23.1-图形的旋转教学内容

合集下载

第23章旋转全章教案

第23章旋转全章教案

23.1《图形的旋转》教学设计【教学内容】本节课是人教版数学九年级上册第二十三章“23.1 图形的旋转”的第一课时。

【学习目标】:知识与技能(1)通过观察具体实例认识旋转,理解旋转的基本涵义;(2)探索旋转的基本性质;(3)利用旋转的性质解决数学问题。

过程与方法(1)能在观察图片资料和旋转实验中得出数学结论,初步从奇妙的图形中体会所隐含的数学道理。

发展学生对具体图形的概括能力,培养几何直觉;(2)通过对旋转图形的探讨,培养学生的探索发现事物变化中的内在规律.情感态度与价值观(1)通过对生活中的旋转现象有关图形进行观察分析、欣赏等过程,培养初步的审美能力,增强对图形的欣赏意识,培养学生合作学习、探索学习的意识。

(2)通过对旋转图形的欣赏和探索,体会旋转在现实生活中的存在,以及给解决数学问题带来的方便,增强学好数学的自信心,提高初步的审美能力,增强对图形欣赏的意识。

【学情分析】:认知分析:学生已学了平移、轴对称这两种图形基本变换,有了一定的变换思想。

能力分析:初三学生已经有一定的观察、抽象和分析能力,他们能由简单的物体运动中抽象出几何图形的变换,但思维的严谨性、抽象性仍相对薄弱。

【教学重点、难点】:重点:旋转及对应点的有关概念及其应用。

难点:从活生生的数学中抽出概念。

突破难点的关键:(1)设置恰当情景,激发学生的探索欲望。

(2)通过演示操作,归纳出旋转变换的性质,加深旋转变换的【教法与学法】教学方法:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为主的教学方法。

学习方法:通过学生的自主活动、主动探究、合作交流、动手操作等活动来构建与此相关的知识经验,使学生掌握知识,从而达到知识的应用。

【教学准备】:教师准备:PPT、几何画板、白板课件。

学生准备:在一张硬纸板上挖出一个三角形,再挖一个小洞,刻度尺,量角器【教学过程】:一、创设情境、引入新课:1、上课之前我们先来做做运动,轻松一下,通过大家的预习这几种运动与咱们这节课有关吗?那你预习后哪些收获和大家分享一下。

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

数学:23.1图形的旋转(3个课时)教案(人教新课标九年级上)

