二层交换机、三层交换机和路由器的基本工作原理.
二层交换机三层交换机和路由器的基本工作原理和三者之间的主要区别
二层交换机三层交换机和路由器的基本工作原理和三者之间的主要区别一、二层交换机的工作原理:二层交换机主要工作在OSI模型的第二层,即数据链路层。
它通过学习和转发MAC地址来实现数据的转发和交换。
具体来说,二层交换机在接收到一个数据包时,会查看该数据包中的目标MAC地址,并根据这个地址决定将数据包转发到哪个端口。
当目标MAC地址不在交换机的MAC地址表中时,交换机会广播该数据包到所有其他端口,以便获取目标地址对应端口的MAC地址,并将其保存到MAC地址表中。
当下次再收到到达同一目标地址的数据包时,交换机就会直接将其转发到相应的端口,提高了数据传输的效率。
二、三层交换机的工作原理:三层交换机在二层交换机的基础上增加了路由功能,它能够根据IP 地址对数据进行转发。
三层交换机工作在OSI模型的第三层(网络层)。
在接收到一个数据包时,三层交换机会查看该数据包中的目标IP地址,并通过内置的路由表来判断将数据包转发到哪个端口。
如果目标地址不在路由表中,三层交换机会将数据包广播到所有其他端口,以便获取下一条跳转路径的信息。
当下次再收到到达同一目标地址的数据包时,三层交换机会直接根据路由表将其转发到相应的端口。
三、路由器的工作原理:路由器是连接不同网络的设备,主要工作在OSI模型的第三层(网络层)。
路由器通过查看数据包中的目标IP地址,并与自己的路由表进行匹配,来决定将数据包转发到哪个网络。
路由器还可以根据网络状况和路由协议进行动态路由的调整,以保证数据包能够通过最佳路径进行传输。
主要区别:1.工作层次差异:二层交换机主要工作在数据链路层,通过学习和转发MAC地址实现数据转发;三层交换机在二层交换机的基础上增加路由功能,能够根据IP地址对数据进行转发;而路由器工作在网络层,通过查看数据包中的目标IP地址并与路由表匹配决定转发路径。
三者在工作层次上存在差异。
2.转发决策依据不同:二层交换机和三层交换机的转发决策是根据MAC地址或者IP地址,在查询相应的表项后进行的,而路由器的转发决策则是根据路由表进行的。
二层交换及三层交换和路由器的区别
二层交换及三层交换和路由器的区别网络传输中,路由器和交换机是常见的两个设备,它们在网络中负责不同的工作。
其中,交换机是指二层交换机和三层交换机。
二层交换机和三层交换机与路由器在网络传输中的能力和使用领域都有所不同。
接下来本文将讨论二层交换机、三层交换机和路由器的区别。
一、二层交换机二层交换机是在二层(数据链路层)操作的交换机。
其主要功能是在不同端口之间交换以太网帧,并将数据包转发到目标地址。
它的工作原理是将它所接收到的数据帧对象MAC地址表进行匹配,然后将数据帧传送到目标地址。
由于二层交换机仅在局域网内进行交换操作,它传输速度快,可以快速识别网络中的设备,并将数据传输到其中的目标设备。
二、三层交换机三层交换机是在三层(网络层)操作的交换机。
它已经超出了二层交换机的操作范畴,它不仅可以查找MAC地址表,而且可以查找IP地址表,并对网络流量进行处理和控制。
它是一种智能型交换机,不仅能够快速识别网络中的设备,并将数据传输到其中的目标设备中,还具有路由分组功能,能够在不同的VLAN之间进行转发。
三、路由器路由器也是在三层(网络层)操作的设备,它是一个具有智能型的网络设备,通过路由协议将网络流量转发到目的地。
路由器扮演着不同网络(LAN、WAN等)之间的中转桥梁。
路由器使用路由表来确定网络流量的最佳传输路径,可通过不同的网络之间进行数据的路由选择。
由于路由器是一种智能型设备,可以在复杂的网络环境中快速识别并处理网络流量,因此可扩展性强。
下面是二层交换机、三层交换机和路由器的一些关键区别:1、作用范围不同二层交换机主要用于局域网交换的设备之间的通讯,数据包不需要通过路由,直接在交换机内部完成数据交换。
三层交换机是在二层交换机的基础之上加入路由功能,可以根据IP地址来进行分组转发,不仅可以完成交换机的传输功能,还可以实现部分路由器的功能。
路由器主要用于不同的网络之间通讯的中转,通过路由协议来确定网络流量的最佳传输路径,因此可以实现复杂的网络架构。
二层隔离三层互通原理
二层隔离三层互通原理在传统的网络架构中,数据链路层主要负责将数据从一个物理介质传输到另一个物理介质,而网络层则负责在不同物理网络之间进行寻址和路由。
由于数据链路层和网络层的功能不同,因此在网络中通常将它们分离处理。
二层隔离的主要目的是将网络分割成多个独立的虚拟网络,以提高网络的可管理性和安全性。
在二层隔离中,每个虚拟网络有自己的层二交换机(也称为虚拟局域网),并且这些虚拟网络是相互隔离的,不会相互干扰。
通过配置适当的VLAN(虚拟局域网)标识符,可以将不同的虚拟网络绑定到不同的交换机接口上,从而实现二层隔离。
然而,在现实世界中,不同的虚拟网络之间需要相互通信,而不同的虚拟网络是通过不同的物理网络连接到交换机的。
这就需要在二层隔离的基础上实现三层互通。
三层互通的实现可以通过三层交换机或路由器来完成。
三层交换机通常有一个或多个三层接口,可以同时处理数据链路层和网络层的功能。
它可以根据源IP地址和目标IP地址来识别数据报文,并根据配置的路由表将数据报文转发到相应的接口。
这样,不同虚拟网络的数据就可以在三层交换机上进行路由,并跨越不同物理网络进行互通。
另一种实现三层互通的方法是使用路由器。
路由器是网络层设备,负责在不同网络之间进行数据路由。
当传入的数据报文到达路由器时,路由器会查找路由表,并根据路由表的信息将数据转发到下一跳。
通过在路由器上配置适当的静态路由或动态路由协议,可以实现不同虚拟网络之间的路由,从而实现三层互通。
总结起来,二层隔离三层互通的原理是通过将网络分成两个层次进行隔离,使用二层交换机或者三层交换机/路由器,在二层实现隔离和虚拟网络的划分,在三层实现不同虚拟网络之间的路由,从而实现互通。
