循环流化床锅炉的防磨措施

合集下载

胡昌华——外置床受热面防磨技术及其在600MW CFB锅炉上的应用

胡昌华——外置床受热面防磨技术及其在600MW CFB锅炉上的应用

图4. 外置床受热面管束出口安装热电偶图
外置床内受热面管束的吸热量多少将影响管壁温度, 管壁温度则很大程度上影响到受热面材料的机械强度,从 而对磨损产生影响。金属壁面的耐磨性能与壁面氧化膜的 厚度及其硬度有密切关系。外置床高温仓内循环灰温度在 700~900℃,颗粒温度低于软化温度,则温度变化将不影 响其硬度和形状,因此颗粒的本身磨损性能基本不变,然 而管壁温度超过400℃左右时,由于热应力存在,氧化膜 和金属热膨胀系数差别及高温腐蚀的作用,磨损较400℃ 时有所增加,因此,外置床高温仓受热面(中过II、高再) 内磨损较低温仓受热面(中过Ⅰ、低过)磨损严重,需要 重点监测。 同时,个别管子由于现场局部检修、更换,焊接点过 多,造成该管通流直径变小,阻力系数增大。在管束进、 出压降及热强度不变的前提下,这将引起其质量流量下降, 出口汽温升高,金属温度升高,最终使得管子超温和磨损 加剧。
图6.白马600MW CFB锅炉主视图
为消除受热面管夹与吊挂管的磨损,600WM CFB机组外 置床设计时充分考虑了管排之间的磨损,采用了引进300MW CFB锅炉改进后的外置床受热面防磨技术,竖直吊挂管与水平 蛇形管间距为5mm,如图7所示,将消除管夹与吊挂管由于外 置床内管排的振动而发生的微振磨损
膨胀间隙,如图所示。对于自由管卡,直接将管卡的上 端焊接到吊杆上,以将两种管卡进行定位,如图3所示
图2. 固定管卡改进方案图
图3. 自由管卡改进方案图
2.2 监测外置床受热面管束出口汽温
在白马300MW CFB锅炉机组大修期间,分别对该机组 #101和#301外置床受热面管束出口安装壁温热电偶并严格 保温(见图4),测量出口管束壁面温度值,该处的温度值 代表了管内汽温。在锅炉稳定运行时进行现场试验,详细 了解了不同功能外置床内高温仓受热面(中过II、高再) 管束出口蒸汽温度沿循环灰流动方向的变化规律。试验结 果表明:外置床管束出口温度沿循环灰流方向逐级降低。 #301外置床中过II管束出口温度沿灰流动方向温度偏差最 大可达120℃,#101外置床高温再热器沿灰流动方向温度偏 差最大可达110℃,表明外置床高温仓受热面管束出口汽温 偏差是客观存在的。从蒸汽管路系统上看, #101外置床和 #301外置床受热面管束均采用U型联箱布置,理论上流量不 均性较小,同时外置床高温室内管束结构布置基本相同, 因此外置床高温室管束温度偏差主要由于吸热不均引起。

大型循环流化床锅炉受热面防磨防爆分析

大型循环流化床锅炉受热面防磨防爆分析

的典型泄漏事故为例 ,结合其它 已投运 的 3 0Mw 级 C B锅 炉受热面 防磨 防爆 的经验教训 ,指 出 30Mw F 0 F 0 CB
锅 炉 受 热 面 磨 损 主要 包括 水 冷 壁 的 磨 损 及 外 置床 受 热 面 的 磨 损 ;分 析 了造 成 磨 损 的 原 因 , 并 总 结 CF B锅 炉 的 磨 损 规 律 和 防 护 重 点 部 位 ,提 出 了切 实 可行 的 防护 措 施 和 建 议 。
Ab t a t sr c :Ci n o n t n e t e t p c l la a e a c d n s o o l r h a i g s r a e s c h is o s i o r s a i n t g f r i sa c h y i a e k g c i e t f b i e t u f c i e t e frt d me tc p we t t i e n n o e up e t t 31 M W ic l t g l i i e b d ( q i p d wi h wo ( 0 c r u a i fud z d e n CFB)b i r we e u i t o e a i n. a d o i e wih h ol s e r p t n o p r to n c mb n d t t e
Ke r s c r u a i g fu d z d b d CF b l r e tn u f c y wo d : ic l t l i ie e ( B) oi ;h a i g s r a e;a t— b a i n me s r n e n ia r s a u e o
pr e to ofC FB oie um m a ie ot c i n b lr s rz d. Fe sbl ot c i e u e a i e pr e tng m as r sand s gg si s a e pr s nt d a e 1 u e ton r e e e sw l.

生物质循环流化床锅炉存在的问题及控制措施(定稿)[修改版]

生物质循环流化床锅炉存在的问题及控制措施(定稿)[修改版]

第一篇:生物质循环流化床锅炉存在的问题及控制措施(定稿)生物质循环流化床锅炉存在的问题及控制措施摘要:循环流化床锅炉是一种非常适合燃烧生物质的锅炉,但是相较煤炭而言,生物质中含有较多的碱金属和氯元素,这给燃烧生物质的锅炉带来了一系列特殊的问题,文章在探讨这些问题的基础上,提出了相应的控制措施。

关键词:生物质循环流化床锅炉;床料烧结控制措施;高温腐蚀控制措施;低温腐蚀控制措施1 循环流化床锅炉简介循环流化床锅炉具有效率高、煤种适用性广、调峰能力强、污染物排放量低、炉渣综合利用性好等特点,自上世纪80年代以来循环流化床锅炉得到了迅速的发展,技术也日趋成熟。

循环流化床锅炉是一种流态化燃烧的锅炉,在炉膛内部存在着大量的循环床料。

一次风从炉膛底部进入锅炉,把大量的床料吹起,使床料在炉膛的中间部分沿炉膛向上运动,而在炉膛的四周,床料则沿着水冷壁下降,并在下降过程中完成热量交换。

循环流化床锅炉的特点是设置了由分离器和返料器组成的物料循环回路。

燃料在炉膛内燃烧生成大量的烟气,这些烟气携带大量的物料从炉膛进入分离器,在分离器内物料和烟气进行气固分离,烟气从分离器顶部进入锅炉尾部烟道,而分离下来的物料则通过返料器再次进入炉膛,参与下一次燃烧循环。

