝⎭上递减D .()g x 在ππ,33⎛⎫- ⎪⎝⎭的值域为(0,1)3.设函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1-,则实数a 的取值范围是( ) A .12⎡⎫-+∞⎪⎢⎣⎭, B .12⎛⎫-+∞ ⎪⎝⎭, C .12⎛⎫-∞- ⎪⎝⎭, D .[)1-+∞, 4.已知函数()22πcos sin 2f x x x ⎛⎫=+- ⎪⎝⎭,将函数()f x 的图象先向右平移π12个单位长度,再向下平移1个单位长度得到函数()g x 的图象,则函数()g x 图象的对称轴方程为( ) A .()ππ+Z 12x k k =∈ B .()ππZ 6x k k =-∈ C .()ππZ 212k x k =-∈ D .()ππ+Z 212k x k =∈ 5.已知函数()f x 是定义在R 上的奇函数,当0x <时,则()()e 1xf x x =+,则下列结论中错误的是( )A .当0x >时,则()()e 1xf x x -=--B .函数()f x 有3个零点C .()0f x <的解集为()(),10,1-∞-⋃D .12,R x x ∀∈,都有()()122f x f x -<6.设集合{}{}2log 2,P x x Q y y x P =<=∈∣∣,则P Q =( ) A .{34}xx <<∣ B .{34}xx <∣ C .{04}xx <<∣ D .{05}xx <∣ 7.已知函数()f x 是定义域为(,)-∞+∞的奇函数,满足(2)(2)f x f x -=+,若(1)2f =,则(1)(2)(3)(2022)f f f f ++++=( ) A .2- B .0C .2D .48.函数()cos xf x xπ=在区间[]4,4-上的图象大致是( ) A . B .C .D .二、解答题9.已知函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.(1)用五点法画出函数()f x 的大致图像,并写出()f x 的最小正周期; (2)写出函数()f x 在R x ∈上的单调递减区间; (3)将()y f x =图像上所有的点向右平移3π个单位长度,纵坐标不变,横坐标变为原来的12倍,得到()y g x =的图像,求()y g x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.10.已知函数()22sin sin 363f x x x x πππ⎛⎫⎛⎫⎛⎫=-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)求函数()f x 的单调递增区间;(2)若函数()()2g x f x a =-在区间70,12π⎡⎤⎢⎥⎣⎦上恰有3个零点()123123,,x x x x x x <<(i )求实数a 的取值范围; (ii )求()123sin 2x x x +-的值.11.某实验室某一天的温度(℃)随时间()t h 的变化近似地满足函数关系:()sin1212f t k t t ππ=-[)0,24t ∈ R k ∈ 已知早上6时,则实验室温度为9℃.(1)求函数()f t 的解析式; (2)求实验室这一天中的最大温差;(3)若要求实验室温度不高于11℃,则在哪个时间段实验室需要降温? 12.已知函数222()log log (4),()log ()f x x x g x x a =--=+. (1)求()f x 的定义域,并证明()f x 的图象关于点(2,0)对称;(2)若关于x 的方程()()f x g x =有两个不同的实数解,求实数a 的取值范围. 13.已知函数32()1f x x ax bx =+++在点(1,(1))P f 处的切线方程为420x y --=. (1)求函数()f x 的单调区间(2)若函数()()g x f x m =-有三个零点,求实数m 的取值范围.三、填空题14.函数()2log 2cos 1y x =+的定义域是______.15.已知函数()22sin sin 2f x x x =的最大值为3,则实数a 的值为______.16.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在[]0,π上有且仅有3个零点和2个极小值点,则ω的取值范围为______.四、多选题17.已知函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则( )A .2ω=B .3πϕ=C .()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增D .若123x x π+=,则()()12f x f x =参考答案与解析1.【答案】B【分析】根据给定条件,结合特殊角的三角函数值求解作答.【详解】依题意,1()sin()cos 422f ππϕϕ=+==,而02πϕ<<,所以3πϕ=.故选:B 2.【答案】B【分析】利用导数求得()g x ,然后根据三角函数的对称性、单调性、特殊值等知识求得正确答案.【详解】()()'1sin 2sin 2g x f x x x x x ⎛⎫==-=- ⎪ ⎪⎝⎭4π2sin 3x ⎛⎫=+ ⎪⎝⎭. ππ4π3π2sin 2sin 26632g ⎛⎫⎛⎫=+==- ⎪ ⎪⎝⎭⎝⎭所以()g x 图像的一条对称轴是π6x =,B 选项正确,A 选项错误. ()g x 的最小正周期2πT =,半周期π2T= 5π5π5ππ663⎛⎫--=> ⎪⎝⎭,所以区间5π5π,66⎛⎫- ⎪⎝⎭不是()g x 的单调区间,C 选项错误. ()()4πππ02sin 2sin π2sin 0,1333g ⎛⎫==+=-= ⎪⎝⎭,D 选项错误.故选:B3.【答案】A【分析】分段讨论最小值即可.【详解】由于函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1- 当12x ≥时,则()211log 122f x f ⎛⎫≥==- ⎪⎝⎭当12x ≤时,则()112f x a >-+≥-,解得12a ≥-故选: A . 4.【答案】D【分析】整理可得()1cos2f x x =+,根据平移整理得()πcos 26g x x ⎛⎫=- ⎪⎝⎭,结合余弦函数得对称轴()ππZ 62k k x -=∈求解.【详解】()222πcos sin 2cos 1cos 22f x x x x x ⎛⎫=+-==+ ⎪⎝⎭由题意可得()cos 2cos 2ππ126g x x x ⎛⎫=-=- ⎪⎝⎭⎛⎫ ⎪⎝⎭则()ππZ 62k k x -=∈,解得()ππ+Z 212k x k =∈故选:D . 5.【答案】A【分析】由奇函数求出0x >的解析式即可判断A 选项;解方程求出零点即可判断B 选项;解分段函数不等式即可判断C 选项;求导确定单调性得出函数图象,即可判断D 选项.【详解】对于A ,已知函数()f x 是定义在R 上的奇函数,当0x >时,则0x -< ()()()e 1xf x x f x --=-+=-则()()()e 1e 1x xf x x x --=--+=-,A 错误;对于B ,易得()00f =,当0x <时,则()()e 10x f x x =+=,可得1x =-;当0x >时,则()()e 10xf x x -=-=可得1x =,则函数()f x 有3个零点,B 正确;对于C ,由()()()e 1,00,0e 1,0x x x x f x x x x -⎧+<⎪==⎨⎪->⎩,当0x <时,则由()()e 10xf x x =+<得1x <-;当0x >时,则由()()e 10xf x x -=-<得01x <<,则()0f x <的解集为()(),10,1-∞-⋃,C 正确;对于D ,当0x <时,则()()e 1x f x x =+,()()e 2xf x x '=+当2x <-时,则()0f x '<,()f x 单减,此时()0f x <;当20x -<<时,则()0f x '>,()f x 单增()10f -=,0x →时,则()1f x →;2x =-时,则()f x 有极小值()212e f -=-; 结合函数()f x 是定义在R 上的奇函数,可得()f x 的图象结合图象知,()f x 的值域为()1,1-,则12,R x x ∀∈,都有()()122f x f x -<,D 正确. 故选:A. 6.【答案】A【分析】由集合交集的定义计算即可.【详解】由2log 2x <解得04x <<,所以{|04}P x x =<<所以2(0,16)x ∈(3,5)和{|35}Q y y =<< 所以{|34}P Q x x =<<. 故选:A. 7.【答案】C【分析】结合函数的奇偶性、对称性和周期性求得正确答案. 【详解】()f x 是奇函数()()22f x f x -=+,即()f x 关于2x =对称()()()()()()42222f x f x f x f x f x +=++=-+=-=- ()()()()()()8444f x f x f x f x f x +=++=-+=--=所以()f x 是周期为8的周期函数.()()()()()()00,12,3212112f f f f f f ===+=-==()()()()4222200f f f f =+=-== ()()()()()52323112f f f f f =+=-=-=-=- ()()()()()6242422f f f f f =+=-=-=- ()()()74332f f f =+=-=- ()()800f f ==所以()()()()()()()()123456780f f f f f f f f +++++++= 由于202225286=⨯+ 所以(1)(2)(3)(2022)f f f f ++++=()()()()()()1234562f f f f f f +++++=.故选:C 8.【答案】C【分析】先判断函数奇偶性排除A ,再结合特殊值法和零点个数可选出正确答案. 【详解】易知函数cos ()xf x x π=是奇函数,图象关于原点对称,可以排除A ;在原点右侧附近,函数()f x 值大于0,排除D ;函数cos ()x f x x π=在区间[4,4]-上有零点1357,,,2222±±±±,共计8个,排除B.仅有C 符合上述要求. 故选:C.9.【答案】(1)图象见解析 T π=;(2)5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(3)()max 2g x = ()min 2g x =-; 【分析】(1)根据“五点法”列表,即可做出函数图象,再根据周期公式求出周期; (2)根据正弦函数的性质计算可得;(3)根据三角函数的变换规则得到()g x 的解析式,再根据x 的取值范围,求出43x π-的取值范围,再根据正弦函数的性质计算可得;(1)解:因为2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭ 列表如下:函数图象如下:函数()f x 的最小正周期22T ππ==. (2)解:令222,Z232k x k k πππππ-+≤+≤+∈解得5,Z 1212k x k k ππππ-+≤≤+∈ 所以函数的单调递减区间为5,,Z 1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦(3)解:将()y f x =图像上所有的点向右平移3π个单位长度得到2sin 22sin 2333y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 再2sin 23y x π⎛⎫=- ⎪⎝⎭将横坐标变为原来的12倍,纵坐标不变得到()2sin 43g x x π⎛⎫=- ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以54,333x πππ⎡⎤-∈-⎢⎥⎣⎦,所以[]sin 41,13x π⎛⎫-∈- ⎪⎝⎭,所以()[]2,2g x ∈-当432x ππ-=,即524x π=时()max 2g x =,当3432x ππ-=,即1124x π=时()min 2g x =-;10.【答案】(1)()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z (2)(i )⎡⎤⎣⎦;(ii 【分析】(1)利用诱导公式、二倍角公式和辅助角公式可化简得到()2sin 23f x x π⎛⎫=- ⎪⎝⎭;根据正弦型函数单调性的求法可求得单调递增区间; (2)(i )令43t x π=-,将问题转化为2sin y t =与y a =在,23ππ⎡⎤-⎢⎥⎣⎦上恰有3个不同的交点,利用数形结合的方式即可求得a 的取值范围;(ii )由(i )中图像可确定233t t π+=,312t t π-=由此可得1232t t t π+-=-,整理可得123212x x x π+-=-,由两角和差正弦公式可求得sin12π-的值,即为所求结果.(1)()22sin cos 2cos 13263f x x x x ππππ⎛⎫⎫⎛⎫⎛⎫⎛⎫=--++-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎭2222sin cos 2sin 2233333x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+-=-- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22sin 22sin 2333x x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭; ∴令()222232k x k k πππππ-+≤-≤+∈Z ,解得:()51212k x k k ππππ-+≤≤+∈Z ()f x ∴的单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z .(2)(i )由(1)得:()2sin 43g x x aπ⎛⎫=-- ⎪⎝⎭当70,12x π⎡⎤∈⎢⎥⎣⎦时,则4,233x πππ⎡⎤-∈-⎢⎥⎣⎦设43t x π=-,则()g x 在区间70,12π⎡⎤⎢⎥⎣⎦上恰有3个零点等价于2sin y t =与y a =在,23ππ⎡⎤-⎢⎥⎣⎦上恰有3个不同的交点;作出2sin y t =在,23ππ⎡⎤-⎢⎥⎣⎦上的图像如下图所示由图像可知:当0a ≤≤时,则2sin y t =与y a =恰有3个不同的交点∴实数a 的取值范围为⎡⎤⎣⎦;(ii )设2sin y t =与y a =的3个不同的交点分别为()123123,,t t t t t t << 则233t t π+= 312t t π-= ()123323232224t t t t t t t t πππ∴+-=-+-=+-=-即1232444333x x x ππππ⎛⎫⎛⎫⎛⎫-+---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭整理可得:1238443x x x π+-=-123212x x x π∴+-=-()123sin 2sin sin sin cos cos sin 12464646x x x πππππππ⎛⎫⎛⎫∴+-=-=--=-+ ⎪ ⎪⎝⎭⎝⎭12==.11.【答案】(1)()102sin 123f t t ππ⎛⎫=-+ ⎪⎝⎭ (2)最大温差为4℃ (3)10时至18时【分析】(1)将6t =代入求出k 值即可得解.(2)在[)0,24t ∈时,则求出函数()f t 的最大值与最小值即可得解. (3)解关于t 的三角不等式()11f t >即可作答.(1)因1()sin )2sin()12212123f t k t t k t ππππ=-+=-+则当6t =时,则()2sin(6)9123f t k ππ=-⨯+=,解得10k =所以()f t 的解析式为()102sin()123f t t ππ=-+.