这种架构可以提高网络的可管理性和安全性,并且允许不同的虚拟网络之间进行通信。
二层交换机三层交换机和路由器的基本工作原理
二层交换机三层交换机和路由器的基本工作原理二层交换机(Layer 2 Switch)是一种工作在OSI(开放系统互连)参考模型中的第二层的网络设备。
其基本原理是在局域网内根据MAC地址来转发数据包。
当二层交换机收到一个数据包时,会检查其目的MAC地址,然后查询自己的MAC地址表来确定数据包应该被转发到哪个端口。
当目的MAC地址不在MAC地址表内时,交换机会广播该数据包到所有端口,学习到新的MAC地址,并记录在MAC地址表中。
1.学习:当交换机第一次接收到一个数据包时,会记录该数据包的源MAC地址,并把该地址与接收该数据包的端口关联起来,形成一张MAC地址表。
2.转发:当交换机接收到一个数据包时,会检查该数据包的目的MAC地址,并查询MAC地址表来确定应该将数据包转发到哪个端口。
3.过滤:交换机只会将数据包转发到与目的MAC地址对应的端口,从而避免了广播和冲突。
三层交换机(Layer 3 Switch)是在二层交换机的基础上增加了路由功能,可以通过查找IP地址来决定数据包的转发路径。
三层交换机可以通过虚拟局域网(VLAN)划分不同的网络,增加网络的灵活性。
三层交换机与二层交换机的不同之处在于,三层交换机除了根据MAC地址转发数据包外,还可以根据IP地址进行路由。
当三层交换机收到一个数据包时,会查询自己的路由表,根据目的IP地址来决定数据包应该被转发到哪个接口。
如果目的IP地址在同一个子网内,交换机就会使用MAC地址转发数据包,如果目的IP地址在不同子网内,交换机就会通过路由表找到最佳路径进行转发。
路由器(Router)是一种工作在OSI参考模型中的第三层的网络设备。
其主要作用是在不同的网络之间进行数据包的转发。
路由器通过查找目的IP地址来决定数据包应该被传送到哪个网络接口。
与交换机不同的是,路由器可以连接不同的网络,而交换机只能工作在同一个局域网内。
路由器的工作原理可以简单概括为以下几个步骤:1.接收:当路由器接收到一个数据包时,会检查该数据包的目的IP地址,并查询自己的路由表。
二层交换机,三层交换机,路由器的工作原理
二层交换机,三层交换机,路由器的工作原理在计算机网络中,二层交换机,三层交换机和路由器都是常用的网络设备。
它们在网络中扮演着重要的角色。
因此,了解它们的工作原理是非常有必要的。
1. 二层交换机的工作原理二层交换机是一种基于MAC地址的交换设备,工作在OSI模型的数据链路层。
它的主要作用是在局域网中转发数据包。
其工作原理如下:首先,当一个数据包到达二层交换机时,二层交换机会检查数据包中的MAC地址和它已知的MAC地址表中的条目进行匹配。
如果交换机没有找到匹配的目标MAC地址,它将对数据包进行广播。
这样,所有连接到交换机的设备都会收到这个数据包。
然后,当交换机找到匹配的MAC地址时,它将把数据包转发到该MAC地址所对应的端口。
如果交换机仍然无法找到MAC地址,则它将继续进行广播,直到目标设备响应为止。
这样,二层交换机就可以实现在局域网中的设备之间进行快速的数据交换。
2. 三层交换机的工作原理三层交换机是一种基于IP地址的交换设备,工作在OSI模型的网络层,除了具备二层交换机的基本功能外,还能实现路由功能。
其工作原理如下:首先,三层交换机与二层交换机一样,会检查数据包中的目标MAC地址。
但是,在检查完MAC地址之后,三层交换机还会检查数据包的目标IP地址。
如果交换机已经学习到了该IP地址对应的MAC地址,则会把数据包直接转发到所对应的端口。
其次,如果交换机还没有学习到这个IP地址,它将把数据包发送到它的默认网关。
默认网关是三层交换机的一个特殊端口,它连接到Internet或其他网络。
默认网关将负责将数据包转发到目标设备。
最后,如果三层交换机本身就是数据包要到达的目标设备,它将拦截数据包并将其传递给应用程序。
这样,三层交换机就可以实现快速的路由和转发功能。
3. 路由器的工作原理路由器是一种连接不同网络的设备,它能在不同的网络之间传递数据。
它是工作在OSI模型的网络层。
其工作原理如下:首先,当一个数据包到达路由器时,路由器将检查数据包中的目标IP地址,并根据其路由表来决定将它转发到哪个网络中。
交换机和路由器实现原理
交换机和路由器实现原理
交换机和路由器是网络中常见的两种设备,它们在网络通信中起着重要的作用。
下面将介绍它们的实现原理。
交换机(Switch)的实现原理是基于二层数据链路层的交换技术。
当交换机接收到数据帧时,它会检查数据帧中的目的
MAC地址,然后根据自己的转发表,将数据帧转发到相应的
输出端口。
交换机通过学习源MAC地址和端口的对应关系,
建立转发表。
在后续的数据通信中,交换机会根据已经学习到的转发表,快速转发数据帧,实现端口间的直接通信。
由于交换机在本地网络内实现数据的直接转发,因此具有高效、低延迟的特点。
路由器(Router)的实现原理是基于三层网络层的路由技术。
路由器以IP地址为基础进行路由决策,使用路由表来确定数
据包应该被发送到哪个端口。
当路由器接收到数据包时,它会检查数据包的目的IP地址,并与自己的路由表进行匹配。
路
由表中存储了网络的连接信息,包括网络地址和相应的出口端口。
根据匹配结果,路由器将数据包转发到适当的出口端口,然后通过该端口发送到下一个目标网络。
路由器的作用是将数据包从源网络转发到目标网络,实现网络间的通信。
总结来说,交换机和路由器在实现原理上的差异主要在于数据的转发层次和方式。
交换机在数据链路层实现数据的直接转发,路由器在网络层实现数据的分组转发。
两者在网络中扮演不同的角色,协同工作,使得数据能够快速、安全地在不同网络间传输。
二层隔离三层互通原理
二层隔离三层互通原理详解1. 前言在计算机网络中,二层隔离三层互通是一种网络设计模式,旨在实现不同子网之间的互通,同时保持二层网络的隔离性。
本文将详细解释与二层隔离三层互通原理相关的基本原理,并提供示意图和实例来帮助读者更好地理解这一概念。