因此循环流化床锅炉具有很高的燃烧效率。

2 生物质循环流化床锅炉简介煤炭作为一种不可再生的化石能源,在国民生产生活中扮演着重要的角色,但是一方面煤炭是一种不可再生能源,这使得寻找替代能源已成为无法回避的问题;另一方面煤炭也是一种高污染的能源。

当前环境污染已经成为我国面临的重大问题之一,为了治理环境污染,我国出台了一系列的法律法规,燃煤锅炉将受到越来越严格的限制。

生物质的可再生性和清洁性,使它在热电领域成为了煤炭的理想替代者,近年来燃用生物质的锅炉已经得到了广泛的应用。

目前燃烧生物质的锅炉主要有两种,一种是炉排式的层燃锅炉,一种是流化床锅炉。

生物质燃料的一般特点是水分很高、发热值偏低,因此着火和燃尽都比较困难。

循环流化床锅炉使用说明书

循环流化床锅炉使用说明书

ZK-35/3.82-M循环流化床锅炉锅炉使用说明书20-96-0一、循环流化床锅炉简介二、锅炉首次点火启动应具备的条件三、锅炉对燃煤的要求四、锅炉首次点火启动五、锅炉运行中的监视与调整六、锅炉常见故障处理一、循环流化床锅炉简介煤的循环流化床燃烧是近十几年来发展起来的一种新型燃煤技术,是对传统的炉排炉和煤粉炉的一个重大革新。

它对各类煤种的燃烧适应性好,可以有效地燃用褐煤、各类烟煤和无烟煤,也可燃用如树皮、木屑、油页岩、石煤和石油焦等劣质燃料,同一台锅炉甚至可以同时燃用多种然料。

循环流化床锅炉可以通过添加石灰石进行比较简便的炉内脱硫处理,而一般的尾气脱硫技术费用昂贵,难于推广应用,循环流化床燃烧为高硫煤的合理燃用提供了途径,由于燃烧温度低,其NO x排放亦低。

流态化,是指两种不同形态的物质,因相互之间运动速度的不同而造成的一种特定运动状态下的体系。

对于煤燃烧系统而言,主要是指固体颗粒和空气。

这种特定的状态,是指固体颗粒群体在气体作用下具有流体的一些特性,就是流态化。

各种流化床燃烧锅炉,差别主要是燃烧系统,尾部对流受热面与常规锅炉没有根本的不同。

循环流化床燃烧系统主要包括:炉膛、气固分离器和返料器这三个关键部件。

与鼓泡床相比,循环流化床炉膛截面尺寸较小,燃烧分布在整个炉膛容积内,因此炉膛温度上下均匀;炉膛下部仍有一个密度较高的密相区,但不设置埋管受热面,避免了鼔泡床埋管磨损严重的问题;由于炉膛截面尺寸较小,锅炉启动点火更加容易;炉膛上部四周布置水冷受热面,磨损情况比埋管大为改善;燃烧所需一、二次空气分级供入,强化了炉内物料掺混,物料与空气接触更加强烈、均匀,有利于燃烧,同时可使NO x生成进一步减少;被烟气携带出炉膛的物料被一、二级分离器分离后经返料器进入炉膛,物料如此反复循环反复燃烧,排出锅炉的灰、渣含碳量较低,锅炉燃烧效率和热效率较高、煤耗较低;而由于采用上下基本均匀的流化风速,在降负荷运行时,风速降低的裕度大,负荷变化可超过0.4:1,锅炉负荷调节范围较宽;由于进入炉内的煤只占炉内高温循环物料量的5%左右,煤进入炉内很快着火燃烧,锅炉煤种适应性很广。

循环流化床锅炉防磨防爆检查与检修

循环流化床锅炉防磨防爆检查与检修
• 目前我厂对于防止侧向磨损较为可行的方法是更 换翅片管及加装防磨纵梁。
水冷壁侧向磨损
后墙水冷壁
烟气出口
前墙水冷壁
侧向磨损的原因示意图
加装防磨纵梁及更换翅片管
加装防磨纵梁运行后
2.耐火材料损坏
CFB锅炉防磨的重点既是受热面尤其是水冷壁由 于磨损造成的失效问题,同时耐火材料的损坏也是十 分重要的环节。CFB锅炉有很大一部分受热面被耐 火材料覆盖,耐火材料有保温隔热的作用,而另一个 至关重要的作用是保护受热面管排不受高温烟气的冲 刷。在实际运行中,耐火材料的损坏是很普遍的,其 中旋风分离器入口烟道侧墙及靶区、布风板、播煤口 等部位的耐火材料经常出现开裂、剥落等现象。
旋风分离器靶区耐火材料磨损
旋风分离器靶区耐火材料磨损
旋风分离器入口烟道侧墙耐火材料磨损
旋风分离器入口烟道侧墙耐火材料磨损
旋风分离器入口烟道侧墙耐火材料磨损
布风板耐火材料开裂剥落
播煤口耐火材料脱落
旋风分离器入口烟道侧墙及靶区检修后
播煤口修复后
主要注意问题: 不定形耐火材料使用性能的优劣在于材料本身的性能指
内蒙古京泰发电有限责任公司 二○一三年十二月
循环流化床锅炉磨损概 况
1.受热面磨损
•整体均匀磨损 •局部快速磨损 •侧向磨损附近区域水冷壁磨损问题
1.1整体均匀磨损
炉膛过渡区水冷壁磨损严重
• 整体均匀磨损是受热面管大面积整体均匀减薄的 磨损,主要发生在上部稀相区前墙水冷壁以及过 渡区前、后墙水冷壁。其中稀相区前墙水冷壁减 薄情况较轻,下部过渡区前、后墙水冷壁严重磨 损。
➢ 耐火材料施工工艺不符合要求,局部不平整有凸起,引起 物料冲刷水冷壁管;
➢ 焊缝未打磨平整,导致焊缝上部快速磨损; ➢ 喷涂层厚度不均匀,长期冲刷造成的不规则脱落,形成了