(2)因024t ≤<,则731233t ππππ≤+<,得1sin()1123ππ-≤+≤t ,当1232t πππ+=,即2t =时,则()f t 取最小值8当31232t πππ+=,即14t =时,则()f t 取最大值12,即实验室这一天中的最高温度为12℃,最低温度8℃所以最大温差为4℃. (3)依题意,当()11f t >时,则实验室需要降温由()102sin 11123f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1232t ππ⎛⎫+<-⎪⎝⎭ 而当024t ≤<,即731233t ππππ≤+<时,则则有71161236t ππππ<+<,解得1018t <<所以在10时至18时实验室需要降温.12.【答案】(1)定义域为()0,4,证明见解析;(2)10a -<<.【分析】(1)根据解析式有意义可求函数的定义域,可证()()40f x f x +-=,从而得到()f x 的图象关于点(2,0)对称.(2)根据根分布可求参数的取值范围.(1)由题设可得040x x >⎧⎨-<⎩,故04x <<,故()f x 的定义域为()0,4而()()2222()4log log (4)log 4log 0f x f x x x x x +-=--+--=故()f x 的图象关于点(2,0)对称.(2)因为()()f x g x =有两个不同的实数解 故4x x a x=+-在()0,4上有两个不同的实数解 整理得到:2(3)40x a x a +--=在()0,4上有两个不同的实数解设()2(3)4h x x a x a =+--,则()()()2004030423160h h a a a >⎧⎪>⎪⎪-⎨<<⎪⎪⎪-+>⎩ 故240164(3)4030421090a a a a a a ->⎧⎪+-->⎪⎪-⎨<<⎪⎪++>⎪⎩,解得10a -<<. 13.【答案】(1)单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ (2)22,227⎛⎫ ⎪⎝⎭【分析】(1)根据题意,列出方程组求得()321f x x x x =+-+,得到()2321f x x x '=+-,进而求得函数的单调区间;(2)由题意得到()321g x x x x m =+-+-,结合条件列出不等式组,即得.(1)由题可得2()32f x x ax b '=++ 由题意得(1)22(1)324f a b f a b =++=⎧⎨=++='⎩解得1,1a b ==-所以322()1,()321f x x x x f x x x =+-+=+-'由()0f x '>得1x <-或13x > 由()0f x '<得113x -<< 所以()f x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭; (2)因为322()()1,()()321g x f x m x x x m g x f x x x =-=+-+='-=+-'由(1)可知,()g x 在1x =-处取得极大值,在13x =处取得极小值 ()g x 的单调递减区间是11,3⎛⎫- ⎪⎝⎭,单调递增区间是1(,1),,3⎛⎫-∞-+∞ ⎪⎝⎭ 依题意,要使()g x 有三个零点,则(1)0103g g ->⎧⎪⎨⎛⎫< ⎪⎪⎝⎭⎩ 即()1201220327g m g m ⎧-=->⎪⎨⎛⎫=-< ⎪⎪⎝⎭⎩ 解得22227m <<,经检验,(2)10,(2)110g m g m -=-<=+> 根据零点存在定理,可以确定函数有三个零点所以m 的取值范围为22,227⎛⎫ ⎪⎝⎭. 14.【答案】222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ) 【分析】根据对数函数的性质可得2cos 10x +>,再由余弦函数的图象与性质即可求解.【详解】由题意可得2cos 10x +>,解得1cos 2x >- 作出cos y x =的图象,如下:由图象可得2222,33k x k k Z ππππ-<<+∈ 所以函数的定义域为222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ). 故答案为: 222,233ππk πk π⎛⎫-+ ⎪⎝⎭(k ∈Z ) 15.【答案】±1【分析】先化简函数的解析式得()()21f x x ϕ++13=即得解.【详解】由题得()()22sin sin 21cos 2sin 221f x x x x x x ϕ==-++,其中tan ϕ=所以()f x 13=解得1a =±.故答案为:±1.16.【答案】1023,36⎡⎫⎪⎢⎣⎭ 【分析】找到临界位置,再根据条件建立不等式求解即可.【详解】如下图,作出简图,由题意知,[)45,x x π∈,设函数()f x 的最小正周期为T因为06x πω=-,则40077210443T x x x ππωω+=+⋅== 500223226x x T x ππωω=+=+⋅= 结合[)45,x x π∈有103ππω≥且236ππω<,解得1023,36ω⎡⎫∈⎪⎢⎣⎭.故答案为:1023,36⎡⎫⎪⎢⎣⎭17.【答案】AD 【分析】由图知22T π=即可求ω;根据()012f π-=且(0)0f >求ϕ;代入验证并结合正弦函数的单调性判断在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调性;由213x x π=-代入解析式,利用诱导公式转化函数式判断()()12f x f x =是否成立. 【详解】由图知:5()212122T πππ=--=,而2T πω=,可得2ω=,A 正确; ∴()()2sin 2f x x ϕ=+,又()2sin()0126f ππϕ-=-+=且(0)2sin 0f ϕ=>,有6k πϕπ=+ k Z ∈ 又ϕπ< ∴0k =,即6π=ϕ,B 错误; 综上,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭ ∴5,1212x ππ⎡⎤∈-⎢⎥⎣⎦,则22[,]633x πππ+∈-,显然()f x 在5,1212ππ⎡⎤-⎢⎥⎣⎦上不单调,C 错误; 若123x x π+=,则213x x π=-,故2115()()2sin(62)3f x f x x ππ=-=-12sin(2)56x ππ=+-112sin()()26x f x π=+= D 正确.故选:AD。
必修一对数函数(含答案)
2.6对数函数一、对数式的化简与求值 〖例1〗计算(1)2(lg2)lg2lg50lg25+⋅+; (2)3948(log 2log 2)(log 3log 3)+⋅+;(3)1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅二、比较大小〖例〗对于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a+<+ ②1log (1)log (1)a a a a+>+; ③111;aa a a++<④111;aaaa++>其中成立的是( )()①与③()①与④()②与③()②与④ 三、对数函数图象与性质〖例1〗已知f(x)=log a (a x -1)(a>0,a ≠1) (1)求f(x)的定义域;(2)讨论函数f(x)的单调性.〖例2〗设函数()()()xxxf+-+=1ln212.(1)求()x f的单调区间;(2)若当⎥⎦⎤⎢⎣⎡--∈1,11eex时,(其中718.2=e)不等式()mxf<恒成立,求实数m的取值范围;(3)试讨论关于x的方程:()axxxf++=2在区间[]2,0上的根的个数.四、对数函数的综合应用〖例1〗已知函数f(x)=-x+112 logxx-+.(1)求f(12012)+f(-12012)的值;(2)当x∈(-a,a],其中a∈(0,1),a是常数时,函数f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,请说明理由.〖例2〗(12分)已知过原点O 的一条直线与函数8log y x =的图象交于、两点,分别过、作y ,轴的平行线与函数8log y x =的图象交于、两点。
(1) 证明点、和原点O 在同一直线上; (2)当平行于x 轴时,求点的坐标。
【高考零距离】1.(2012·天津高考文科·T4)已知12-0.5312,,2log 22a b c ===(),则,,a b c 的大小关系为( )c b a <<(A ).c a b << b a c <<(C ) b c a <<(D )2.(2012·新课标全国高考文科·T11)当0<x ≤12时,4x<logax ,则a 的取值范围是( ) ()(0,22) ()(22,1) ()(1,2) ()(2,2) 3.(2011·安徽高考文科·T5)若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是()()1,b a ⎛⎫ ⎪⎝⎭ ()()10,1a b - ()10,1b a ⎛⎫+ ⎪⎝⎭ ())2,(2b a 4. (2011·辽宁高考理科·T9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是()[-1,2] ()[0,2] ()[1,+∞) ()[0,+∞)5. (2011.天津高考理科.T7)已知324log 0.3log 3.4log 3.615,5,,5a b c 骣琪===琪桫则 ().a b c>>.b ac >> .a c b >>.c a b >>6. (2011·江苏高考·T2)函数)12(log )(5+=x x f 的单调增区间是__________【考点提升训练】一、选择题(每小题6分,共36分)1.(2012·珠海模拟)函数2(x+2)的定义域为( ) ()(-∞,-1)∪(3,+∞) ()(-∞,-1)∪[3,+∞) ()(-2,-1) ()(-2,-1]∪[3,+∞)2.(2012·莆田模拟)设f(x)=()x 1232e x 2log x 1 x 2-⎧<⎪⎨-≥⎪⎩,则不等式f(x)>2的解集为( ) ()(1,2)∪(3,+∞) ()(10,+∞)()(1,2)∪(10,+∞) ()(1,2)3.设f(x)是定义在R 上以2为周期的偶函数,已知当x ∈(0,1)时,f(x)= 12log (1-x),则函数f(x)在(1,2)上( )()是增函数,且f(x)<0 ()是增函数,且f(x)>0 ()是减函数,且f(x)<0 ()是减函数,且f(x)>04.已知函数f(x)=|log 2x|,正实数m 、n 满足m <n ,且f(m)=f(n),若f(x )在区间[m 2,n]上的最大值为2,则m 、n 的值分别为( ) ()12、 2 ()12、4 ()2)14、4 5. (2012·福州模拟)函数f(x)=log a (2-ax 2)在(0,1)上为减函数,则实数a 的取值范围是( ) ()[12,1) ()(1,2) ()(12,1) ()(1,2]6.(预测题)已知函数f(x)= ()3lgx,x 23lg 3x ,x 2⎧≥⎪⎪⎨⎪-⎪⎩,<若方程f(x)=k 无实数根,则实数k 的取值范围是( ) ()(-∞,0) ()(-∞,1) ()(-∞,lg 32) ()(lg 32,+∞) 二、填空题(每小题6分,共18分)7. 23lg lg87-+8.(2012·青岛模拟)函数y=f(x)的图象与y=2x 的图象关于直线y=x 对称,则函数y=f(4x-x 2)的递增区间是_________.9.定义在R 上的函数f(x)满足f(2-x)=f(x),且f(x)在(1,+∞)上是增函数,设a=f(0),b=f(log 214),c=f(lg 3π),则a,b,c 从小到大的顺序是______. 三、解答题(每小题15分,共30分)10.若函数y=lg(3-4x+x 2)的定义域为M.当x ∈M 时,求f(x)=2x+2-3×4x的最值及相应的x 的值.11.(2012·厦门模拟)已知函数f(x)=ln x1x1 +-.(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)= ln x1x1+->ln()()mx17x--恒成立,求实数m的取值范围.【探究创新】(16分)已知函数f(x)=log a(3-ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.答案解析1.【解析】选.要使函数有意义,需2x 2x 30x 20⎧--≥⎨+⎩,>得-2<x ≤-1或x ≥3, 即x ∈(-2,-1]∪[3,+∞),故选.2.【解析】选.当x<2时,f(x)>2,即2e x-1>2, 解得1<x<2,当x ≥2时,f(x)>2,即log 3(x 2-1)>2,解得, 综上所述,不等式的解集为(1,2)∪(10,+∞).3.【解析】选.f(x)是定义在R 上以2为周期的偶函数,由x ∈(0,1)时,f(x)= 12log (1-x)是增函数且f(x)>0,得函数f(x)在(2,3)上也为增函数且f(x)>0,而直线x=2为函数的对称轴,则函数f(x)在(1,2)上是减函数,且f(x)>0,故选.4.【解析】选.f(x)=|log 2x|= 22log x,x 1,log x,0x 1≥⎧⎨-⎩<< 根据f(m)=f(n)及f(x)的单调性,知0<m <1,n >1,又f(x)在[m 2,n]上的最大值为2,故f(m 2)=2,易得n=2,m=12. 5.【解析】选.由已知可知a>0,u(x)=2-ax 2在(0,1)上是减函数,∴f(x)=log a (2-ax 2)在(0,1)上是减函数.等价于()a 1u 10>⎧⎪⎨≥⎪⎩,即a 12a 0>⎧⎨-≥⎩,∴1<a ≤2.6.【解题指南】作出函数f(x)的图象,数形结合求解.【解析】选.在同一坐标系内作出函数y=f(x)与y=k 的图象,如图所示,若两函数图象无交点,则k <lg32.7.【解析】原式=lg4+12lg2-lg7-23lg8+lg7+12lg5 =2lg2+12(lg2+lg5)-2lg2=12.答案:128.【解题指南】关键是求出f(4x-x 2)的解析式,再求递增区间.【解析】∵y=2x的反函数为y=log 2x ,∴f(x)=log 2x,f(4x-x 2)=log 2(4x-x 2).令t=4x-x 2,则t >0,即4x-x 2>0,∴x ∈(0,4),又∵t=-x 2+4x 的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x 2)的递增区间为(0,2). 答案:(0,2)9.【解析】由f(2-x)=f(x),可知对称轴x 0=2x x2-+=1,图象大致如图, ∵log 214=log 22-2=-2,-2<0<lg 3π<1,∴结合图象知f(lg 3π)<f(0)<f(log 214),即c <a <b.答案:c <a <b10.【解析】∵y=lg(3-4x+x 2),∴3-4x+x 2>0, 解得x <1或x >3, ∴M={x|x <1或x >3},f(x)=2x+2-3×4x =4×2x -3×(2x )2.令2x=t,∵x <1或x >3,∴t >8或0<t <2.设g(t)=4t-3t 2∴g(t)=4t-3t 2=-3(t-23)2+43(t >8或0<t <2). 由二次函数性质可知: 当0<t <2时,g(t)∈(-4,43], 当t >8时,g(t)∈(-∞,-160),∴当2x=t=23,即x=log 223时,f(x)max =43. 综上可知:当x=log 223时,f(x)取到最大值为43,无最小值.【变式备选】设a >0,a ≠1,函数y=()2lg x 2x 3a-+有最大值,求函数f(x)=log a(3-2x-x 2)的单调区间.【解析】设t=lg(x 2-2x+3)=lg[(x-1)2+2].当x=1时,t 有最小值lg2, 又因为函数y=()2lg x 2x 3a-+有最大值,所以0<a <1.又因为f(x)=log a (3-2x-x 2)的定义域为{x|-3<x <1},令u=3-2x-x 2,x ∈(-3,1),则y=log a u. 因为y=log a u 在定义域内是减函数,当x ∈(-3,-1]时,u=-(x+1)2+4是增函数,所以f(x)在(-3,-1]上是减函数.