2. 二层网络和三层网络在开始解释二层隔离三层互通原理之前,我们先来了解一下什么是二层网络和三层网络。
2.1 二层网络二层网络是指基于数据链路层(即第二层)进行通信的网络。
它使用MAC地址来识别和定位设备,并通过交换机进行数据的转发。
在一个局域网中,所有设备共享同一个广播域,因此可以直接通过MAC地址进行通信。
2.2 三层网络三层网络是指基于网络层(即第三层)进行通信的网络。
它使用IP地址来识别和定位设备,并通过路由器进行数据的转发。
不同子网之间需要通过路由器进行通信。
3. 隔离与互通的需求在实际网络设计中,有时需要将不同子网进行隔离,以提高安全性和性能。
但同时又需要这些子网之间能够互相通信,以满足业务需求。
这就是二层隔离三层互通的基本需求。
4. 二层隔离的原理为了实现二层网络的隔离,可以使用虚拟局域网(VLAN)技术。
VLAN可以将一个物理局域网划分为多个逻辑上的虚拟局域网,不同的VLAN之间是相互隔离的。
每个VLAN有自己独立的广播域,设备只能在同一个VLAN内进行广播和通信。
4.1 VLAN标记在一个交换机上,可以通过配置端口所属的VLAN来实现隔离。
当数据包从一个端口进入交换机时,交换机会根据端口所属的VLAN对数据包进行标记。
这个标记被称为VLAN标记(或称为VLAN ID),它在数据包中加入了额外的信息,用于指示该数据包所属的VLAN。
4.2 VLAN之间的通信由于不同VLAN之间是相互隔离的,在默认情况下它们无法直接通信。
为了实现不同VLAN之间的通信,需要通过路由器来进行数据的转发。
路由器可以连接到不同的VLAN,并提供跨VLAN的数据转发功能。
二层交换,三层交换,路由器的功能
三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。
对于数据包转发等规律性的过程由硬件高速实现,而象路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。
1.主要功能不同虽然三层交换机与路由器都具有路由功能,但我们不能因此而把它们等同起来,正如现在许多网络设备同时具备多种传统网络设备功能一样,就如现在有许多宽带路由器不仅具有路由功能,还提供了交换机端口、硬件防火墙功能,但不能把它与交换机或者防火墙等同起来一样。
因为这些路由器的主要功能还是路由功能,其它功能只不过是其附加功能,其目的是使设备适用面更广、使其更加实用。
这里的三层交换机也一样,它仍是交换机产品,只不过它是具备了一些基本的路由功能的交换机,它的主要功能仍是数据交换。
也就是说它同时具备了数据交换和路由由发两种功能,但其主要功能还是数据交换;而路由器仅具有路由转发这一种主要功能。
2.主要适用的环境不一样三层交换机的路由功能通常比较简单,因为它所面对的主要是简单的局域网连接。
正因如此,三层交换机的路由功能通常比较简单,路由路径远没有路由器那么复杂。
它用在局域网中的主要用途还是提供快速数据交换功能,满足局域网数据交换频繁的应用特点。
而路由器则不同,它的设计初哀就是为了满足不同类型的网络连接,虽然也适用于局域网之间的连接,但它的路由功能更多的体现在不同类型网络之间的互联上,如局域网与广域网之间的连接、不同协议的网络之间的连接等,所以路由器主要是用于不同类型的网络之间。
它最主要的功能就是路由转发,解决好各种复杂路由路径网络的连接就是它的最终目的,所以路由器的路由功能通常非常强大,不仅适用于同种协议的局域网间,更适用于不同协议的局域网与广域网间。
它的优势在于选择最佳路由、负荷分担、链路备份及和其他网络进行路由信息的交换等等路由器所具有功能。
二层交换机和三层交换机转发原理
二层交换机和三层交换机转发原理
二层交换机和三层交换机都是网络设备,用于在局域网或广域网中进行数据包的转发。
不同之处在于它们的转发原理。
二层交换机转发原理:二层交换机是根据设备的 MAC 地址进行转发的。
当一个数据包到达二层交换机时,它会查看数据包中的目的MAC 地址,并将其与自己维护的 MAC 地址表中的地址进行匹配。
如果找到匹配项,二层交换机会直接将数据包发送到相应的端口。
如果没有找到匹配项,二层交换机会将数据包广播到所有端口,以便找到目标设备的 MAC 地址。
二层交换机的转发速度非常快,适合用于高速局域网中。
三层交换机转发原理:三层交换机是根据设备的 IP 地址进行转发的。
当一个数据包到达三层交换机时,它会查看数据包中的目的 IP 地址,并将其与自己维护的路由表中的地址进行匹配。
如果找到匹配项,三层交换机会将数据包发送到相应的端口。
如果没有找到匹配项,三层交换机会将数据包发送到缺省路由器,缺省路由器会继续将数据包发送到下一跳路由器,直到找到目标设备的 IP 地址。
三层交换机的转发速度较慢,但可以支持更大的网络环境和更复杂的网络拓扑。
总之,二层交换机和三层交换机都是非常重要的网络设备,它们的转发原理不同,应根据具体情况选择适合的设备。
- 1 -。
交换机路由器工作原理
交换机路由器工作原理交换机和路由器是计算机网络中重要的设备,它们在网络通信中起着至关重要的作用。
本文将介绍交换机和路由器的工作原理,以帮助大家更好地理解它们的功能与作用。
一、交换机的工作原理交换机是用于在局域网内传输数据的设备,其工作原理主要包括学习和转发两个过程。
1.1 学习过程交换机通过学习目的MAC地址来建立自己的转发表,以便在数据传输过程中快速进行转发操作。
当交换机接收到一帧数据时,会查看该数据包的源MAC地址,并将其与接口绑定,同时将该信息添加到转发表中。
这样,在之后接收到相同目的MAC地址的数据时,交换机可以根据转发表直接将数据转发至相应的接口,提高了数据传输效率。
1.2 转发过程当交换机接收到一帧数据时,会首先查找目的MAC地址在转发表中的对应记录。
如果找到了相应记录,则交换机会将数据仅转发到与该目的MAC地址绑定的接口上;如果没有找到相应记录,则交换机会将数据广播到所有的接口上,以便寻找目的MAC地址所在的设备。