循环流化床锅炉风帽损坏原因分析及治理措施

循环流化床锅炉风帽损坏原因分析及治理措施

循环流化床锅炉风帽损坏原因分析及治理措施摘要:风帽是循环流化床锅炉实现均匀配风,维持锅炉和炉内合理气固两相流的关键部件。

它是锅炉中高温、高磨损的易损件。

风帽的好坏直接影响锅炉的流态化工况和燃烧稳定性,是循环流化床锅炉安全运行的保证,随着锅炉运行时间的增加,其磨损及损坏问题日益突出,影响锅炉的安全性和稳定性。

对其原因进行分析研究,提出综合治理措施,也为风帽设计、制造、维护、运行提供参考。

关键词:循环流化床;风帽;磨损;措施一、设备概况我公司是2X350MW 超临界CFB锅炉。

布风板标高为10m,钟罩式风帽罩壳材质A297HK,锅炉风帽有两种型号,一种为10孔风帽,布风板四周布置;另一种为9孔风帽,布风板中心布置;两种型号单台炉共计2094个风帽,内管材质310S。

二、风帽损坏原因分析目前炉膛大量风帽存在磨损现象,造成布风板局部阻力变小,影响一次风布风均匀性,气流偏斜吹损其它风帽,进一步加重磨损,使床温偏差增大,局部高温区热力型氮氧化物生成量增加,而风帽磨损较轻区域阻力较大,一次风量较小,使局部床料流化不良;局部风帽损坏会加剧附近风帽损坏程度,导致风帽成片损坏,布风板床温床压不平衡,运行中低一次风量时易发生翻床现象,炉膛两侧床温、床压出现大幅度、周期性波动,为保证床料正常流化,被迫加大一次风量运行,进一步加剧了风帽磨损。

(一)、外置小孔磨损变大磨损1、风帽外罩在炉膛内恶劣环境长期运行,发生磨损损坏是必然,由于风帽外罩(要求外置小孔对冲安装以减少灰渣沉积及气流对相邻风帽的冲击,)安装不当造成风帽外置小孔磨损加快;2、风帽外罩小孔及管芯孔部分或全部堵塞,对冲风阻失去平衡,造成外置小孔磨损加大;3、大颗粒炉渣或煤矸石由于自重在一次风的吹动下不能充分流化,只能贴炉底串动,结果对钟罩式风帽的根部外套管造成磨损4、由于浇注料或其他金属部件等比重大的物质沉积在风帽层,对冲风阻失去平衡,风向改变等,造成外置小孔磨损加大。

循环流化床锅炉的磨损及防磨措施

循环流化床锅炉的磨损及防磨措施
利用传感器、图像处理等技术,实时 监测锅炉内部的磨损情况,获取磨损 部位、程度等信息,及时发现和预防 严重磨损。
预测性维护与管理
通过大数据分析和人工智能技术,对 锅炉磨损历史数据进行分析和挖掘, 预测磨损趋势和寿命,制定合理的维 护和更换计划。
数值模拟与实验研究
流场与磨损关系的数值模拟
利用数值模拟软件,研究流场特性、颗粒分布和冲击角等因素对磨损的影响,为优化锅 炉结构和改善流场提供理论支持。
装置等部件产生强烈的冲刷作用,导致磨损。
机械摩擦
03
炉内物料与金属表面之间的机械摩擦也是导致磨损的重要原因
之一。
磨损对循环流化床锅炉的影响
降低设备寿命
磨损会导致设备部件的尺寸和 形状发生变化,影响设备的正
常运行和使用寿命。
影响安全运行
磨损严重时可能导致设备损坏 ,引发安全事故。
能耗增加
磨损会导致设备效率降低,能 耗增加。
实验研究与验证
通过实验手段,模拟锅炉实际运行工况,对新型防磨技术和材料的性能进行验证和评估 ,为实际应用提供依据。
THANKS
谢谢您的观看
循环流化床锅炉的磨损及防 磨措施
汇报人:文小库 2024-01-06
目录
• 循环流化床锅炉的磨损概述 • 循环流化床锅炉的磨损部位及
机理 • 循环流化床锅炉防磨措施 • 循环流化床锅炉磨损监测与维
护 • 循环流化床锅炉防磨技术发展
趋势
01
循环流化床锅炉的磨损概述
磨损的定义与特性
磨损定义
磨损是物体在相对运动过程中,其表 面不断损耗的现象。在循环流化床锅 炉中,主要涉及到受热面、布风装置 、炉膛、水冷壁等部件的磨损。
分离器出口的磨损

循环流化床锅炉磨损原因及改进措施

循环流化床锅炉磨损原因及改进措施

循环流化床锅炉磨损原因及改良措施1金属件的磨损1. 1布风装置磨损1. 1. 1原因分析循环流化床锅炉布风装置的磨损主要有2 种情况: 第一种情况是风帽的磨损, 通常发生在循环物料回料口附近, 主要原因是由于较高颗粒浓度的循环物料以平行于布风板的较大速度冲刷风帽造成的。

另一种情况是风帽小孔的扩大, 这类磨损将改变布风特性, 同时造成固体物料漏至风室。

1. 1. 2改良措施a. 改变风帽结构来延长风帽寿命, 用钟罩式结构的风帽来代替蘑菇状风帽, 有效减少磨损, 延长使用寿命。

b. 在炉膛底部四周打1 圈台阶, 可使流化床锅炉中沿墙面下流的固体物料转而流向布风板上面的空间, 从而防止冲击炉底的布风板和周界的风帽。

1. 2水冷壁管的磨损1. 2. 1原因分析循环流化床锅炉水冷壁管的磨损主要发生在炉膛下部敷设的卫燃带和水冷壁管交界的区域。

造成磨损的原因有以下2 个方面: 一是在这个过渡区域内, 沿壁面下流的固体物料与炉内向上运动的固体物料运动方向相反, 因此在局部产生了旋涡流; 另一个原因是沿炉膛壁面下流的固体物料在这个交界区域发生流动方向的改变, 对水冷壁管产生了冲刷。