同理,f(x)在[-1,1)上是增函数.故f(x)的单 调减区间为(-3,-1],单调增区间为[-1,1).11.【解析】(1)由x 1x 1+->0,解得x <-1或x >1,∴定义域为(-∞,-1)∪(1,+∞),当x ∈(-∞,-1)∪(1,+∞)时,f(-x)=ln x 1x 1-+--=ln x 1x 1-+=ln(x 1x 1+-)-1=-ln x 1x 1+-=-f(x),∴f(x)=ln x 1x 1+-是奇函数.(2)由x ∈[2,6]时, f(x)=lnx 1x 1+->ln ()()mx 17x --恒成立, ∴x 1x 1+->()()m x 17x -->0,∵x ∈[2,6],∴0<m <(x+1)(7-x)在x ∈[2,6]上成立. 令g(x)=(x+1)(7-x)=-(x-3)2+16,x ∈[2,6],由二次函数的性质可知x ∈[2,3]时函数单调递增,x ∈[3,6]时函数单调递减,x ∈[2,6]时,g(x)min =g(6)=7,∴0<m <7. 【探究创新】 【解析】(1)由题设,3-ax >0对一切x ∈[0,2]恒成立,设g(x)=3-ax,∵a >0,且a ≠1,∴g(x)=3-ax 在[0,2]上为减函数.从而g(2)=3-2a >0,∴a <32. ∴a 的取值范围为(0,1)∪(1,32). (2)假设存在这样的实数a, 由题设知f(1)=1, 即log a (3-a)=1,∴a=32. 此时f(x)= 32log (3-32x), 当x=2时,f(x)没有意义,故这样的实数a 不存在.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.2.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.3.已知函数,若对于任意,当时,总有,则区间有可能是( )A.B.C.D.【答案】B【解析】对于任意,当时,总有,是说函数在区间上单调递增.函数是由与复合而成,因为在上单调递增,由复合函数的单调法则:同增异减,可知,只须在上单调递增即可,该二次函数的对称轴为,或,由二次函数的单调性可知在单调递增,所以区间可能是或它的子区间,故选B.【考点】函数的单调性.4.若点在函数的图象上,则函数的值域为()A.B.C.D.【答案】D【解析】因为点在函数的图象上,所以,解得,所以,故选D.【考点】1、对数函数的图象;2、幂函数.5.已知函数(1)求函数的定义域和值域;(2)若有最小值-2,求的值.【答案】(1)的定义域是.当时,值域为;(2)【解析】(1)由对数函数的定义可得,解此不等式组,从而求得函数的定义域;首先对函数解析式进行化归,考虑到对数函数中底数的范围制约着函数单调性,影响到函数的值域,所以需要对底数的范围进行分类讨论,从求出函数的值域;(2)根据(1)中函数值的分布情况,可知只有当时,函数有最小值,所以有,从而解得所求的值.试题解析:(1)依题意得则,, 3分当时,;当时,的定义域是.当时,值域为当时,值域为. 7分(2)因为有最小值-2,由(1)可知且,12分【考点】1.函数的定义域;2.对数函数.6.已知函数(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。
有分析可知在这两种情况下均为单调函数,所以的值域即为。
解关于m的不等式即可求得m。
所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。
求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。
把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。
令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。
4.4.2.1对数函数的图象和性质(练习题)- 2021-2022学年高一上学期数学人教A版
对数函数的图象和性质一、选择题(每小题5分,共20分)1.(2021·丰台高一检测)已知a =ln 3,b =log 0.32,c =log 32,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b2.(2021·廊坊高一检测)设a =log 3 e ,b =12log e ,c =e -1,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b3.若点(a ,b)在函数f(x)=ln x 的图象上,则下列点中,不在函数f(x)图象上的是( ) A .⎝⎛⎭⎫1a ,-bB .(a +e ,1+b)C .⎝⎛⎭⎫e a ,1-bD .(a 2,2b)4.函数y =|lg (x +1)|的图象是( )二、填空题(每小题5分,共10分)5.(2021·洛阳高一检测)函数y =log a (2x -3)+4的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f(3)=________.6.设函数y =a x 的反函数为f(x),则f(a +1)与f(2)的大小关系是________. 三、解答题(每小题10分,共20分)7.(2021·信阳高一检测)已知函数f(x)=log 3(ax +b)的部分图象如图所示.(1)求f(x)的解析式与定义域;(2)函数f(x)能否由y =log 3x 的图象平移变换得到; (3)求f(x)在[4,6]上的最大值、最小值.8.已知函数f(x)=(log 4x)2+12log x -3,x ∈[1,8],求f(x)的值域以及取得最值时x 的值.能力过关一、选择题(每小题5分,共10分)1.(2021·泰安高一检测)对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )2.(多选题)若实数a ,b 满足log a 2<log b 2,则下列关系中成立的是( ) A .0<b<a<1 B .0<a<1<b C .a>b>1D .0<b<1<a二、填空题(每小题5分,共10分)3.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log 2x ,x≥1,则f(8)=________,若直线y =m 与函数f(x)的图象只有1个交点,则实数m 的取值范围是________.4.若log a 25 <1,则a 的取值范围为________.三、解答题(每小题10分,共20分) 5.已知函数f(x)=|12log x |.(1)画出函数y =f(x)的图象; (2)写出函数y =f(x)的单调区间;(3)当x ∈⎣⎡⎦⎤12,m 时,函数y =f(x)的值域为[0,1],求m 的取值范围. 6.(2021·徐州高一检测)设函数f(x)=lg (x 2-2x +a). (1)求函数f(x)的定义域A ;(2)若对任意实数m ,关于x 的方程f(x)=m 总有解,求实数a 的取值范围.一、选择题(每小题5分,共20分)1.(2021·丰台高一检测)已知a =ln 3,b =log 0.32,c =log 32,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b分析选C.a =ln 3>1,b =log 0.32<0,c =log 32∈(0,1),则a >c >b. 2.(2021·廊坊高一检测)设a =log 3 e ,b =12log e ,c =e -1,则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b分析选C.因为c =1e ,log 3e>11e233log 3>log 3=1e>0, 1122log e<log 1=0,所以a >c >b.3.若点(a ,b)在函数f(x)=ln x 的图象上,则下列点中,不在函数f(x)图象上的是( ) A .⎝⎛⎭⎫1a ,-bB .(a +e ,1+b)C .⎝⎛⎭⎫e a ,1-bD .(a 2,2b)分析选B.因为点(a ,b)在f(x)=ln x 的图象上,所以b =ln a ,所以-b =ln 1a ,1-b =ln ea ,2b =2ln a =lna 2.4.函数y =|lg (x +1)|的图象是( )分析选A.由于函数y =lg (x +1)的图象可由函数y =lg x 的图象左移一个单位而得到,函数y =lg x 的图象与x 轴的交点是(1,0),故函数y =lg (x +1)的图象与x 轴的交点是(0,0),即函数y =|lg (x +1)|的图象与x 轴的公共点是(0,0),考查四个选项中的图象只有A 选项符合题意. 二、填空题(每小题5分,共10分)5.(2021·洛阳高一检测)函数y =log a (2x -3)+4的图象恒过定点A ,且点A 在幂函数f(x)的图象上,则f(3)=________.分析因为log a 1=0,所以当2x -3=1,即x =2时,y =4,所以点A 的坐标是A(2,4).幂函数f(x)=x α的图象过点A(2,4),所以4=2α,解得α=2;所以幂函数为f(x)=x 2,则f(3)=9. 答案:96.设函数y =a x 的反函数为f(x),则f(a +1)与f(2)的大小关系是________. 分析因为y =a x 的反函数为f(x),所以f(x)=log a x. 当a>1时,a +1>2,f(x)=log a x 是单调递增函数,则f(a +1)>f(2);当0<a<1时,a +1<2,f(x)=log a x 是单调递减函数,则f(a +1)>f(2).综上f(a +1)>f(2). 答案:f(a +1)>f(2)三、解答题(每小题10分,共20分)7.(2021·信阳高一检测)已知函数f(x)=log 3(ax +b)的部分图象如图所示.(1)求f(x)的解析式与定义域;(2)函数f(x)能否由y =log 3x 的图象平移变换得到; (3)求f(x)在[4,6]上的最大值、最小值.分析(1)把图象中A ,B 两点坐标代入函数f(x)=log 3(ax +b),得⎩⎪⎨⎪⎧2a +b =3,5a +b =9, 解得⎩⎪⎨⎪⎧a =2,b =-1. 故f(x)=log 3(2x -1),定义域为⎝⎛⎭⎫12,+∞ . (2)可以,由f(x)=log 3(2x -1)=log 3⎣⎡⎦⎤2⎝⎛⎭⎫x -12 =log 3⎝⎛⎭⎫x -12 +log 32, 所以f(x)的图象是由y =log 3x 的图象向右平移12 个单位,再向上平移log 32个单位得到的.(3)由函数的单调性可得,最大值为f(6)=log 311,最小值为f(4)=log 37. 8.已知函数f(x)=(log 4x)2+12log x -3,x ∈[1,8],求f(x)的值域以及取得最值时x 的值.分析令t =log 4x ,t ∈⎣⎡⎦⎤0,32 , 又12log x =-12 log 2x =-412=-log 4x ,则y =t 2-t -3,t ∈⎣⎡⎦⎤0,32 ,函数对称轴为t =12 ∈⎣⎡⎦⎤0,32 , 故当t =12 ,即x =2时,f(x)min =-134 .当t =32 ,即x =8时,f(x)max =-94 ,所以f(x)的值域是⎣⎡⎦⎤-134,-94 , 当x =2时,f(x)min =-134 ;当x =8时,f(x)max =-94.能力过关一、选择题(每小题5分,共10分)1.(2021·泰安高一检测)对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )分析选A.由对数函数y =log a x(a >0且a≠1)与二次函数y =(a -1)x 2-x 可知,①当0<a <1时,此时a -1<0,对数函数y =log a x 为减函数,而二次函数y =(a -1)x 2-x 开口向下,且其对称轴为x =12(a -1),故排除C 与D ;②当a >1时,此时a -1>0,对数函数y =log a x 为增函数,而二次函数y =(a -1)x 2-x 开口向上,且其对称轴为x =12(a -1),故B 错误,而A 符合题意.2.(多选题)若实数a ,b 满足log a 2<log b 2,则下列关系中成立的是( ) A .0<b<a<1 B .0<a<1<b C .a>b>1D .0<b<1<a分析选ABC.根据题意,实数a ,b 满足log a 2<log b 2,对于A ,若a ,b 均大于0小于1,依题意,必有0<b<a<1,故A 有可能成立;对于B ,若log b 2>0>log a 2,则有0<a<1<b ,故B 有可能成立;对于C ,若a ,b 均大于1,由log a 2<log b 2,知必有a>b>1,故C 有可能成立;对于D ,当0<b<1<a 时,log a 2>0,log b 2<0,log a 2<log b 2不能成立. 二、填空题(每小题5分,共10分)3.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x<1,log 2x ,x≥1 ,则f(8)=________,若直线y =m 与函数f(x)的图象只有1个交点,则实数m 的取值范围是________.分析当x =8时,f(8)=log 28=3;作出函数f(x)的图象,如图所示,若直线y =m 与函数f(x)的图象只有1个交点,由图象可知,当m≥2或m =0时满足条件. 答案:3 {0}∪[2,+∞)4.若log a 25 <1,则a 的取值范围为________.分析log a 25 <1即log a 25<log a a ,当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25 <log a a ,得a <25 ,故0<a <25.故a 的取值范围为0<a <25 或a >1.答案:0<a <25或a >1三、解答题(每小题10分,共20分) 5.已知函数f(x)=|12log x |.(1)画出函数y =f(x)的图象; (2)写出函数y =f(x)的单调区间;(3)当x ∈⎣⎡⎦⎤12,m 时,函数y =f(x)的值域为[0,1],求m 的取值范围. 分析(1)先作出y =log 12x 的图象,再把y =log 12x 的图象x 轴下方的部分往上翻折,得到f(x)=⎪⎪⎪⎪log 12x 的图象如图.(2)f(x)的定义域为(0,+∞),由图可知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.(3)由f(x)=|log12x|的图象可知f⎝⎛⎭⎫12=f(2)=1,f(1)=0,由题意结合图象知,1≤m≤2.6.(2021·徐州高一检测)设函数f(x)=lg (x2-2x+a).(1)求函数f(x)的定义域A;(2)若对任意实数m,关于x的方程f(x)=m总有解,求实数a的取值范围.分析(1)由f(x)=lg (x2-2x+a)有意义,可得x2-2x+a=(x-1)2+a-1>0,当a>1时,f(x)的定义域为A=R;当a=1时,f(x)的定义域为A={x|x≠1};当a<1时,f(x)的定义域为A={x|x>1+1-a 或x<1-1-a }.(2)对任意实数m∈R,方程f(x)=m总有解,等价于函数f(x)=lg (x2-2x+a)的值域为R,即t=x2-2x+a能取遍所有正数即可,所以Δ=4-4a≥0,a≤1,实数a的取值范围为(-∞,1].。
高中数学复习:对数函数的图像和性质练习及答案