通过转发表的建立和转发过程,交换机可以实现数据的高效分发,提供较低的延迟和较高的传输速率。
二、路由器的工作原理路由器是用于在不同网络之间传输数据的设备,其工作原理主要包括转发和路由选择两个过程。
2.1 转发过程当路由器接收到一份数据时,首先会查找该数据包的目的IP地址。
路由器通过查找自己的路由表,找到最佳的路径来进行转发。
路由表中记录了网络之间的连接关系和交换数据所需的信息,路由器利用这些信息将数据包转发到下一个路由器或者目标网络。
2.2 路由选择过程路由器的路由选择是指在多个可选路径中选择最优路径进行数据转发。
路由器根据各种路由选择算法,包括最短路径优先、跳数最少等,计算出最佳路径。
其中,路由选择算法是基于路由协议来实现的,常见的路由协议有RIP、OSPF、BGP等。
另外,路由器还具备NAT(Network Address Translation)功能,即网络地址转换。
三层交换机功能介绍及工作原理
三层交换机功能介绍及工作原理三层交换机是在数据链路层和网络层之间工作的网络设备。
它具备数据链路层交换机和路由器的功能,能够实现局域网内部和不同网络之间的数据转发和路由选择,提供高效且智能的数据转发功能。
下面将详细介绍三层交换机的功能和工作原理。
一、三层交换机的功能介绍:1.数据链路层交换功能:三层交换机具备数据链路层交换机的功能,可以根据MAC地址进行数据的转发和过滤。
当接收到一个数据帧时,三层交换机会查找目标MAC地址,根据MAC地址表更新转发表,并将数据帧转发至目标端口。
这样可以实现局域网内部的高速数据传输。
2.路由转发功能:三层交换机还具备路由器的功能,可以根据网络层的IP地址进行数据包的转发和路由选择。
当接收到一个数据包时,三层交换机会查找目标IP地址,并根据路由表选择最优路径进行数据包的转发。
这样可以实现不同网络之间的数据传输。
3.虚拟局域网(VLAN)支持:三层交换机支持将一个物理交换机划分为多个逻辑分区,每个分区中的设备可以互相通信,但与其他分区中的设备隔离。
这样可以提高网络的安全性和性能。
4.负载均衡功能:三层交换机可以根据流量的负载情况,自动选择最优的路径进行数据包的转发。
这样可以实现网络负载均衡,提高系统的性能和可靠性。
5.安全性和访问控制:三层交换机支持访问控制列表(ACL)功能,可以根据源IP地址、目标IP地址、端口号等进行数据包的过滤和访问控制。
这样可以提高网络的安全性,防止未授权的访问和攻击。
二、三层交换机的工作原理:1.数据链路层交换机功能:当接收到一个数据帧时,三层交换机会查找目标MAC地址。
如果目标MAC地址在转发表中已存在,三层交换机会直接将数据帧转发至相应端口;如果目标MAC地址不在转发表中,三层交换机会广播数据帧至所有端口,并记录下发端口。
2.路由转发功能:当接收到一个数据包时,三层交换机会查找目标IP地址。
如果目标IP地址在路由表中已存在,三层交换机会根据最长前缀匹配原则选择最优路径,并将数据包转发至相应路由;如果目标IP地址不在路由表中,三层交换机会将数据包丢弃或者发送至默认路由。
2层 3层交换机与路由器的原理与区别
2层 3层交换机路由器之间的区别二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中. 具体如下:(1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上;(2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口;(3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上.三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。
在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率.路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。
因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。
当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。
路由器在工作时能够按照某种路由通信协议查找设备中的路由表。
如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。
由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。
主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。
具体区别如下:二层交换机和三层交换机的区别:三层交换机使用了三层交换技术简单地说,三层交换技术就是:二层交换技术+三层转发技术。
交换机、路由器的工作原理
交换机、路由器的工作原理标签:网络交换机路由器工作原理1.二层交换技术二层交换机是数据链路层的设备,它能够读取数据包中的MAC地址信息并根据MAC 地址来进行交换。
交换机内部有一个地址表,这个地址表标明了MAC地址和交换机端口的对应关系。
当交换机从某个端口收到一个数据包,它首先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上的,它再去读取包头中的目的MAC地址,并在地址表中查找相应的端口,如果表中有与这目的MAC地址对应的端口,则把数据包直接复制到这端口上,如果在表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习目的MAC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。