1. 2. 2改良措施a. 采用金属外表热喷涂技术防磨。

涂层的硬度高于基体的硬度, 且涂层在高温下会生成致密、坚硬和化学稳定性更好的氧化层, 提供更好的保护。

b. 通过改变该区域的流体动力特性来到达水冷壁管防磨的目的。

在水冷壁管过渡区域的一定位置加焊挡板或浇注料梁, 用以阻挡固体物料向下流动, 采用这种措施后水冷壁管的磨损大大减轻了。

c. 另一种较常用的方法是改变水冷壁的几何形状, 耐火材料结合简易弯管使卫燃带区域与上部水冷壁管保持平直, 这样固体物料沿壁面平直下流时,撞击区下移至耐火材料局部, 消除了边界处造成的旋涡效应, 从而保护传热管不受磨损。

d. 炉膛下部壁面垂直段与渐缩段交界处、炉顶及炉膛出口等处, 都是易发生磨损的部位, 因此在设计时应在结构上给以考虑或加设防磨措施。

循环流化床锅炉的常见问题及处理教程

循环流化床锅炉的常见问题及处理教程

烟气反窜的防止
02
锅炉点火前应关闭回料风,在送灰器和立管内充填细循环灰,形成料封;点火投煤稳燃后,待分离器下部积累一定量的循环灰,再缓慢开启回料风,注意立管内料柱不能流化;正常运行后回料风一般无须调整;在压火后热启动时,应先检查立管和送灰器内物料是否足以形成料封。
烟气反窜的原因
01
送灰器立管料柱太低,被回料风吹透,不足以形成料封; 回料风调节不当,使立管料柱流化;
CFB 锅炉运行的常见问题与处理
循环流化床锅炉
01
出力不足
单击此处添加正文
03
回料阀故障
单击此处添加正文
02
结焦问题
单击此处添加正文
04
磨损问题
单击此处添加正文
常见问题与处理
CONTENT
一、出力不足
1. 分离器效率低 分离器效率下降,循环物料量不足,导致悬浮段载热质数量(细灰量)及其传热量不足,炉膛上、下部温差过大,锅炉出力难以达不到额定值。 分离器效率明显下降的原因: ①分离器内壁严重磨损、塌落从而改变了其基本形状; ②分离器密封不严导致空气漏入,烟气反窜产生二次携带; ③流化风量与燃煤筛分特性不相适应,流化速度低,循环灰量少而细,分离效率下降。 2. 燃烧份额的分配不合理 密相区燃烧份额过大,温度过高,为避免结焦,往往需要减少给煤量或增大一次风量,导致锅炉出力下降。 3. 燃煤筛分特性变化 实际运行时,由于煤种的变化而影响燃料颗粒粒径分布,粒径过粗、过细、粗颗粒过多、细颗粒过多等,均会造成锅炉出力下降。
(二)床层结焦 1. 床层结焦的主要原因 (1) 操作不当导致床温超温而结焦。 (2) 运行中一次风量太小,低于最小流化风量。 物料不能很好流化而堆积,整个炉膛的温度场发生改变;同时,稀相区燃烧份额下降,锅炉出力降低,这时若盲目加大给煤量就将造成炉床超温而结焦。 (3) 煤种变化太大。 制煤系统通常是根据某一设计煤种来选取的,虽然有一定的煤种适应性,但如果煤种的变化范围过大,有不适合于所选定制煤系统的低挥发分煤种时,炉膛下部密相区会产生过多热量,运行人员若没有及时发现,时间一长就会结焦。解决的办法是将一部分煤磨细些,使之在稀相区燃烧。

循环流化床锅炉耐火耐磨材料损坏原因及防范措施

循环流化床锅炉耐火耐磨材料损坏原因及防范措施

循环流化床锅炉耐火耐磨材料损坏原因及防范措施【摘要】本文针对循环流化床锅炉耐磨耐火材料的损坏原因和防范措施进行了阐述,通过全面的技术分析,找出目前循环流化床锅炉耐磨耐火材料损坏的主要原因以及相关方面存在的问题,并提出相应解决建议,为循环流化床锅炉耐磨耐火材料的施工、选择和使用提供一定的科学依据。

【关键词】耐磨耐火材料损坏原因防范措施循环流化床锅炉内部耐磨耐火材料结构,在锅炉运行过程中起到非常关键的作用。

随着循环流化床锅炉的快速普及和大型化的发展需求,对循环流化床锅炉耐磨耐火材料结构使用的可靠性提出了更高的要求。

目前投运的循环流化床锅炉,因耐磨耐火材料损坏原因而造成锅炉的故障已经严重地影响到了锅炉的长周期经济运行。

因此充分认识循环流化床锅炉耐磨耐火材料损坏机理,提高循环流化床锅炉耐磨耐火材料的使用寿命,是目前设计单位、材料生产单位、施工单位及使用单位共同关心的问题,也是今后循环流化床锅炉大型化所要重点关注的课题。

1 耐磨耐火材料的使用部位循环流化床锅炉的磨损通常发生在固体物料浓度较高、流场复杂的湍流区、涡流区以及与烟气运动方向垂直的受热面等部位,因此通常在以下部位采用耐火耐磨材料:点火风道;风室;布风板表面;燃烧室下部锥段;炉内屏式受热面底部;炉膛烟气出口;分离器;回料装置等部位。

2 耐火耐磨材料损坏机理分析循环流化床锅炉大多采用热值低、含硫量较高的劣质煤种,灰分浓度大、流速高,温度变化频繁,造成循环热冲击,此外炉内有大量高速运动的高温固体物料,需要用大量的耐火材料进行保护锅炉受热面,防止受热面磨损泄漏,因此耐火防磨材料都处在锅炉运行最恶劣的环境中。

通常耐火材料的失效有以下三个方面的原因:耐火材料的剥落、耐火材料的冲刷磨损、耐火材料的化学侵蚀。

2.1 耐火耐磨材料的剥落耐火耐磨材料的剥落一般分为两种:热剥落(热震剥落)、结构剥落。

热剥落是指由于热冲击或机械应力引起的材料损失。

热冲击是指骨料与结合料由于膨胀系数不同在温度循环波动时产生内应力从而破坏耐火材料层,热冲击会导致耐火材料衬里的大裂缝和剥落,而温度快速变化造成的热冲击(如启停炉操作不当)可使耐火材料内的应力超过抗拉强度而剥落;结构剥落是指材料经过长期的使用,组成和内部晶相结构发生变化,即使在小的温差应力下就能使其表面的变质层剥落。