高中数学复习:对数函数的图像和性质练习及答案1.已知函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩则函数y=f (1-x)的大致图象是()A. B. C.D.【答案】D【解析】先画出函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩的草图,令函数f (x)的图象关于y轴对称,得函数f (-x)的图象,再把所得的函数f (-x)的图象,向右平移1个单位,得到函数y=f (1-x)的图象,故选:D.2.函数f(x)=10x与函数g(x)=lgx的图象A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x 对称 【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称.故选D.3.函数f (x )=ln|11x x +-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11ln ln 11x x f x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称,故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B.6.设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫⎪⎝⎭ B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-, 所以函数()f x 是偶函数,又()f x 在()0,∞+是增函数,所以()()21f x f x >-等价于()()21fx f x >-, 所以2213410x x x x >--+<,, 解得113x <<, 故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A. B. C.D.【答案】C 【解析】函数2()ln(1)x x e e f x x --=+, 则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项,故选:C.8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln x g x x=向左平移一个单位得到的, 因为()22ln ()(0)()x g x g x x x --==≠-, 所以函数()22ln x g x x =为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项;又当2x <-或0x >时,2ln 10x +>,()210x +>,所以()0f x >,故可排除C 选项故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x =的部分图象大致为( ) A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214e f e =>,排除D. 故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x ≤0时,不等式f (x )≥0整数解的个数为( )A.4B.3C.2D.1【答案】A【解析】由函数为奇函数可知当x ≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1【解析】∵2x =1112x -+⎛⎫ ⎪⎝⎭ ,∴2x =112x - ,∴x =1x-1,∴x 2+x -1=0.∴x 1+x 2=-1.故答案:-114.已知函数()lg f x x =. (1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合;(2)若0a b <<,且()()f a f b >,求证:1ab <.【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >.当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立.综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分)(3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解)【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+24||3()x x f x =-+=故()f x 为偶函数;(2)如图(3)递增区间有:()()+∞-,2,0,2递减区间有:)2,0(),2,(--∞(4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根;16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e =-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值. (2)设0<m <n <1,求证:()2201m f n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e , g ′(x )=1+ln x ,当0<x <1e 时,g ′(x )<0;当x >1e时,g ′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增, 又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点.②(i )当a ≤1e 时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e,e ],g ′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a . (ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e,e],g ′(x )=ln x -1≤0恒成立, 所以g (x )在[1e,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e . (iii )当1e<a <e 时, 若1e ≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a ,由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a ,综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221x x +, 则当x ∈(0,1)时,h ′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增, 又0<m <n <1,所以h (m )<h (n ),从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x x x x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当1[,]x e e ∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+,所以切线的斜率()11k f ='=,又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-, 由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得, 当△0>时,即1a <-或3a >时,有两个公共点, 当△0=时,即1a =-或3a =时,有一个公共点, 当△0<时,即13a -<>时,没有公共点, (2)2()()2y f x g x x ax xlnx =-=-++, 由0y =,得2a x lnx x=++, 令2()h x x lnx x=++,则2(1)(2)()x x h x x -+'=,当1[x e∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==, 由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得, 当231a e e<++时,函数()()y f x g x =-有两个零点. 18.根据函数f(x)=log 2x 的图像和性质解决以下问题: (1)若f(a)>f(2),求a 的取值范围; (2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值. 试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14,∴3≤2x -1≤27, ∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227.19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( ) A.2log eeB.1ln 2e C.12D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =, 再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根, ∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,, 由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根, 12a ∴=. 故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x xx x++的取值范围是().A.(1,)-+∞ B.[1,1)- C.(,1)-∞ D.(]1,1-【答案】D【解析】函数()21,0|log,0x xf xx x⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则11x a+=-,21x a+=,23log x a=-,24log x a=.(01)a<≤122x x+=-,32ax-=,42ax=∴则31222344()22221222a aa a ax x xx x---++=-⋅+=-⋅.令2a t,(1t∈,2],而函数2y tt=-在(1,2]单调递增.所以211tt-<-≤,则21212aa∴-<-.故选:D.21.函数()log1xaf x a x=-有两个不同的零点,则实数a的取值范围是()A.()1,10 B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x有两个零点等价于1xya⎛⎫= ⎪⎝⎭与log ay x=的图象有两个交点,当01a<<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a>时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为( )A.1,2⎛⎤-∞- ⎥⎝⎦B.[)2,-+∞C.12,2⎡⎤--⎢⎥⎣⎦D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2xy a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭, 两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭. 故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); (3)函数1()f x x=的单调减区间是{}0x x ≠; (4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞,故(3)错误; (4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=, 因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确;故答案为:(3) 24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ). A.b a c << B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<= 因此c a b << 故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A.2,13⎛⎫⎪⎝⎭B.(0,1)C.20,3⎛⎫ ⎪⎝⎭D.[)3,+∞ 【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a ,综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( ) A.b a c << B.a c b <<C.c b a <<D.c a b <<【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<, 故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<< C.0.760.7log 660.7<<D.60.70.70.7log 66<<【答案】A【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z << B.y z x << C.z y x << D.z x y <<【答案】B 【解析】0.4221x =>=,2lg lg105y =<=,0.421525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<. 因此,y z x <<. 故选:B.考点1函数的反函数1.函数y=ln x+1(x>0)的反函数为( )A.y=e x+1(x∈R)B.y=e x-1(x∈R)C.y=e x+1(x>1)D.y=e x-1(x>1)【答案】B【解析】由y=ln x+1,得x=e y-1.又因为函数y=ln x+1的值域为R,于是y=ln x+1的反函数为y=e x-1(x∈R).故选B.2.函数f(x)=(x-1)2+1(x<1)的反函数为( )A.f-1(x)=1+(x>1)B.f-1(x)=1-(x>1)C.f-1(x)=1+(x≥1)D.f-1(x)=1-(x≥1)【答案】B【解析】∵x<1⇒y=(x-1)2+1,∴(x-1)2=y-1⇒x-1=-,∴反函数为f-1(x)=1-(x>1).3.已知指数函数f(x)=ax(a>0,a≠1),f(x)的反函数记为y=g(x),且g(x)过点(4,2),则f(x)的解析式是( )A.f(x)=log4xB.f(x)=log2xC.f(x)=2xD.f(x)=4x【答案】C【解析】指数函数的解析式为:f(x)=a x(a>0,a≠1),∵f(x)的反函数记为y=g(x)函数的图象经过(4,2)点,∴f(x)的图象经过(2,4)点,∴4=a2,a=2,∴指数函数的解析式为y=2x.故选C.4.已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)等于( )A.1 B.2 C.3 D.4【答案】D【解析】因为函数f(x)的反函数为g(x)=log2x+1,所以f(2)+g(2)=f(2)+2.而根据反函数的图象与性质可知f(2)=2,因此选D.5.函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是________.【答案】(0,2)【解析】∵函数y=f(x)的图象与y=2x的图象关于直线y=x对称,∴y=f(x)与y=2x互为反函数,∵y=2x的反函数为y=log2x,∴f(x)=log2x,f(4x-x2)=log2(4x-x2).令t=4x-x2,则t>0,即4x-x2>0,∴x∈(0,4),又∵t=4x-x2的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x2)的递增区间为(0,2).6.设f-1(x)为f(x)=2x-2+,x∈[0,2]的反函数,则y=f(x)+f-1(x)的最大值为________.