二层交换机就是这样建立和维护它自己的地址表。
由于二层交换机一般具有很宽的交换总线带宽,所以可以同时为很多端口进行数据交换。
如果二层交换机有N个端口,每个端口的带宽是M,而它的交换机总线带宽超过N×M,那么这交换机就可以实现线速交换。
二层交换机对广播包是不做限制的,把广播包复制到所有端口上。
二层交换机一般都含有专门用于处理数据包转发的ASIC(Application specific Integrated Circuit)芯片,因此转发速度可以做到非常快。
2.路由技术路由器是在OSI七层网络模型中的第三层——网络层操作的。
路由器内部有一个路由表,这表标明了如果要去某个地方,下一步应该往哪走。
路由器从某个端口收到一个数据包,它首先把链路层的包头去掉(拆包),读取目的IP地址,然后查找路由表,若能确定下一步往哪送,则再加上链路层的包头(打包),把该数据包转发出去;如果不能确定下一步的地址,则向源地址返回一个信息,并把这个数据包丢掉。
路由技术和二层交换看起来有点相似,其实路由和交换之间的主要区别就是交换发生在OSI参考模型的第二层(数据链路层),而路由发生在第三层。
路由器与交换机的工作原理
计算机网络往往由许多种不同类型的网络互连连接而成。
从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
AD:计算机网络往往由许多种不同类型的网络互连连接而成。
如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。
因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。
根据中继系统所在的层次,可以有以下五种中继系统:1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。
2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。
3.网络层(第三层,层L3)中继系统,即路由器(router)。
4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。
5.在网络层以上的中继系统,即网关(gateway).当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。
高层网关由于比较复杂,目前使用得较少。
因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。
本文主要阐述交换机和路由器及其区别。
2 交换机和路由器“交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。
其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。
所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。
因此,只要是和符合该定义的所有设备都可被称为交换设备。
由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。
二层隔离三层互通原理
二层隔离三层互通原理二层隔离三层互通是指在计算机网络中,通过二层隔离来实现不同的网段或子网之间的隔离,然后通过三层互通来实现这些隔离的网段之间的通信。
在这个过程中,二层隔离和三层互通的原理分别是通过二层设备(例如交换机)和三层设备(例如路由器)来实现的。
下面将详细介绍二层隔离和三层互通的原理。
二层隔离是指通过维护不同的虚拟局域网(VLAN),将不同的网段或子网分割成不同的虚拟网段。
每个虚拟网段都有自己的VLANID,用于标识该网段。
二层交换机根据帧头中的VLANID将不同的帧进行分类,然后将其转发到正确的目标网段上。
通过二层隔离,不同的网段之间可以实现互相隔离,彼此之间无法直接通信。
其中,二层交换机的原理是基于MAC地址的转发。
当一个帧到达二层交换机时,交换机会读取帧头中的源MAC地址,然后将这个地址和交换机的MAC地址表进行匹配。
如果交换机的MAC地址表中没有记录该源MAC地址,则交换机通过广播方式向所有的端口发送该帧;如果MAC地址表中已经有了该记录,则交换机会将该帧直接转发到相应端口,不需要再向其他端口广播。
三层互通是指在二层隔离的基础上,通过三层设备(例如路由器)实现不同的网段之间的互相通信。
路由器根据不同网段的IP地址进行转发。
当报文到达路由器时,路由器会读取报文头中的目标IP地址,然后查找路由表来确定下一跳的地址。
路由表中存储了与路由器直接相连的网段以及与路由器间接相连的网段的IP地址和对应的出口接口。
路由表中的每一项都告诉路由器如何将报文转发到目标网段上。
在进行报文的转发时,路由器会将原始报文中的源IP地址和目标IP地址进行替换。
这是因为在互联网中,不同网段之间通信时需要使用路由协议进行寻址和转发,而路由协议是基于IP地址的。
因此,路由器需要将报文的源IP地址替换成路由器上配置的出口接口的IP地址,将报文的目标IP地址替换成目标网段的IP地址,然后再进行转发。
通过二层隔离和三层互通,不同的网段之间可以实现互相隔离和通信。
交换机与路由器都有路由功能
交换机与路由器都有路由功能交换机和路由器都是计算机网络中常用的设备,它们都具有路由功能,但它们在网络中的位置和工作原理略有不同。
1.交换机:交换机是在局域网内部进行数据包转发的设备。
它通过学习和存储目的MAC地址,将数据包从一个端口转发到另一个端口,以实现不同设备之间的通信。
交换机使用的是二层路由,即根据MAC地址来进行路由转发。
交换机通过自学习机制将MAC地址和对应的端口绑定,从而可以快速转发数据包,提高网络性能。
交换机的主要特点和工作原理包括:-存储转发:交换机接收到一个完整的数据包后,会先将其存储在缓冲区中,然后再根据目的MAC地址进行转发。