循环流化床锅炉的磨损及防磨措施

循环流化床锅炉的磨损及防磨措施

颗粒速度与浓度
颗粒速度和浓度越高,冲 击磨损越严重,二者呈正 相关关系。
颗粒硬度与形状
颗粒硬度和形状影响磨损 速率,硬度越高、形状越 尖锐,磨损越严重。
滑动摩擦磨损
摩擦系数
摩擦系数越大,滑动摩擦磨损越 严重,磨损速率与摩擦系数成正
比。
表面粗糙度
表面粗糙度越大,摩擦阻力越大, 磨损越严重。
载荷与滑动速度
超声波探伤
利用超声波在受热面中的反射和 传播特性,检测内部损伤情况。
风帽、风道等部件磨损情况
观察法
定期检查风帽、风道等部件的外观,观察是否有 磨损、变形等情况。
测量法
使用测量工具对风帽、风道等部件的尺寸进行测 量,判断是否存在磨损。
探伤法
采用超声波、磁粉等探伤方法,检测风帽、风道 等部件的内部损伤情况。
智能诊断
引入智能诊断技术,对 锅炉运行数据进行自动 分析,提前预警潜在故 障。
优化运行
根据智能诊断结果,调 整锅炉运行参数,优化 运行工况,降低磨损速 率。
06
效果评估与持续改进计划
实施效果综合评估
1 2
磨损降低率
通过对比实施防磨措施前后的锅炉磨损情况,计 算磨损降低率。
运行稳定性
评估锅炉在实施防磨措施后的运行稳定性,如是 否出现异常振动、温度波动等情况。
载荷和滑动速度越大,滑动摩擦磨 损越严重。
疲劳磨损与腐蚀磨损
循环应力
循环应力导致材料疲劳损 伤,进而引发疲劳磨损, 应力幅值和循环次数影响 疲劳磨损程度。
腐蚀介质
腐蚀介质与材料发生化学 反应,导致材料损失和性 能下降,从而引发腐蚀磨 损。
温度与湿度
温度和湿度影响腐蚀速率 ,进而影响腐蚀磨损程度 。

第十一章循环流化床锅炉的磨损结焦和膨胀剖析

第十一章循环流化床锅炉的磨损结焦和膨胀剖析

第十一章循环流化床锅炉的磨损、膨胀和结焦第一节循环流化床锅炉各部件的磨损由于机械作用,间或伴有化学或电的作用,物体工作表面材料在相对运动中不断损耗的现象称为磨损。

按磨损机理不同,磨损一般可分为粘着磨损、磨料磨损、腐蚀磨损、接触疲劳磨损、冲蚀磨损、微动磨损等。

流体或固体颗粒以一定的速度和角度对材料表面进行冲击所造成的磨损称为冲蚀(或冲击磨损)。

冲蚀有两种基本类型,一种叫冲刷磨损,另一种叫撞击磨损,这两种磨损的冲蚀表面的流失过程的微观形貌是不完全相同的。

冲刷摩擦是颗粒相对固体表面冲击角较小,甚至接近平行。

颗粒垂直与固体表面的分速使得它锲入被冲击物体,而颗粒与固体表面相切的分速使得它沿物体表面滑动,两个分速合成的效果即起一种刨削作用。

如果被冲击的物体经不起这种作用,即被切削掉一小块,如此经过大量、反复的作用,固体表面将产生摩擦。

撞击磨损是指颗粒相对于固体表面冲击角度较大,或接近于垂直时,以一定的运动速度撞击固体表面使其产生微小的塑性变形或显微裂纹,在长期、大量的颗粒反复撞击下。

逐渐使塑性变形层整片脱落而形成的磨损。

一般在循环流化床锅炉受热面和耐火材料的磨损种,床粒颗粒与受热面和耐火材料的冲击角度在0~900之间,因此循环流化床锅炉受热面和耐火材料的磨损是上述两种磨损基本类型的综合结果。

磨损与固体颗粒浓度、速度、颗粒的特性和流道的几何尺形状等密切相关。

在循环流化床锅炉中,受热面和耐火材料受到大量固体物料的不断冲刷,下表给出了各种锅炉典型的固体物料浓度和烟速的范围。

从表中的数据可以看出,循环流化床锅炉内的固体物料浓度为煤粉锅炉的几十倍到上百倍,因此受热面和耐火材料的防磨问题应特别重视。

通常情况下CFB锅炉再如下部位磨损比较严重,应设计防磨衬里(如图):178金属件和耐火材料的磨损现象。

一、循环流化床锅炉金属件的磨损(一)布风装置循环流化床锅炉布风装置的磨损主要有两种情况。

第一种情况是风帽的磨损,其中风帽磨损最严重的区域发生在循环物料回料口附近。

循环流化床锅炉磨损机理及防治技术

循环流化床锅炉磨损机理及防治技术

循环流化床锅炉磨损机理及防治技术【摘要】本文主要探讨了循环流化床锅炉磨损机理及防治技术。

首先介绍了循环流化床锅炉磨损的机理,包括颗粒运动、碰撞和磨损等过程。

然后介绍了针对循环流化床锅炉磨损问题的防治技术,包括增加材料硬度、改变材料结构、提高涂层质量等方法。

结合实际案例分析了这些技术的应用效果。

最后强调了循环流化床锅炉磨损机理及防治技术的重要性,指出只有深入了解机理并采取有效的防治措施,才能有效延长设备的使用寿命,提高工作效率,降低维护成本,保障设备的安全稳定运行。

通过本文的研究,可以更好地了解循环流化床锅炉磨损问题,并为实践中的磨损防治提供参考和指导。

【关键词】循环流化床锅炉、磨损、机理、防治技术、重要性1. 引言1.1 循环流化床锅炉磨损机理及防治技术循环流化床锅炉是一种常见的锅炉类型,具有高效、节能、环保等优点,广泛应用于工业生产中。

其在运行过程中常常会出现磨损问题,导致设备寿命缩短、能效降低等负面影响。

磨损机理及防治技术成为了该领域的研究重点。

循环流化床锅炉磨损机理主要包括气固流动对设备表面的冲蚀、高温气体对设备材料的氧化腐蚀、煤灰颗粒对设备表面的磨损等。

这些机理相互作用,加速了设备的磨损过程,减少了设备的使用寿命。

为了有效防治循环流化床锅炉的磨损问题,可以采取多种措施。

首先是对设备材料进行选用和涂层保护,提高其抗磨损和耐腐蚀能力。

其次是优化设备的结构设计,减少气体流动对设备表面的冲蚀。

加强设备的维护保养,及时清理煤灰和检修设备,也是有效防治磨损的重要措施。

循环流化床锅炉磨损机理及防治技术的研究至关重要,可以提高设备的使用寿命,降低能耗成本,保障工业生产的稳定运行。

希望通过不断的研究和实践,能够找到更有效的防治磨损的技术手段,为工业生产提供更好的保障。

2. 正文2.1 循环流化床锅炉磨损机理循环流化床锅炉磨损机理是指循环流化床锅炉在运行过程中因受到各种力学、热学、化学等因素的作用,导致锅炉内部各部件表面逐渐失去原有的形状和尺寸,在表面上形成磨损、划痕或齿轮损伤等现象。