【答案】4【解析】由题意得:f(x)在[0,2]上单调递增,值域为[,2],所以f-1(x)在[,2]上单调递增,因此y =f(x)+f-1(x)在[,2]上单调递增,其最大值为f(2)+f-1(2)=2+2=4.7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.4【答案】B【解析】函数f(x)=a x+log a(x+1),令y1=a x,y2=log a(x+1),显然在[0,1]上,y1=a x与y2=log a(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+log a2+1+0=a,解得a=.8.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于( ) A.-1 B.1 C.2 D.4【答案】C【解析】设(x,y)是函数y=f(x)的图象上任意一点,它关于直线y=-x对称点为(-y,-x),由已知知(-y,-x)在函数y=2x+a的图象上,∴-x=2-y+a,解得y=-log2(-x)+a,即f(x)=-log2(-x)+a,∴f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2.9.方程log2x+log2(x-1)=1的解集为M,方程22x+1-9·2x+4=0的解集为N,那么M与N的关系是( ) A.M=N B.M N C.M N D.M∩N=∅【答案】B【解析】由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=,即x=2或x=-1,故N={2,-1},因此有M N.10.已知函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【答案】C【解析】①当a>0时,f(a)=log2a,f(-a)=,f(a)>f(-a),即log2a>=log2,∴a>,解得a>1.②当a<0时,f(a)=,f(-a)=log2(-a),f(a)>f(-a),即>log2(-a)=,∴-a<,解得-1<a<0,由①②得-1<a<0或a>1.11.若函数f(x)=x2lg a-2x+1的图象与x轴有两个交点,则实数a的取值范围是( ) A.0<a<10B.1<a<10C.0<a<1D.0<a<1或1<a<10【答案】D【解析】lg a≠0且Δ=4-4lg a>0,解得0<a<1或1<a<10,故选D.12.已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},则∁R A∩B等于( ) A.[0,1]B.(0,1)C.(-3,1)D.[-3,1]【答案】B【解析】集合A={x|x2≥1,x∈R}={x|x≥1,或x≤-1},B={x|log2x<2,x∈R}={x|0<x<4},∴∁R A=(-1,1),∴∁R A∩B=(0,1),故选B.13.已知函数f(x)=log a(x-1)(a>0,且a≠1),g(x)=log a(3-x)(a>0,且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.【答案】(1)要使函数h(x)=f(x)-g(x)=log a(x-1)-log a(3-x)有意义,需有解得1<x<3,故函数h(x)=f(x)-g(x)的定义域为(1,3).(2)因为不等式f(x)≥g(x),即log a(x-1)≥log a(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为[2,3);当0<a<1时,不等式f(x)≥g(x)中x 的取值范围为(1,2].14.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.【答案】(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.15.下列函数关系中,可以看成是指数型函数y=ka x(k∈R,a>0且a≠1)模型的是( )A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,我国人口总数随年份的变化关系C.如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系【答案】B【解析】A:竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系,是二次函数关系;B:我国人口年自然增长率为1%,我国人口总数随年份的变化关系,是指数型函数关系;C:如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系,是反比例函数关系;D:信件的邮资与其重量间的函数关系,是正比例函数关系.故选B.16.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为如图所示的( )A.B.C.D.【答案】D【解析】设原来森林蓄积量是a,则a(1+10.4%)y=ax,1.104y=x,所以y=log1.104x,故选D.17.如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3;其中正确的说法有________.(请把正确的说法的序号都填在横线上)【答案】①②④【解析】∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确;当t=5时,s=32>30,故②正确;4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2=log23,t3=log26,∴有t1+t2=t3,故④正确.综上可知,①②④正确.故答案为①②④.18.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】因为a′=a·e-kt,即=e-kt.两边取对数,得lg=-kt lge.①又知14C的半衰期是5570年,即当t=5570时,=.故lg=-5570k lge,即k lge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.19.诺贝尔奖发放方式为:每年一次,把资金总额平均分成6份,奖励在6个领域(物理学、化学、文学、经济学、医学或生理学、和平事业)为人类作出最有益贡献的人,每年发放奖金总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129≈1.32,1.031210≈1.36)【答案】(1)由题意知f(2)=f(1)(1+6.24%)-f(1)×6.24%=f(1)×(1+3.12%),f(3)=f(2)(1+6.4%)-f(2)×6.24%=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9≈26107(万美元).2009年诺贝尔奖各项金额为×f(10)×6.24%≈136(万美元),与150万美元相比少了约14万美元.故该新闻是假的.20.某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市的人口总数y(万人)与年份x(年)的函数解析式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口总数将达到120万人.(精确到1年)[参考数据:(1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.210]【答案】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;3年后该城市人口总数为y=100(1+1.2%)3…故x年后该城市人口总数为y=100(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)令y=120,则有100(1+1.2%)x=120,解得x≈16.即大约16年后该城市人口总数将达到120万人.。
高一数学对数函数经典题及详细答案--新版
高一数学对数函数经典题及详细答案一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -答案A 。
∵3a =2→∴a=log 32则: log 38-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-22、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1答案B 。
∵2log a (M-2N )=log a M+log a N ,∴log a (M-2N)2=log a (MN ),∴(M-2N)2=MN ,∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2-5n m +4=0,设x=n m→x 2-5x+4=0→(x 2⎩⎨⎧==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0∴n m =1答案为:43、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y aaa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -答案D 。
∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n→loga(1-x ²)=m-n →∵ x ²+y ²=1,x>0,y>0, → y ²=1- x ²→loga(y ²)=m-n∴2loga(y)=m-n4. 若x 1,x 2是方程lg 2x +(lg3+lg2)lgx +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).61答案D∵方程lg 2x+(lg2+lg3)lgx+lg2lg3=0的两根为1x 、2x ,[注:lg 2x 即(lgx)2,这里可把lgx 看成能用X ,这是二次方程。
高中数学人教版必修1专题复习—对数与对数函数(含答案)
必修1专题复习——对数与对数函数1.23log 9log 4⨯=( ) A .14 B .12C .2D .4 2.计算()()516log 4log 25⋅= ( )A .2B .1C .12 D .14 3.已知222125log 5,log 7,log 7a b ===则 ( ) A .3a b - B .3a b - C .3a bD .3ab4.552log 10log 0.25+=( ) A .0 B .1 C .2 D .45.已知31ln 4,log ,12===-x y z ,则( ) A.<<x z y B.<<z x y C.<<z y x D.<<y z x6.设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 7.已知2log 3a =,12log 3b =,123c -=,则A.c b a >> B .c a b >> C.a b c >> D.a c b >> 8.已知a =312,b =l og 1312,c =l og 213,则( )A. a >b >cB.b >c >aC. c>b>acD. b >a >c 9.函数y =A .[1,2]B .[1,2)C .1(,1]2D .1[,1]210.函数)12(log )(21-=x x f 的定义域为( )A .]1,-(∞B .),1[+∞C .]121,(D .),(∞+2111.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A .∅=B A B .R B A =C .A B ⊆D .B A ⊆ 12.不等式1)2(log 22>++-x x 的解集为( )A 、()0,2-B 、()1,1-C 、()1,0D 、()2,113.函数)1,0)(23(log ≠>-=a a x y a 的图过定点A ,则A 点坐标是 ( ) A 、(32,0) B 、(0,32) C 、(1,0) D 、(0,1) 14.已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<< 15.函数y =2|log 2x|的图象大致是( )16.若0a >且1a ≠,则函数2(1)y a x x =--与函数log a y x =在同一坐标系内的图像可能是( )17.在同一坐标系中画出函数x y a log =,xa y =,a x y +=的图象,可能正确的是( ).18.将函数2()log (2)f x x =的图象向左平移1个单位长度,那么所得图象的函数解析式为( )(A )2log (21)y x =+ (B )2log (21)y x =- (C )2log (1)1y x =++ (D )2log (1)1y x =-+19.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )20.函数)1ln()(2+=x x f 的图象大致是 ( )A .B .C .D . 21.若当R x ∈时,函数()xa x f =始终满足()10<<x f ,则函数xy a1log =的图象大致为( )22.(本题满分12分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
人教新课标版数学高一-A版必修一课后训练 .1对数函数的图象及性质
课后提升训练二十对数函数的图象及性质(45分钟70分)一、选择题(每小题5分,共40分)1.下列函数是对数函数的是( )A.y=log(-2)xB.y=log2x2C.y=log2xD.y=log2(x+2)【解析】选C.由对数函数定义知y=log2x=log4x是对数函数.2.函数f(x)=log0.25(2x-1)的定义域为( )A. B.C. D.【解析】选A.由题意知2x-1>0,即x>.3.(2017·德州高一检测)已知函数f(x)=a x(a>0,a≠1),且其图象过点(3,27),f(x)的反函数记为y=g(x),则g(x)的解析式是( ) A.g(x)=log3x B.g(x)=log2xC.g(x)=lo xD.g(x)=lo x【解析】选A.因为f(3)=27,所以a3=27,即a=3,又因为指数函数y=a x与y=log a x互为反函数,所以g(x)=log3x.4.(2017·长沙高一检测)已知f(x)=a-x,g(x)=log a x,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( )【解析】选D.因为f(2)·g(2)>0,所以a>1,所以f(x)=a-x与g(x)=log a x在其定义域上分别是减函数与增函数.5.(2017·开封高一检测)函数y=log a(x+2)+1的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)【解题指南】借助对数函数图象过定点(1,0)这一性质,利用整体代换思想,令x+2=1,求出图象所过定点.【解析】选 D.令x+2=1,即x=-1,得y=log a1+1=1,故函数y=log a(x+2)+1的图象过定点(-1,1).6.若点(a,b)在y=lgx的图象上,a>0且a≠1,则下列点也在此图象上的是( )A. B.(10a,1-b)C. D.(a2,2b)【解析】选 D.若点(a,b)在y=lgx的图象上,则b=lga,所以2b=2lga=lga2,即(a2,2b)也在函数y=lgx的图象上.【延伸探究】本题条件不变,若, (100a,y2)也在函数y=lgx的图象上,试用b表示y1,y2.【解析】因为lg=2-lga=2-b,所以y1=2-b,因为lg(100a)=2+lga=2+b,所以y2=2+b.7.(2017·衡水高一检测)已知函数f(x)=a x+log a x(a>0,且a≠1)在[1,2]上的最大值与最小值之和为log a2+6,则a的值为( ) A. B. C.2 D.4【解题指南】对a分a>1和0<a<1两种情况分别求函数f(x)的最大值与最小值,然后根据题意列出关于a的方程即可.