这种方式可以确保数据包的完整性和正确性。
-硬件实现:交换机的转发机制是通过硬件实现的,因此速度较快。
-单播转发:交换机只将数据包转发给目标设备,而不会进行广播或多播。
-无需IP地址:交换机可以直接根据MAC地址进行转发,因此无需知道设备的IP地址。
-局域网内部通信:交换机主要用于局域网内部的数据传输,不涉及不同网络之间的通信。
2.路由器:路由器是在不同网络之间进行数据包转发的设备。
它根据IP地址对数据包进行转发,使用的是三层路由,即根据IP地址来进行路由转发。
路由器通过学习路由表中的路由信息,在不同网络之间选择最佳路径进行数据转发。
路由器的主要特点和工作原理包括:-分组转发:路由器将接收到的数据包拆分为多个分组,然后根据目的IP地址选择适当的路径进行转发。
-协议转发:路由器支持不同的网络协议,可以在不同类型的网络之间进行转换和相互通信。
-路由表:路由器会根据学习到的路由信息构建路由表,并根据路由表决定数据包的转发路径。
-负载均衡:路由器可以根据网络负载情况进行负载均衡,以确保数据的平衡转发和网络的高效利用。
-不同网络之间通信:路由器主要用于不同网络之间的通信,可以连接不同的局域网、广域网和因特网等。
总结来说,交换机和路由器都具有路由功能,但交换机主要在局域网内部进行数据包转发,使用的是二层路由;而路由器主要在不同网络之间进行数据包转发,使用的是三层路由。
二层交换机和三层交换机工作原理
二层交换机和三层交换机工作原理交换机是局域网络中最为常见的设备,用于实现多台计算机之间的数据交换。
它可以通过MAC地址将数据从一个端口转发到另一个端口,提高网络的传输效率和可靠性。
在交换机中,二层交换机和三层交换机是两种常见的类型,本文将详细介绍它们的工作原理。
一、二层交换机二层交换机是指工作在OSI模型的数据链路层,以MAC地址为基础进行数据包转发的网络设备。
当一台计算机需要发送数据包到另一台计算机时,数据包会首先通过交换机连接的端口到达交换机。
交换机会检查数据包的目标MAC地址,并从自己的MAC地址表中查找该地址所在的端口。
如果查找到,则直接将数据包转发到该端口;如果没有查找到,则会广播数据包到所有端口(除来源端口外),以寻找目标设备,并同时将该设备的MAC地址和端口信息更新到自己的MAC地址表中。
二层交换机的工作原理简单,但也存在一些缺点。
当网络中设备数量较少时,数据包广播的次数较少,网络带宽利用率高;但当网络中设备数量增多时,广播次数会增加,导致网络拥塞和设备性能下降。
此外,二层交换机只能进行局域网内部的转发,无法实现跨不同网络的通信。
二、三层交换机三层交换机是指工作在OSI模型的网络层,以IP地址为基础进行数据包转发的网络设备。
它不仅可以实现局域网内部的转发,还可以实现不同网络之间的转发,提高网络的可扩展性。
当一台计算机需要发送数据包到另一台计算机时,数据包会首先通过交换机连接的端口到达交换机。
交换机会检查数据包的目标IP地址,并通过路由表查找到下一跳IP地址。
如果下一跳IP地址与交换机已知的直接相连的网络相同,则直接转发数据包;否则,将数据包转发到相应的路由器进行下一跳转发。
三层交换机的工作原理虽然比二层交换机复杂,但也具有更强的功能和更高的性能。
它可以充分利用网络带宽,实现多个子网之间的无缝连接,并具有较好的防御网络攻击的能力。
总结:二层交换机与三层交换机是局域网中常见的两种网络设备,二者的工作原理是不同的。
交换机与路由器的工作原理
交换机与路由器的工作原理
交换机和路由器是计算机网络中常用的设备,它们都有不同的工作原理和功能。
交换机的工作原理:
1. 交换机工作在OSI模型的第二层——数据链路层。
它通过学习MAC地址表来转发数据帧。
2. 当一个数据帧到达交换机时,交换机会查看数据帧中的源MAC地址,并将其与MAC地址表中已经学习到的地址进行比对。
3. 如果MAC地址表中存在目标MAC地址,交换机会根据目标地址找到对应的接口,并将数据帧转发到该接口。
4. 如果MAC地址表中不存在目标MAC地址,交换机会将数据帧广播到所有接口,以寻找目标设备。
同时,交换机会更新MAC地址表。
5. 交换机通过过滤和转发的方式,将数据帧从一个接口转发到另一个接口,以实现设备之间的通信。
路由器的工作原理:
1. 路由器工作在OSI模型的第三层——网络层。
它通过查找路由表来转发IP数据包。
2. 路由器根据目标IP地址来查找路由表,以确定数据包的下一个跳。
3. 路由表中存储了不同网络之间的连接信息,可以确定数据包应该通过哪个接口发送。
4. 路由器使用路由算法,如最短路径优先(SPF)算法,来确定最佳路径和跳数,以实现数据包的转发。
5. 路由器将数据包从一个接口接收,并通过另一个接口发送,以使数据包达到目标网络和设备。
总结:
交换机和路由器在计算机网络中扮演不同的角色。
交换机负责局域网内的设备之间的通信,通过MAC地址表来转发数据帧。
而路由器负责不同网络之间的数据转发,使用路由表和路由算法来决定数据包的最佳路径。
二层交换机,三层交换机和路由器的基本工作基础学习知识原理
二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中.具体如下:(1当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上;(2再去读取包头中的目的MAC地址,并在地址表中查找相应的端口(3如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。
在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率.路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。
因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live域也开始减数,并重新计算校验和。