课题:23.1图形的旋转一、教学目标1.感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角.2.经历用硬纸板画旋转后图形的过程,加深对图形旋转的感知,发展空间观念.二、教学重点和难点1.重点:图形的旋转概念.2.难点:图形的旋转概念.三、教学过程(一)创设情境,导入新课师:在日常生活中我们经常能看到各种美丽的图案,这些美丽的图案是怎么设计出来的?让我们仔细来看一看.(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家仔细看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子.可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移).师:我们再来看一个图案.(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最后形成了这个图案.这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形.这样作下去,就形成了这个图案.可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称).师:下面我们再来看一个图案.(师出示下面的图案)(图在九年级上册P73)师:(指图案)大家看,这个图案又是怎么设计的?生:……(让几名同学发表看法)(这个图案可以看成是利用轴对称而形成,也可以看成是利用旋转而形成,如果学生没有提出轴对称,教师也不必提)师:(指准图案)这是一片花瓣,把这片花瓣这样旋转得到这片花瓣,再这样旋转得到这片花瓣,最后形成了花的图案.可见这个图案是用一片花瓣经过旋转得到的(边讲边板书:旋转)师:看了这三个图案,我们可以回答开始时的那个问题:美丽的图案是怎么设计出来的?谁来回答这个问题?生:……(让几名同学回答)师:(指准板书)美丽的图案是利用平移、轴对称、旋转设计出来的.师:平移、轴对称、旋转是图形变换的三种方式,平移我们在初一的时候已经学过,轴对称我们在初二的时候已经学过,从本节课开始我们要学习旋转.(板书课题:23.1图形的旋转)(二)尝试指导,讲授新课师:什么是图形的旋转?(边讲边指准图案)所谓图形的旋转就是把(要指准一片花瓣)一个图形绕着某一点转动一个角度.这个点0(边讲边在图中标0)叫做旋转中心(板书:点0叫做旋转中心),转动的角(边讲边在图中标角)叫做旋转角(板书:转动的角叫做旋转角).师:(指准图案)大家算一算,这个旋转角等于多少?(让生算一会儿师再讲)这是周角,旋转角是周角的五分之一,所以旋转角是360°÷5=72°.师:图形上的点P(边讲边在图中标点P)经过旋转变成P′(边讲边在图中标P′),点P与点P′叫做这个旋转的对应点(板书:点P与点P′叫做这个旋转的对应点).(标图后,原图成下图)(三)试探练习,回授调节1.填空:如图,钟表的时针在不停地旋转,从3时到5时,时针的旋转中心是点,旋转角等于°,点B的对应点是点 .2.填空:如图,杠杆绕支点转动撬起重物,杠杆的旋转中心是点,旋转角是∠,点A的对应点是点 .3.如图,扎西坐在旋转的秋千上,请在图中画出点A,B,C的对应点A′,B′,C′.(四)尝试指导,讲授新课师:前面我们学习了图形旋转的概念,下面我们要动手画一画旋转图形.师:怎么画旋转图形?(稍停)画旋转图形有一个很好的办法.师:(演示挖有三角形洞的硬纸板)这是一块硬纸板,里面挖了一个三角形.利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以这个顶点为旋转中心旋转(边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下)师:(指准图)这个三角形经过旋转得到了这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′).师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)A BA/师:(指准图)刚才我们画的旋转图形是以顶点为旋转中心,如果我们以三角形外的一点为旋转中心,旋转图形又是怎么样的呢?师:(演示挖有三角形洞的硬纸板)和刚才一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(硬纸板上要挖一个小洞为旋转中心,并用粉笔标明位置,边讲边旋转),好,就转到这里,再画一个三角形(边讲边画,然后移开硬纸板,画好的图大致如下).师:(指准图)这个三角形经过旋转得到这个三角形,点O是旋转中心(边讲边在图中标O),点A的对应点是点A′(边讲边在图中标A,A′),点B的对应点是点B′(边讲边在图中标B,B′),点C的对应点是点C′(边讲边在图中标C,C′).师:(指图)在这个三角形的旋转中,哪个角等于旋转角?(让生思考一会儿)师:(用虚线连接OA,OA′,并指准)OA转到OA′,可见∠AOA′等于旋转角(边讲边标角).(标后原图成下图)OC/B/A/CB A(五)试探练习,回授调节4.利用挖有一个三角形洞的硬纸板画出三角形的旋转图形,并在图中用字母标出旋转中心、对应点和旋转角.(要求学生在课前做好挖有一个三角形的硬纸板)(六)归纳小结,布置作业师:本节课我们学习了图形旋转的概念,什么是图形的旋转?(指准旋转图案)把一个图形绕着某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.