【解析】选C.①当a>1时,a2+log a2+a+log a1=log a2+6,解得a=-3(舍)或a=2.②当0<a<1时,a+log a1+a2+log a2=log a2+6,解得a=2(舍)或a=-3(舍).8.已知函数f(x)=若f(a)=,则实数a= ( )A.-1B.C.1或-D.-1或【解析】选D.f(a)=⇔或⇔a=或a=-1.二、填空题(每小题5分,共10分)9.(2017·临沂高一检测)图中的曲线是y=log a x的图象,已知a的值分别为,,,,相应曲线C1,C2,C3,C4中的a依次为a1,a2,a3,a4,则它们的值分别为__________.【解析】在x轴上方,由对数函数的“底大图右”的性质得到a2>a1>1>a4>a3,所以a1,a2,a3,a4的值分别为,,,.答案:,,,10.(2017·武汉高一检测)若f(x)是对数函数且f(9)=2,当x∈[1,3]时,f(x)的值域是________.【解析】设f(x)=log a x,因为log a9=2,所以a=3,即f(x)=lo x,又因为x∈[1,3],所以0≤f(x)≤1.答案:[0,1]三、解答题(每小题10分,共20分)11.求下列函数的定义域与值域.(1)y=log2(x-1).(2)y=log4(x2+4).【解析】(1)由x-1>0,得x>1,所以函数y=log2(x-1)的定义域是(1,+∞),值域是R.(2)因为对任意实数x,log4(x2+4)都有意义,所以函数y=log4(x2+4)的定义域是R.又因为x2+4≥4,所以log4(x2+4)≥log44=1,即函数y=log4(x2+4)的值域是[1,+∞).12.(2017·沈阳高一检测)已知函数f(x)=log a(ax-)(a>0,a≠1为常数).(1)求函数f(x)的定义域.(2)若a=2,x∈[1,9],求函数f(x)的值域.【解析】(1)ax->0⇒(a-1)>0,因为>0,所以a-1>0,因为a>0,所以>.所以x>,所以函数f(x)的定义域为.(2)a=2时,f(x)=log 2(2x-),令2x-=t,则t=2x-=2-,因为x∈[1,9],所以t∈[1,15],所以log 21≤log2(2x-)≤log215,即0≤f(x)≤log215,所以函数f(x)的值域为[0,log215].【能力挑战题】已知函数f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值.(2)当x为何值时,f(log a x)有最小值?求出该最小值.【解析】(1)因为所以即又a>0且a≠1,所以(2)f(log a x)=f(log2x)=(log2x)2-log2x+2=+,所以当log 2x=,即x=时,f(log a x)有最小值.关闭Word文档返回原板块。
对数函数性质及练习(有答案)
对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1 【例1-2】下列函数中是对数函数的为__________.(1)y =log (a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1); (5)y =log 6x . 解析:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较(3)底数a对对数函数的图象的影响①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a ,43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( )A 43,35,110B ,43,110,35C .43,35,110 D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110.答案:A点技巧 根据图象判断对数函数的底数大小的方法 (1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. (2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域; ②互为反函数的两个函数的图象关于直线y =x 对称. (3)求已知函数的反函数,一般步骤如下: ①由y =f (x )解出x ,即用y 表示出x ; ②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2xB .12x C .12log x D .2x -2解析:因为函数y =a x(a >0,且a ≠1)的反函数是f (x )=log a x , 又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x . 答案:A 【例3-2】函数f (x )=3x(0<x ≤2)的反函数的定义域为( )A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞) 解析:∵ 0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f(x)的反函数的定义域为(1,9].答案:B【例3-3】若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点( ) A.(5,1) B.(1,5) C.(1,1) D.(5,5)解析:由于原函数与反函数的图象关于直线y=x对称,而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图象必经过点(5,1).答案:A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y=log a x(a>0,且a≠1)中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f(m)=n或图象过点(m,n)等等.通常利用待定系数法求解,设出对数函数的解析式f(x)=log a x(a>0,且a≠1),利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m=n,这时先把对数式log a m=n化为指数式的形式a n=m,把m化为以n为指数的指数幂形式m=k n(k>0,且k≠1),则解得a=k>0.还可以直接写出1na m=,再利用指数幂的运算性质化简1nm.例如:解方程log a4=-2,则a-2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a=±.又a>0,所以12a=.当然,也可以直接写出124a-=,再利用指数幂的运算性质,得11212214(2)22a---====.【例4-1】已知f(e x)=x,则f(5)=( )A.e5B.5e C.ln 5 D.log5e解析:(方法一)令t=e x,则x=ln t,所以f(t)=ln t,即f(x)=ln x.所以f(5)=ln 5.(方法二)令e x=5,则x=ln 5,所以f(5)=ln 5.答案:C【例4-2】已知对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,试求f(3)的值.分析:设出函数f(x)的解析式,利用待定系数法即可求出.解:设f(x)=log a x(a>0,且a≠1),∵对数函数f(x)的图象经过点1,29⎛⎫⎪⎝⎭,∴11log299af⎛⎫==⎪⎝⎭.∴a2=19.∴a=11222111933⎡⎤⎛⎫⎛⎫==⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f(x)=13log x.∴f(3)=111331log 3log3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f(x)的反函数的图象过点(2,9),且f(b)=12,试求b的值.解:设f(x)=log a x(a>0,且a≠1),则它的反函数为y=a x(a>0,且a≠1),由条件知a2=9=32,从而a=3.于是f(x)=log3x,则f(b)=log3b=12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则: ①分式中分母不等于零;②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集. 【例5】求下列函数的定义域.(1)y =log 5(1-x );(2)y =log (2x -1)(5x -4);(3)y=.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解. 解:(1)要使函数有意义,则1-x >0,解得x <1, 所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y=的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下: ①分解成y =log a u ,u =f (x )这两个函数; ②求f (x )的定义域; ③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞). (2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4. 又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a>0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2. 答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象. 解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况: (1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小. 要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba<b,∴0<log bba<1.由log b a-log bba=2logbab,∵a2>b>1,∴2ab>1.∴2logbab>0,即log b a>log bba.∴log a b>log b a>log b ba>log aab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a>0,且a≠1时,有①log a f(x)=log a g(x)⇔f(x)=g(x)(f(x)>0,g(x)>0);②当a>1时,log a f(x)>log a g(x)⇔f(x)>g(x)(f(x)>0,g(x)>0);③当0<a<1时,log a f(x)>log a g(x)⇔f(x)<g(x)(f(x)>0,g(x)>0).(2)常见的对数不等式有三种类型:①形如log a f(x)>log a g(x)的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.②形如log a f(x)>b的不等式,应将b化为以a为对数的对数式的形式,再借助函数y=log a x的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集. ④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33xx x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a . ∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )的定义域是⎝⎛⎭⎫-∞,32.设u =3-2x ,x ∈⎝⎛⎭⎫-∞,32,∵u =3-2x 在⎝⎛⎭⎫-∞,32上是减函数,且y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )在⎝⎛⎭⎫-∞,32上是减函数.∴函数y =log 2(3-2x )的单调减区间是⎝⎛⎭⎫-∞,32.【例10-1】求函数y =log a (a -a x)的单调区间.解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x)在(-∞,1)上递减. (2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x)在(1,+∞)上递减. 综上所述,函数y =log a (a -a x)在其定义域上递减.析规律 判断函数y =log a f (x )的单调性的方法 函数y =log a f (x )可看成是y =log a u 与u=f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围. 解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立. ∴1,2210,2au ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩ ∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )≠-f (x )时,此函数既不是奇函数也不是偶函数.例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )=log )a x +log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1ax x +-(a >0,且a ≠1). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11x x+->0,得-1<x <1,故函数f (x )的定义域为(-1,1). (2)∵f (-x )=1log 1a x x -+=1log 1a x x+--=-f (x ), 又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数. (3)当a >1时,由1log 1a x x +->0=log a 1,得11x x+->1,解得0<x <1; 当0<a <1时,由1log 1ax x +->0=log a 1,得0<11x x +-<1,解得-1<x <0. 故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y(单位:km/s)关于燃料重量x(单位:吨)的函数关系式为y=k ln(m+x)-k)+4ln 2(k≠0),其中m是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m吨时,火箭的最大速度是4 km/s.(1)求y=f(x);(2)已知长征二号F型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8 km/s,求装载的燃料重量(e=2.7,精确到0.1).解:(1)由题意得当x=1)m时,y=4,则4=k ln[m+-1)m]-k)+4ln 2,解得k=8.所以y=8ln(m+x)-)+4ln 2,即y=8ln m x m+.(2)由于m+x=479.8,则m=479.8-x,令479.888ln479.8x=-,解得x≈302.1.故火箭装载的燃料重量约为302.1吨.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修一)《第五章 对数函数的图象和性质》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.函数()()2log 1f x x =-的图像为( )A .B .C .D .2.已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<3.