当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。
路由器在工作时能够按照某种路由通信协议查找设备中的路由表。
如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济的传输路径。
由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。
主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。
具体区别如下:二层交换机和三层交换机的区别:三层交换机使用了三层交换技术三层交换(也称多层交换技术,或IP交换技术是相对于传统交换概念而提出的。
众所周知,传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行*作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的地址信息,根据地址进行转发,并将这些地址与对应的端口记录在自己内部的一个地址表中.具体如下:(1当交换机从某个端口收到一个数据包,它先读取包头中的源地址,这样它就知道源地址的机器是连在哪个端口上;(2再去读取包头中的目的地址,并在地址表中查找相应的端口(3如表中有与这目的地址对应的端口,把数据包直接复制到这端口上三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。
在对第一个数据流进行路由后,它将会产生一个地址与地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率.路由器:传统地,路由器工作于七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。
因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个地址,同时数据包头的( 域也开始减数,并重新计算校验和。
当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。
路由器在工作时能够按照某种路由通信协议查找设备中的路由表。
如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济的传输路径。
由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。
主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。
具体区别如下:二层交换机和三层交换机的区别:三层交换机使用了三层交换技术三层交换(也称多层交换技术,或交换技术是相对于传统交换概念而提出的。
众所周知,传统的交换技术是在网络标准模型中的第二层——数据链路层进行*作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。
简单地说,三层交换技术就是:二层交换技术+三层转发技术。
三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
其原理是:假设两个使用协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的地址与B站的地址比较,判断B站是否与自己在同一子网内。
若目的站B与发送站A在同一子网内,则进行二层的转发。
若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出(地址解析封包,而“缺省网关”的地址其实是三层交换机的三层交换模块。
当发送站A对“缺省网关”的地址广播出一个请求时,如果三层交换模块在以前的通信过程中已经知道B站的地址,则向发送站A回复B的地址。
否则三层交换模块根据路由信息向B站广播一个请求站得到此请求后向三层交换模块回复其地址,三层交换模块保存此地址并回复给发送站A,同时将B站的地址发送到二层交换引擎的地址表中。
从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。
由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。
第二层交换机和路由器的区别:传统交换机从网桥发展而来,属于第二层即数据链路层设备。
它根据地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。
路由器属于第三层即网络层设备,它根据地址进行寻址,通过路由表路由协议产生。
交换机最大的好处是快速,由于交换机只须识别帧中地址,直接根据地址产生选择转发端口算法简单,便于实现,因此转发速度极高。
但交换机的工作机制也带来一些问题。
1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。
一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。
而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。
2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。
而路由器的路由协议算法可以避免这一点路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。
3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。
整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。
而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。