75t-h循环流化床锅炉后部燃烧及预防措施

75t-h循环流化床锅炉后部燃烧及预防措施

75t-h循环流化床锅炉后部燃烧及预防措施近几年来,循环流化床锅炉被广泛应用在工业生产中。

该锅炉设备不仅具有较强的负荷调节性能,而且对煤种没有特殊要求,有利于节能降耗。

氮肥企业采用烟煤、造气炉渣、无烟煤沫的混合物充当流化床锅炉燃料,造气炉渣不仅二次利用,而且节省了大量燃料,既经济又环保。

但是在锅炉燃烧过程中,往往因设计、安装或操作不符合要求使锅炉出现后部燃烧的问题,锅炉床温及返料温度升高,致使锅炉出力不够,热效率差,严重者可能使返料器因温度过高而焦结,企业不得不停炉检修,并承担由此产生的经济损失。

后部燃烧具体表现是:锅炉燃烧时一次送风量过大,大量未燃烧的碳颗粒炉料被滚动的烟气带着经过分离器到达返料器,在返料器中遇到返料风而再次燃烧。

为确保锅炉正常燃烧,锅炉运行时必须严格控制给煤量和给风量,以降低锅炉负荷。

笔者仅就本单位2台75t/h杭锅产循环流化床锅炉在运行状态下出现的一些问题作简要。

1 安装及砌筑不规范从侧面看,锅炉应布设倾角5°的浅“V”型风帽。

施工阶段如不加注意,风帽就可能呈波浪形或呈水平布置。

浇筑场面的过程中,浇注料可能会遮挡风帽眼,导致冷态试验下风流向无规律且风量分布不均。

出现此类问题后,倘若不调整风量,冷态试验床料便不能全部浮起,作业时1号锅炉就是由于风帽眼被堵而出现高低无序排列,在冷态试验下,一次风挡板开度从55%直接上升到68%,经过简单处理后,一部分风帽的流化风量降低,点火后正常燃烧。

因为只是简单的处理,1号的风量仍然偏大,返料温度达1020℃,负荷最大为每小时68t,除尘灰可燃物含量为12%。

正平衡测算后得知,其热效率只能达到81%,与理想值相差4个百分点。

后停炉整修,全部改成5°倾角“V”字形风帽才使锅炉正常燃烧。

2 燃料粒度要求根据设计要求,采用直径小于13mm的颗粒燃料。

在锅炉运行阶段,因掺烧大量的湿造气炉渣及无烟煤沫,适当加大振动筛网眼以确保雨季正常给煤,致使炉煤中一半以上的大颗粒燃料沉淀在床层底部,为了不影响锅炉正常运行,一次送风量应该增加10~15%,而燃料中烟煤中很多小颗粒,密度小含碳量高,很容易没有燃尽就被烟气携带到分离器,密相区燃烧份额增大,床温从980℃上升到1000±5℃,含氧量从7%上升到10%,返料温度由980℃升至1010℃,锅炉负荷最高仅为70t/h。

循环流化床锅炉水冷壁偏磨成因及解决措施研究

循环流化床锅炉水冷壁偏磨成因及解决措施研究

循环流化床锅炉水冷壁偏磨成因及解决措施研究
循环流化床锅炉是目前国内外较为常见的一种燃烧设备,具有结构合理、热效率高、环保且操作简便等优点。

然而,在使用过程中,用户经常会发现水冷壁的偏磨现象,这会对锅炉的使用寿命和安全性产生较大的影响,因此需要进行深入的研究和解决。

1.流体力学因素:由于循环流化床锅炉的工作原理是利用气体和固体颗粒悬浮在一起形成流化床,这种流动状态会引起水冷壁表面颗粒物的撞击和磨损。

尤其是物料流量过大和增加循环流化床风速时,磨损会更加严重。

2.化学因素:循环流化床锅炉的燃烧过程中,燃料中的硫、氯等元素会与炉内的气体和水蒸气反应,生成腐蚀性物质,这些物质在水冷壁表面引起腐蚀并加剧其磨损。

3.材料问题:循环流化床锅炉水冷壁通常采用高合金材料制造,但如果材料质量不过关或是冶炼工艺有问题,也会影响水冷壁的使用寿命。

1.加强水冷壁的维护管理:定期清洗和维修水冷壁表面,防止固体颗粒在表面积累和过度磨损。

定期检查口钢门、水质、燃料等,以确保锅炉运行的正常。

2.选择适合的材料和制造工艺:选择高质量的合金材料制造水冷壁,避免材料质量问题和冶炼工艺不过关引起的问题。

3.优化液固流化床:液固流化床是产生颗粒物冲击的主要来源,通过优化流化床结构和风速等参数,可以减少颗粒物的冲击和磨损。

4.加强防腐措施:循环流化床锅炉中产生的腐蚀性物质会加剧水冷壁的氧化和腐蚀,因此需要加强锅炉的防腐措施。

总之,解决循环流化床锅炉水冷壁偏磨问题需要综合考虑多个方面的因素,并采取相应的措施。

只有这样,才能确保锅炉的长期稳定运行和安全性。

600MW锅炉外置床受热面防磨技术及应用

600MW锅炉外置床受热面防磨技术及应用

600MW锅炉外置床受热面防磨技术及应用锅炉外置床是CFB锅炉的重要组成机构,其性能优劣直接影响到锅炉的效率,外置床的位置是在高温灰的回路部分,通常具有几个仓室,其上面是分离器,外置床在锅炉运转过程中的主要作用是将传热系统与燃烧系统分离,使锅炉的温度调节特性显著提高,但是在锅炉使用过程中,锅炉外置床受热面常常会出现严重的磨损,这对锅炉的性能有着很大的负作用,本文将以600MW锅炉外置床受热面作为研究对象,对其存在的磨损类型与磨损原因进行分析,并提出相应的改进措施.。

【关键词】磨损原因;改进措施;锅炉外置床;磨损引言CFB锅炉属于循环流化床锅炉,与传统的锅炉有着较大不同,在结构上最大的差异就是CFB锅炉在整个系统中添加了锅炉外置床,因此运行方式也是不同于传统锅炉,CFB锅炉在炉膛的出口设有一个分离器,该分离器的主要作用就是将固体与气体进行分离,分离出的固体颗粒可以继续用来燃烧,而气体则是流入到烟道中.。