函数1()ln f x x x x ⎛⎫=-⋅ ⎪⎝⎭的图象可能是( ) A . B .C .D .4.下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--5.函数f (x )=|ax -a |(a >0且a ≠1)的图象可能为( )A. B . C . D .6.下列函数中是减函数的为( ) A .2()log f x x = B .()13x f x =- C .()f x = D .2()1f x x =-+7.设0.30.50.514,log 0.6,16a b c -⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<8.已知函数2(43)3,0()log (1)2,0a x a x a x f x x x ⎧+-+<=⎨++≥⎩ (a >0且a ≠1)是R 上的单调函数,则a 的取值范围是( )A .30,4⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎡⎤⎢⎥⎣⎦D .23,34⎛⎤ ⎥⎝⎦9.已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈当12x x <时,则都有()()()12122f x f x x x -<-则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .1,2D .()2,+∞10.函数y ) A .1,2⎛⎤-∞ ⎥⎝⎦B .10,2⎛⎤⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .[]1,211.记函数2log 2x y x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( ) A .()2,+∞ B .[)2,+∞ C .()0,2D .(]0,212.下列函数在(),1-∞-上是减函数的为( )A .()ln f x x =-B .()11f x x =-+ C .()234f x x x =--D .()21f x x =13.下列函数是偶函数且值域为[)0,∞+的是( )①y x =;②3y x =;③||2x y =;④2y x x =+ .A .①②B .②③C .①④D .③④14.已知函数22,2()log ,2x a x f x x x ⎧-<=⎨≥⎩,若()f x 存在最小值,则实数a 的取值范围是( )A .(],2-∞B .[)1,-+∞C .(),1-∞-D .(],1-∞-15.已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>16.已知集合{}1,0,1,2A =-和2{|1}B x x =≤,则A B =( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,217.已知22log log 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()1()xf x a=与()log b g x x =的图像可能是( )A .B .C .D .18.设123a -=,1312b -⎛⎫= ⎪⎝⎭和21log 3c =,则( ) A .a c b << B .c a b << C .b c a << D .a b c <<19.已知函数212()log (3)f x x ax a =-+ 在[)2,+∞上单调递减,则a 的取值范围( )A .(,4]-∞B .(4,4]-C .[4,4]-D .(4,)-+∞20.函数22log (2)y x x =-的单调递减区间为( )A .(1,2)B .(]1,2C .(0,1)D .[)0,121.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,则()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞二、解答题22.比较下列各数的大小: (1)12log 3与12log π;(2)4log 3与5log 3; (3)5log 2与2log 5.23.已知函数()()()ln 1ln 1f x ax x =++-的图象经过点()3,3ln 2.(1)求a 的值,及()f x 的定义域; (2)求关于x 的不等式()()ln 2f x x ≤的解集.24.已知函数()()9log 91xf x x =++.(1)若()()20f x x a -+>对于任意x 恒成立,求a 的取值范围; (2)若函数()()9231f x xx g x m -=+⋅+和[]90,log 8x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值,若不存在,请说明理由.25.已知函数()ln f x x =.(1)在①()21g x x =-,②()21g x x =+这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,()()()=h x f g x 求()h x 的值域. 注:如果选择两个条件分别解答,按第一个解答计分.(2)若1x ∀∈R ,()20,x ∈+∞和()1122421ln x xa x x -+<-,求a 的取值范围.26.已知______,且函数()22x bg x x a+=+.①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题. (1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围. 27.定义:若函数()y f x =在某一区间D 上任取两个实数12x x 、,且12x x ≠,都有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭则称函数()y f x =在区间D 上具有性质L .(1)写出一个在其定义域上具有性质L 的对数函数(不要求证明). (2)判断函数1()f x x x=+在区间(0,)+∞上是否具有性质L ?并用所给定义证明你的结论. (3)若函数21()g x ax x=-在区间(0,1)上具有性质L ,求实数a 的取值范围.三、填空题28.函数()ln(4)f x x =+-的定义域是___________. 29.()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________.30.已知函数211,0()2,0xx f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 31.已知函数2(12)0()log (1)0a x a x f x x x +-<⎧=⎨+≥⎩,,的值域为R ,则实数a 的范围是_________32.已知函数()log (23)1(>0a f x x a =-+且1)a ≠,且的图象恒过定点P ,则点P 的坐标为_________.33.已知函数()2log 081584,,⎧<≤⎪=⎨-+>⎪⎩x x f x x x ,若a b c ,,互不相等,且()()()f a f b f c ==,则abc 的取值范围是____.34.若0x >和0y >,且111x y+=,则22log log x y +的最小值为___________.四、多选题35.已知函数()f x 和()g x 的零点所构成的集合分别为M ,N ,若存在M α∈和N β∈,使得1αβ-≤,则称()f x 与()g x 互为“零点伴侣”.若函数()1e 2xf x x -=+-与()23g x x ax a =--+互为“零点伴侣”,则实数a的取值不能是( ) A .1B .2C .3D .436.已知函数()()2lg 1f x x ax a =+--,下列结论中正确的是( )A .当0a =时,则()f x 的定义域为()(),11,-∞-⋃+∞B .()f x 一定有最小值C .当0a =时,则()f x 的值域为RD .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4a a ≥-参考答案与解析1.A【分析】根据函数的定义域为(),1-∞可排除B 、D.再由单调性即可选出答案.【详解】当0x =时,则()()20log 10=0f =-,故排除B 、D. 当1x =-时,则()()21log 1110f -=+=>,故A 正确. 故选A.【点睛】本题考查函数的图像,属于基础题.解决本类题型的两种思路:①将初等函数的图像通过平移、伸缩、对称变换选出答案,对学生能力要求较高;②根据选项代入具体的x 值,判断y 的正负号. 2.C【分析】根据对数函数可以解得2a =,4t =再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈和0.141c =>∴a b c << 故选:C . 3.A【分析】利用函数的奇偶性排除选项D ,利用当01x <<时,则()0f x >,排除选项B ,C ,即得解. 【详解】解:∵函数()f x 的定义域为{}0x x ≠,关于原点对称,1()ln f x x xx ⎛⎫-=-+⋅- ⎪⎝⎭1ln ()x x f x x ⎛⎫--⋅=- ⎪=⎝⎭ ∴()f x 为奇函数,排除选项D .当01x <<时,则2110x x x x--=<和ln 0x < ∴()0f x >,排除选项B ,C . 故选:A . 4.A【分析】根据函数图象的对称性、奇偶性、单调性以及特殊点,利用排除法即可求解.【详解】解:根据图象可知,函数关于1x =对称,且当1x =时,则1y =-,故排除B 、D 两项; 当1x >时,则函数图象单调递增,无限接近于0,对于C 项,当1x >时,则12x y -=-单调递减,故排除C项. 故选:A. 5.C【分析】根据指数函数的单调性分类讨论进行求解即可.【详解】当>1a 时,则,1()=,<1x xa a x f x a a x -≥-⎧⎨⎩显然当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而>1a ,故AB 不符合; 对于CD ,因为渐近线为=2y ,故=2a ,故=0x 时,则=1y 故选项C 符合,D 不符合;当0<<1a 时,则,<1()=,1x xa a x f x a a x --≥⎧⎨⎩当1x ≥时,则函数单调递增,当<1x 时,则函数单调递减 函数图象的渐近线为=y a ,而0<<1a ,故ABD 不符合; 故选:C 6.B【分析】利用对数函数单调性判断选项A ;利用指数函数单调性判断选项B ;利用幂数函数单调性判断选项C ;利用二次函数单调性判断选项D.【详解】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =为增函数.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B 7.B【分析】计算可得2a =,再分析()0.5log 0.60,1b =∈,0.3116c a -⎛⎫=> ⎪⎝⎭即可判断【详解】由题意0.542a ==,()()0.50.50.5log 0.6log 1,log 0.50,1b =∈=和0.30.30.2511616216c a -⎛⎫==>== ⎪⎝⎭,故b ac <<故选:B 8.C【分析】根据二次函数和对数函数的单调性,结合分段函数的性质进行求解即可.【详解】二次函数2(43)3y x a x a =+-+的对称轴为:432a x -=-因为二次函数开口向上,所以当0x <时,则该二次函数不可能单调递增 所以函数()f x 是实数集上的减函数则有01432302343log 122a a a a a <<⎧⎪-⎪-≥⇒≤≤⎨⎪≥+=⎪⎩故选:C 9.B【分析】由题设知()()2h x f x x =-在R 上递增,将不等式转化为2(log )(1)h x h <,利用单调性求解集即可. 【详解】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-所以2(log )(1)h x h <,即2log 1x <,可得02x <<. 故不等式解集为()0,2. 故选:B 10.C【分析】依题意可得21log 0x +≥,根据对数函数的性质解不等式,即可求出函数的定义域. 【详解】解:依题意可得21log 0x +≥,即221log 1log 2x ≥-=,所以12x ≥ 即函数的定义域为1,2⎡⎫+∞⎪⎢⎣⎭.故选:C 11.B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案. 【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x << 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B . 12.C【分析】根据熟知函数的图象与性质判断函数的单调性.【详解】对于选项A ,()ln f x x =-在(),1-∞-上无意义,不符合题意; 对于选项B ,()11f x x =-+在(),1-∞-上是增函数,不符合题意; 对于选项C ,2234,? 4134,? 14x x x x x x x ⎧--≥≤-⎨-++-<<⎩或的大致图象如图所示中由图可知()f x 在(),1-∞-上是减函数,符合题意;对于选项D ,()21f x x =在(),1-∞-上是增函数,不符合题意. 故选:C. 13.C【分析】根据奇偶性的定义依次判断,并求函数的值域即可得答案. 【详解】对于①,y x =是偶函数,且值域为[)0,∞+; 对于②,3y x =是奇函数,值域为R ; 对于③,2xy =是偶函数,值域为[)1,+∞;对于④,2y x x=+是偶函数,且值域为[)0,∞+所以符合题意的有①④ 故选:C. 14.D【分析】根据函数的单调性可知,若函数存在最小值,则最小值是()21f =,则根据指数函数的性质,列式求实数a 的取值范围.【详解】2x <时,则()2,4xa a a -∈--,2x ≥时,则2log 1x ≥若要使得()f x 存在最小值,只需要2log 2a -≥,即1a ≤-. 故选:D. 15.A【分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m > 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数) 由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=- 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b >又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)mf x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.16.A【分析】根据一元二次不等式的求解得{}11B x x =-≤≤,根据集合的交运算即可求解. 【详解】因为{}1,0,1,2A =-和{}11B x x =-≤≤,所以{}1,0,1A B =-故选:A . 17.B【分析】由对数的运算性质可得ab =1,讨论a ,b 的范围,结合指数函数和对数函数的图像的单调性,即可得到答案.【详解】22log log 0a b +=,即为2log 0ab =,即有ab =1. 当a >1时,则0<b <1函数()1()xf x a=与()log b g x x =均为减函数,四个图像均不满足当0<a <1时,则b >1函数数()1()xf x a=与()log b g x x =均为增函数,排除ACD在同一坐标系中的图像可能是B 故选:B . 