4.子网划分:交换机只能识别地址。
地址是物理地址,而且采用平坦的地址结构,因此不能根据地址来划分子网。
而路由器识别地址地址由网络管理员分配,是逻辑地址且地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。
5.保密问题:虽说交换机也可以根据帧的源地址、目的地址和其他帧中内容对帧实施过滤,但路由器根据报文的源地址、目的地址、端口地址等内容对报文实施过滤,更加直观方便。
6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合实现,势必降低交换机的转发速度。
因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。
而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。
路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。
近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。
划分子网可以缩小广播域,减少广播风暴对网络的影响。
路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。
对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。
广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。
由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。
虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。
不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。
交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。
解决这个矛盾的最新技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。
第三层交换机和路由器的区别:在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。
作为网络互连的设备,第三层交换机具有以下特征:1.转发基于第三层地址的业务流;2.完全交换功能;3.可以完成特殊服务,如报文过滤或认证;4.执行或不执行路由处理。
第三层交换机与传统路由器相比有如下优点:1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。
而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。
2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。
3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。
目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。
4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。
三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择计算机网络往往由许多种不同类型的网络互连连接而成。
如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。
因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
将网络互相连接起来要使用一些中间设备(或中间系统的术语称之为中继(系统。
根据中继系统所在的层次,可以有以下五种中继系统:1.物理层(即常说的第一层、层L1中继系统,即转发器(。
2.数据链路层(即第二层,层L2,即网桥或桥接器(。
3.网络层(第三层,层L3中继系统,即路由器(。
4.网桥和路由器的混合物桥路器(兼有网桥和路由器的功能。
5.在网络层以上的中继系统,即网关(.当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。
高层网关由于比较复杂,目前使用得较少。
因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。
本文主要阐述交换机和路由器及其区别。
2 交换机和路由器“交换”是今天网络里出现频率最高的一个词,从桥接到路由到直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。
其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。
所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。
因此,只要是和符合该定义的所有设备都可被称为交换设备。
由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。
我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。
由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。
在实际设备中,交换矩阵的功能往往由专门的芯片(完成。
另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限。