CFB锅炉的循环系统主要有三个主要部件,分别是分离器、返料阀和炉膛,反应物和燃料在锅炉中处于高温的状态,并在整个锅炉系统中循环流动,从而提高燃料的利用率,在整个循环过程中,锅炉外置床起着至关重要的作用,它可以是锅炉的受热面和再热器可以更加方便的布置,使得整个锅炉系统可以大型化发展,但是通过锅炉外置床的实际应用过程发现,外置床在使用过程中会发生一定的磨损,最為明显的两类磨损分别是耐火材料的磨损和受热面的磨损,其他部位的磨损比较小,本文将对600MW锅炉外置床受热面的磨损进行分析和研究,并提出改善磨损的措施.。

1外置床磨损类型锅炉外置床受热面的磨损通常有两种,分别是冲蚀磨损和微振磨损,本文对这两种磨损进行分析,从而得出其磨损机理并找出应对措施.。

1.1 冲蚀磨损在外置床内循环的颗粒会与受热面发生一定的撞击,由撞击产生的磨损称为冲蚀磨损,对于冲蚀磨损又可以细分为两种类型,分别是撞击磨损和冲刷磨损.。

所谓撞击磨损就是外置床内循环的颗粒与受热面长期以较大的角度进行撞击,随着撞击次数的增多,最初的磨损范围将会逐渐扩大,严重受热面表层还会出现脱落的现象;而冲刷磨损主要是由于摩擦形成的,外置床内循环的颗粒与受热面以一定的角度撞击时,会在相应的方向产生摩擦,由于颗粒表面并不是光滑的,存在一定的棱角,因此会对受热面造成一定的刮伤.。

循环流化床锅炉省煤器磨损原因分析及解决措施

循环流化床锅炉省煤器磨损原因分析及解决措施
第 6期
21 0Hale Waihona Puke 0年 1 1月 锅炉


NO 6 .
BOI LER MANUFACTURI NG
NO . 01 V2 0
文章 编 号 : N 3—14 ( 00 0 00 0 C2 2 9 2 1 )6— 0 7~ 4
循 环 流 化床 锅 炉 省 煤 器 磨 损原 因 分 析 及 解 决 措 施
Ab t a t W e a lz d t e r a o n a r so f a 2 0t s r c : nay e h e s n o b a in o 2 /h CFB bolr e o o z r.I ie c n mie t s man y wa i l c u e y t e e flo n a t :h ih rfo s e d o u a n e o o z r, g e ri l o — a s d b h s o lwig f c s t e h g e w p e ff e g s i c n mie hih rpatce c n l l c nr to n f a ,h o a r s t i e e tsz n fu a a s e tain i ue g s t e f w c o s wih df r n ie i e g sp s .Th n t e r lt d me s r s l l f l e h eae a u e we e ma e : e u e h ub ra sa d e l r e het bed a t ra d t e s a i go h c n — r d we r d c d t e t ea r y n na g d t u imee n h p c n ft ee o o mie , e p n d t e f e g sp s , u td a s r e n ta h n e fc a r he , d p e o lo z r d e e e h u a a s mo n e c e n u i tt e i lto o lc us r a o td c a f l a h c n e tl s h n 3 s o t n e st a 8% ,n r a e h n e t g d p h o y lne v n u e,e lc d t e n w - i c e s d t e i s ri e t fc co e tt b r pa e h e e n

循环流化床锅炉常见故障及预防措施

循环流化床锅炉常见故障及预防措施

循环流化床锅炉常见故障及预防措施作者:阚岩来源:《中国科技博览》2013年第33期[摘要]循环流化床锅炉是近年才发展起来的新型洁净煤燃烧设备。

本文主要对循环流化床锅炉运行申常见故障进行了分析,如磨损、结焦、旋风分离器分离效率下降、烟气反窜及给煤系统故障等,并从不同的角度提出了预防措施,以供参考。

[关键词]循环流化床锅炉;常见故障;预防措施中图分类号:TK229.66 文献标识码:A 文章编号:1009-914X(2013)33-0137-01循环流化床(CFB)锅炉是近几十年来发展起来的新型环保节能锅炉,其以煤种适应性广、高燃烧效率、可以燃用劣质燃料、锅炉负荷调节性好、灰渣易于综合利用等优点,在世界范围内得到了迅速发展。

但随着其被广泛应用,一些国产循环流化床在设计、安装和运行中也逐渐暴露出了某些问题。

如受热面易磨损、锅炉易结焦及物料循环系统不畅是运行中常见的故障。

因此,本文将主要分析循环流化床锅炉常见故障及预防措施,以提高循环流化床锅炉稳定运行水平。

1 磨损及其预防措施循环流化床锅炉中高速度、高浓度、高通量的流体或固体颗粒以一定的速度和角度对锅炉受热面和耐火材料的表面进行冲击,会造成锅炉金属部件磨损,加上炉内温度的循环流动,造成对炉内耐火构件的热冲击,而且耐火构件不同热膨胀系数的材料之间也形成机械应力,这些都加剧循环流化床锅炉磨损破坏。

(1)降低风速减小给煤粒度,确保流畅的均匀性;同时,在安装过程中要特别注意烟道的平滑组合,避免安装原因造成几何尺寸的突缩或突扩,形成烟气走廊。

(2)定期对锅炉进行检修,发现已磨损的部件和材料应及时更换;在水冷壁、落煤口、过热器等加装防护件。

(3)在安装时,应确保烟气进出口处、中心筒、导流设备的安装尺寸满足设计要求;在施工中,应严格控制旋风分离器简体组合尺寸和焊接变形;对向火面材料的施工,要保证严密度、严整度、垂直度以及内壁弧度和表面质量等,以减少受热面的磨损。