18.B【分析】结合指数函数,对数函数的单调性,以及临界值0和1,判断即可 【详解】由题意201313a -<==,故(0,1)a ∈ 1130312212b -⎛⎫==>= ⎪⎝⎭2231log log 10c =<= 故c a b << 故选:B 19.B【分析】转化为函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立,再根据二次函数的单调性以及不等式恒成立列式可求出结果. 【详解】因为函数212()log (3)f x x ax a =-+在[)2,+∞上单调递减所以函数23y x ax a =-+在[)2,+∞上单调递增,且230x ax a -+>在[)2,+∞上恒成立 所以2222230a a a ⎧≤⎪⎨⎪-+>⎩,解得44a -<≤.故选:B 20.A【分析】先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果【详解】由220x x ->,得02x <<令22t x x =-,则2log y t=22t x x =-在(0,1)上递增,在(1,2)上递减因为2log y t=在定义域内为增函数所以22log (2)y x x =-的单调递减区间为(1,2)故选:A 21.A【分析】由()f x 是R 上的奇函数求出a 值,并求出0x <时,则函数()f x 的解析式,再分段讨论解不等式作答.【详解】因函数()f x 是定义在R 上的奇函数,且当0x ≥时,则()4322x xf x a =-⨯+则()0004322220f a a =-⨯+=-=,解得1a =,即当0x ≥时,则()4322x xf x =-⨯+当0x <时,则0x ->,则()()(4322)x x f x f x --=--=--⨯+而当0x ≥时,则()2311(2)244xf x =--≥-,则当()6f x ≤-时,则0(4322)6x xx --<⎧⎨--⨯+≤-⎩,即0(24)(21)0x xx --<⎧⎨-+≥⎩变形得024x x -<⎧⎨≥⎩,解得2x -≤所以不等式()6f x ≤-的解集为(,2]-∞-. 故选:A22.(1)1122log 3log π>.(2)45log 3log 3>.(3)52log 2log 5<. 【分析】(1)根据12()log f x x=,在定义域内是减函数,即可比较二者大小;(2)根据3log y x =,在定义域内是增函数,可得330log 4log 5<<,故3311log 4log 5>,即可比较二者大小; (3)根据5log 21<,2log 51>即可比较二者大小. 【详解】(1)设12()log f x x =.3π<且()f x 是减函数 ∴(3)()f f π>即1122log 3log π>.(2)3log y x =是增函数∴330log 4log 5<<. ∴3311log 4log 5> 即45log 3log 3>. (3)55log 2log 51<=且22log 5log 21>=∴52log 2log 5<.【点睛】本题主要考查了比较对数的大小,解题关键是掌握对数的单调性和对数的运算性质,考查了分析能力和计算能力,属于基础题. 23.(1)1a =,定义域为()1,+∞ (2){112}x x <+∣【分析】(1)直接将()3,3ln 2代入函数解析式,即可求出参数a 的值,从而求出函数解析式,再根据对数的真数大于零得到不等式组,解得即可;(2)依题意可得()()2ln 1ln 2x x -,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; (1)解:由题意可得()()ln 31ln 313ln2a ++-=,即()ln 312ln2a +=,所以314a += 解得1a =则()()()ln 1ln 1f x x x =++-.由1010x x +>⎧⎨->⎩,解得1x >.所以()f x 的定义域为()1,+∞. (2)解:由(1)可得()()()()2ln 1ln 1ln 1,1f x x x x x =++-=->不等式()()ln 2f x x 可化为()()2ln 1ln 2x x -因为ln y x =在()0,+∞上是增函数所以20121x xx ⎧<-⎨>⎩ 解得112x <+.故不等式()()ln 2f x x 的解集为{}|112x x <+. 24.(1)(],0-∞(2)存在 m =【分析】(1)利用分离参数法得到()9log 91x a x <+-对于任意x 恒成立,令()()9log 91xh x x =+-,利用对数的图像与性质即可求得;(2)先整理得到()9232x xg x m =+⋅+令3x t =, t ⎡∈⎣研究函数()()222222p t t mt t m m =++=++-,t ⎡∈⎣根据二次函数的单调性对m 进行分类讨论,即可求出m . (1)由题意可知,()()20f x x a -+>对于任意x 恒成立代入可得()9log 910x x a +-->所以()9log 91xa x <+-对于任意x 恒成立令()()()99999911log 91log 91log 9log log 199x xxxx xh x x +⎛⎫=+-=+-==+ ⎪⎝⎭因为1119x +>,所以由对数的图像与性质可得:91log 109x⎛⎫+> ⎪⎝⎭,所以0a ≤. 即实数a 的范围为(],0-∞. (2) 由()()9231f x xx g x m -=+⋅+,[]90,log 8x ∈且()()9log 91x f x x =++代入化简可得()9232x xg x m =+⋅+.令3x t =,因为[]90,log 8x ∈,所以t ⎡∈⎣则()()222222p t t mt t m m =++=++- t ⎡∈⎣①当1m -≤,即1m ≥-时,则()p t 在⎡⎣上为增函数所以()()min 1230p t p m ==+=,解得32m =-,不合题意,舍去②当1m <-<1m -<-时,则()p t 在[]1,m -上为减函数,()p t 在m ⎡-⎣上为增函数所以()()2min 20p t p m m =-=-=,解得m =m =③当m ≤-,即m ≤-()p t 在⎡⎣上为减函数所以()(min 100p t p ==+=解得m =综上可知m =【点睛】二次函数中“轴动区间定”或“轴定区间动”类问题,分类讨论的标准是函数在区间里的单调性. 25.(1)答案见解析 (2)1,4⎛⎫-∞- ⎪⎝⎭【分析】(1)根据复合函数的性质即可得到()h x 的值域;(2)令()()1ln F x x x =-,求出其最小值,则问题转化为1142x x a <-恒成立,进而求1142x xy =-最小值即可.(1)选择①,()()2ln 1h x x =-令21t x =-,则()0,t ∈+∞,故函数ln y t =的值域为R ,即()h x 的值域为R .选择②,()()2ln 1h x x =+,令21t x =+,则[)1,t ∈+∞因为函数ln y t =单调递增,所以0y ≥,即()h x 的值域为[)0,∞+. (2)令()()1ln F x x x =-.令12x m =,则()0,m ∈+∞,所以112211142244x x m m m ⎛⎫-=-=--≥- ⎪⎝⎭故14a <-,即a 的取值范围为1,4⎛⎫-∞- ⎪⎝⎭.26.(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析; (2)77,88⎡-⎤⎢⎥⎣⎦.【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+.选择②.当0a >时,则()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩ 所以()222xg x x =+.()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数.(2) 当0x >时,则()122g x x x=+,因为224x x +≥,当且仅当22x x =,即x =1时等号成立,所以()104g x <≤; 当0x <时,则因为()g x 为奇函数,所以()104g x -≤<;当x =0时,则()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立 所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.27.(1)12log y x =;(2)函数1()f x x x =+在区间(0,)+∞上具有性质L ;答案见解析;(3)(,1]-∞.【分析】(1)由于底数在(0,1)上的对数函数满足题意,故可得答案; (2)任取12,(0,)x x ∈+∞,且12x x ≠,对()()122f x f x +与122x x f +⎛⎫ ⎪⎝⎭作差化简为因式乘积形式,判断出与零的大小,可得结论; (3)函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离求出最值,可得参数的范围. 【详解】(1)如12log y x=(或底在(0,1)上的对数函数);(2)函数1()f x x x=+在区间(0,)+∞上具有性质L .证明:任取12,(0,)x x ∈+∞,且12x x ≠()()12121212121211122222f x f x x x x x f x x x x x x +⎛⎫⎛⎫++⎛⎫-=+++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()2212121212121212121241112222x x x x x x x x x x x x x x x x x x +--⎛⎫=+-== ⎪+++⎝⎭ 因为12,(0,)x x ∈+∞且12x x ≠所以()()21212120,20x x x x x x ->⋅+>,即()()1212022f x f x x x f ++⎛⎫-> ⎪⎝⎭. 所以函数1()f x x x=+在区间(0,)+∞上具有性质L . (3)任取12,(0,1)x x ∈,且12x x ≠,则()()21222121212121211122222g x g x x x x x g ax ax a x x x x ⎡⎤+⎛⎫++⎛⎫⎛⎫-=-+---⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()()()()()2221212121212121212122244ax x x x x x x x a x x x x x x x x x x -+⎡⎤--⎣⎦=-⋅=-++ 因为12,(0,1)x x ∈且12x x ≠,所以()()21212120,40x x x x x x ->⋅+> 要使上式大于零,必须()121220a x x x x -⋅⋅+>在12,(0,1)x x ∈上恒成立 即()12122a x x x x <+()212124x x x x +< ()()()()231212*********8x x x x x x x x x x +∴++>=+ 令()()3120,8x x t +=∈,则38y t =在()0,1上单调递减,即()()()()2331212121212228148x x x x t x x x x x x ∴>=++=>++ 所以1a ≤,即实数a 的取值范围为(,1]-∞.【点睛】关键点点睛:本题考查函数新概念,考查不等式的恒成立问题,解决本题的关键点是将函数21()g x ax x =-在区间(0,1)上具有性质L ,即()()1212022g x g x x x g ++⎛⎫-> ⎪⎝⎭恒成立,参变分离后转化为求最值问题,并借助于基本不等式和幂函数的单调性得出参数的范围,考查学生逻辑思维能力和计算能力,属于中档题. 28.(3,4)【分析】由对数的真数大于零,同时二次根式在分母,则其被开方数大于零,从而可求出定义域【详解】由题意可得260,40,x x ->⎧⎨->⎩解得34x <<,即()f x 的定义域是(3,4).故答案为:(3,4) 29.413a <<【分析】使复合函数()()log 4a f x ax =-在(]1,3上递减,需内增外减或外增内减,讨论a 求解即可 【详解】由题可得,根据对数的定义,0a >且1a ≠,所以4y ax =-是减函数,根据复合函数单调性的“同增异减”特点,得到1430a a >⎧⎨->⎩,所以413a <<.故答案为:413a <<30.2⎛ ⎝⎭[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<所以当1≥x 时,则12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增当01x <<时,则21122()loglog g x x x =-+则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=由()0g x '>,得1212log 0x -<,解得0x <<所以()g x在⎛ ⎝⎭上递增 综上得函数()g x的单调递增区间为⎛ ⎝⎭ [1,)+∞故答案为:⎛ ⎝⎭,[1,)+∞ 31.1(,0]2-【分析】先求出分段函数中确定的一段的值域,然后分析另一段的值域应该有哪些元素.【详解】当0x ≥时,则2()log 0f x x =≥,因此当0x <时,则()(12)f x a x a =+-的取值范围应包含(,0)-∞ ∴1200a a +>⎧⎨-≥⎩,解得102-<≤a . 故答案为1(,0]2-. 【点睛】本题考查分段函数的值域问题,解题时注意分段讨论.32.()2,1【解析】根据对数函数的性质求解.【详解】令231x -=,则2x =,(2)1f =即()f x 图象过定点(2,1).故答案为:(2,1)33.()820,【分析】利用函数图像,数形结合进行分析.【详解】不妨设a b c <<,画出函数()f x 图像:()()()f a f b f c ==221log log 54a b c ∴==-+- ()2log 0ab ∴= 10534c <-+< 解得1ab = 820c <<820abc ∴<<.故答案为:()820,34.2【分析】由均值不等式求出xy 的最小值,再由对数的运算及性质即可求解.【详解】因为0x >,0y >且111x y+=所以111x y ≥+=4xy ≥,当且仅当11x y =,即2x y ==时等号成立 即xy 的最小值为4所以2222log log log log 42x y xy +=≥=故答案为:235.AD【分析】首先确定函数()f x 的零点,然后结合新定义的知识得到关于a 的等式,分离参数,结合函数的单调性确定实数a 的取值范围即可.【详解】因为函数()1e 2x f x x -=+-是R 上的增函数,且()10f =,所以1α=,结合“零点伴侣”的定义得11β-≤,则02β≤≤又函数()23g x x ax a =--+在区间[]0,2上存在零点,即方程230x ax a --+=在区间[]0,2上存在实数根 整理得2232122411x x x x a x x +++--+==++()4121x x =++-+ 令()()4121h x x x =++-+,[]0,2x ∈所以()h x 在区间[]0,1上单调递减,在[]1,2上单调递增 又()03h =,()723h =和()12h =,所以函数()h x 的值域为[]2,3 所以实数a 的取值范围是[]2,3.故选:AD .36.AC【分析】A 项代入参数,根据对数型函数定义域求法进行求解;B 项为最值问题,问一定举出反例即可;C 项代入参数值即可求出函数的值域;D 项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.【详解】对于A ,当0a =时,则()()2lg 1f x x =-,令210x ->,解得1x <-或1x >,则()f x 的定义域为()(),11,-∞-⋃+∞,故A 正确;对于B 、C ,当0a =时,则()()2lg 1f x x =-的值域为R ,无最小值,故B 错误,C 正确;对于D ,若()f x 在区间[)2,+∞上单调递增,则21y x ax a =+--在[)2,+∞上单调递增,且当2x =时,则0y >则224210aa a⎧-≤⎪⎨⎪+-->⎩,解得3a>-,故D错误.故选:AC.。