(4)运行期间,应尽量降低循环流化床的流速,以减少水冷壁及各部的磨损。

循环流化床锅炉防磨技术导则_概述及解释说明

循环流化床锅炉防磨技术导则_概述及解释说明

循环流化床锅炉防磨技术导则概述及解释说明1. 引言1.1 概述循环流化床锅炉是一种高效、环保的燃烧设备,广泛应用于石油化工、电力、冶金和建筑等行业。

然而,在循环流化床锅炉的运行过程中,由于颗粒物料之间的摩擦和碰撞,会导致设备零部件表面的磨损问题。

这不仅会降低设备的工作效率和稳定性,还会增加设备维护和更换成本。

因此,为了解决循环流化床锅炉的防磨问题,需要制定针对性的技术导则和方法,以降低设备零部件受损程度,并延长其使用寿命。

本文将详细介绍循环流化床锅炉防磨技术导则及方法,从流态控制技术、材料选择和表面改性技术以及维护与保养措施三个方面进行分析和说明。

1.2 文章结构本文共分为五个主要部分:引言、循环流化床锅炉基础知识、磨损机制分析、循环流化床锅炉防磨技术导则及方法介绍,以及结论与展望。

在循环流化床锅炉基础知识部分,将介绍该设备的定义、原理和应用领域。

接着,在磨损机制分析部分,我们将详细讨论循环流化床锅炉中的磨损问题,包括其概述、不同类型和特点,以及影响因素分析。

在循环流化床锅炉防磨技术导则及方法介绍部分,将着重介绍流态控制技术、材料选择和表面改性技术以及维护与保养措施三个方面的具体方法和实践经验。

最后,在结论与展望部分中进行主要观点总结,并展望未来发展方向,并对防磨技术导则的重要性进行深入分析。

1.3 目的本文旨在系统地介绍循环流化床锅炉防磨技术导则及方法,并对其背后的原理和应用进行解释说明。

通过对于现有文献和工程实践经验的深入整理和剖析,旨在为相关行业从业人员提供一个全面而系统的防磨技术指南,帮助他们更好地了解、处理和解决循环流化床锅炉的防磨问题。

同时,通过本文的撰写,也旨在促进对循环流化床锅炉领域相关问题的研究和讨论,并为未来的科研工作提供参考和启示。

2. 循环流化床锅炉基础知识2.1 定义和原理循环流化床锅炉是一种采用特殊设计的燃烧系统,通过在锅炉内部构建一个循环流化床来进行能源转换。

循环流化床锅炉采用高速气体(如空气或蒸汽)以一定速度通过催化剂或固体颗粒层,形成可调控的动态床层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环流化床锅炉的防磨措施
1 引言
循环流化床(CFB)锅炉是近几年在我国发展起来的一种新型燃烧设备,而循环流化床燃烧技术的发展以其高效率低污染的高性能更是突飞猛进。

在环保要求日趋严格的今天,CFB锅炉已成为当前最有前途的燃烧设备,但是CFB与其它锅炉相比,磨损比较严重,本文对此问题进行讨论。

2 磨损机理及防磨措施
磨损在工程上常被理解为由于机械原因产生的颗粒剥离脱落引起的材料表面所不希望的逐渐变化,如减薄,开裂。

锅炉常见的磨损即高速的灰粒子从不同的角度冲刷碰撞炉墙或受热面而引起的种种变化。

有资料介绍,磨损量与烟速的3.22次方成正比,并随灰粒子的浓度增大而增大。

单从理论上讲,降低磨损应从降低烟气流速,减小灰粒子浓度和减小粒子的颗粒直径入手。

下面从炉墙和受热面两个方面入手来介绍锅炉常见的磨损部位及处理办法。

2.1 炉墙
2.1.1 床体燃烧室部分因颗粒直径大,物料浓度高对炉壁造成的磨损最严重。

若风室和床体为非水冷壁结构,因炉墙太厚造成的热应力和物料的磨损常常导致墙体内表面产生脱落和出现裂纹。

通过把拐角处用圆角代替方角的方法很好地解决了这个问题,如图1所示。

为保证床体的温度,床体的上部常保持一定高度的卫燃带,在炉墙与水冷壁的结合处磨损较严重,如图2(a)所示。

原因是该处的截面形状发生了变化,导致烟气在此形成涡流区,加速了管子的磨损。

我们顺势利导,把水冷壁下部的炉墙做成和膜式壁一样的截面,使炉壁在竖直方向上没有截面变化。

如图2(b)所示,磨损大大减轻了。

图1
图2
2.1.2 旋风分离器出口的顶部由于烟气速度高且对炉顶是正面冲击,故此炉墙的脱落异常严重。

在烟气速度、颗粒的直径和硬度都不可变的情况下,只能考虑更耐磨的炉墙材料来解决。

如硅线石或棕刚玉等。

2.2 受热元件
针对锅炉受热面的磨损,我们从结构和工艺上进行一些探讨。

2.2.1 结构方面:采用一些常规的防磨结构:如在管子表面加装防磨套管或在易磨损部位加大壁厚;用Ω管或方形管等。

都在循环流化床中得到了大量的应用,并收到了良好的效果,而一些特别的部位却需要特
别地对待。

(A)炉膛中的屏式受热面
当屏如图3所示布置时,经观察发现弯头部位磨损相当严重,因屏式受热面横向间距很大,用常规保护结构是不可能的,后来采用了图4形式,在弯头处加装了耐磨合金板做成的保护罩,效果不错。

芬兰ALSTROM公司生产的410 t/h的CFB锅炉的屏结构如图5所示,炉膛内不出现弯头,每一片过热器屏都有独立的两个集箱。

这种结构单从防磨观点上看不失为一种好办法,显然它的缺点是使系统变得复杂,成本
提高。

图3
图4
图5
(B)尾部受热面
图3所示,转向室内设置导向板,避免了因离心作用导致的局部灰浓度过高而造成的对吊管和尾部受热面的磨损。

横置式过热器和经济器的弯头的保护有多种方式,图6的缝板结构和孔板结构无疑是比较理
想的结构形式。

图6
2.2.2 工艺方面:通过热处理使表面硬化,提高易磨部件的耐磨性;
通过喷涂工艺,提高管子表面的耐磨性能;
在管子和水冷壁上加装防磨陶瓷。

上述方法均不同程度地提高了受热面的寿命,但也存在着工艺水平不足的问题,使得涂层易从受热面
上剥离。

3 小结
综上所述,磨损问题应从主动性和被动性两方面来解决。

主动性是指从设计上降低烟气流速和降低粒子的浓度、避免容易引起磨损的结构。

被动性是指增加易磨损部位的耐磨性来延长锅炉的寿命,从而被动
地解决磨损。

关于循环流化床的磨损问题我们已经有了基本的认识,但要彻底地解决磨损,达到和煤粉炉同样的寿
命,还要作进一步的努力。

相关文档
最新文档