图形上的点P经过旋转变为点P′,点P与点P′叫做对应点.(作业:P57练习2.P60习题6)四、板书设计23.1图形的旋转平移图案平移旋转图案旋转点O叫做旋转中心旋转图形一轴对称图案轴对称转动的角叫做旋转角旋转图形二点P与点P′叫做对应点课题:23.1图形的旋转(第2课时)一、教学目标1.经历探索过程,知道图形旋转的性质,能对性质作简单的运用.2.发展空间观念,培养分析、归纳、抽象、概括能力.二、教学重点和难点1.重点:图形的旋转性质.2.难点:探索图形的旋转性质.三、教学过程(一)基本训练,巩固旧知1.填空:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转,转动的角叫做旋转 .如果图形上的点P经过旋转变为点P′,A那么这两个点叫做旋转的 .EB2.填空:(1)如图,△ABC 绕点A 旋转得到△ADE ,旋转中心 是点 ,点B 的对应点是点 ,点C 的对应点是点 ,∠ 等于 于旋转角;(2)如图,△ABC 绕点O 旋 转得到△DEF ,旋转中心是 点 ,点A 的对应点是 点 ,点B 的对应点是 点 ,点C 的对应点是 点 ,∠ 等于 于旋转角.(二)创设情境,导入新课师:(板书课题:23.1图形的旋转)上节课我们学习了图形旋转的概念,本节课我们要学习什么?本节课我们要学习图形旋转的性质.让我们先来看一个三角形的旋转图形.(三)尝试指导,讲授新课师:(演示挖有三角形的硬纸板)和上节课所做的一样,利用硬纸板先画一个三角形(边讲边画,画好不要动),现在我们以三角形外的一点为旋转中心旋转(边讲边旋转),好,就旋转到这里,再画一个三角形(边讲边画,然后移开硬纸板).师:(指准图)这个三角形经过旋转得到了这个三角形,点O 是旋转中心(边讲边在图中标O ),点A 的对应点是点A ′(边讲边在图中标A ,A ′),点B 的对应点是点B ′(边讲边在图中标B ,B ′),点C 的对应点是点C ′(边讲边在图中标C ,C ′).(旋转图形如下图所示)O .FEDAB CO .C /A /B /AB C师:(指图)请大家仔细观察这个图,从这个旋转图形,你发现图形旋转有什么性质?(让生观察一会儿)师:谁来说说你的发现?生:……(让几名学生发表自己的看法,如果学生说不出什么,师继续教学)师:(指准图)这是旋转前的图形,这是旋转后的图形,显然这两个图形是全等的.从这一事实我们得出图形旋转的一个性质:旋转前后的图形全等(板书:旋转前后的图形全等).师:旋转前后的图形全等,这是图形旋转的一个性质,下面我们来看第二个性质.师:(用虚线连接OA,OA′,并指准图)OA转到了OA′,线段OA与OA′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OB,OB′,并指准图)OB转到了OB′,线段OB与OB′的长短有什么关系?生:(齐答)相等.师:(用虚线连接OC,OC′,并指准图)同样,OC也等于OC′.师:(指准图)OA=OA′,OB=OB′,OC=OC′,这说明什么?谁能用自己的话来概括这一事实?生:……(多让几名学生发表自己的看法,鼓励学生用自己的语言概括)师:(指准图)OA=OA′说明对应点A,A′到旋转中心的距离相等,OB=OB′说明对应点B,B′到旋转中心的距离也相等,OC=OC′说明对应点C,C′到旋转中心的距离也相等.可见,对应点到旋转中心的距离相等(板书:对应点到旋转中心的距离相等).师:(指板书)这是图形旋转的第二个性质,下面我们来看第三个性质.师:(指准图)△ABC绕着点O转到△A′B′C′,在这个旋转中,哪个角等于旋转角?生:∠AOA′.师:(指准图)OA转到OA′,可见∠AOA′等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠BOB ′.师:(指准图)OB 转到OB ′,可见∠BOB ′也等于旋转角(边讲边在图中标角).还有没有别的角等于旋转角?生:∠COC ′.(生答师在图中标角)师:(指准图)∠AOA ′,∠BOB ′,∠COC ′都等于旋转角,这说明什么?(稍停)这说明对应点与旋转中心所连线段的夹角等于旋转角(板书:对应点与旋转中心所连线段的夹角等于旋转角).师:(指板书)这就是图形旋转的第三个性质.师:下面大家结合图形把这三个性质默读几遍,看看你对这三个性质的意思理解了吗?(生默读)师:知道了图形旋转的性质,下面请大家利用性质来做两个练习. (四)试探练习,回授调节3.利用“对应点与旋转中心所连线段的夹角等于旋转角”,画出下图中的旋转角,并用量角器量出旋转角的度数.4.如图,四边形ABCD 是正方形,以点A 为中心,把△ADE 顺时针旋转90°,利用图形旋转的性质,画出旋转后的图形.(先让生做4题,然后师出示旋转后的图形,并利用性质解释点D 转到了点B ,点E 转到了点F )(五)归纳小结,布置作业ED CB A师:本节课我们学习了图形旋转的性质,请大家把这三个性质一起来读一遍.(生读)(作业:P 59习题3.4.) 四、板书设计 23.1图形的旋转 旋转前后的图形全等三角形旋转图 对应点到旋转中心的距离相等. 对应点与旋转中心所连……课题:23.1图形的旋转(第3课时)一、教学目标1.巩固图形旋转的性质,会根据性质画旋转后的图形.2.发展空间观念,培养直观想象能力和画图能力. 二、教学重点和难点1.重点:根据性质画旋转后的图形.2.难点:根据性质画旋转后的图形. 三、教学过程(一)基本训练,巩固旧知 1.填空:图形旋转的性质是: (1)旋转前后的图形 ; (2)对应点到旋转中心的距离 ;(3)对应点与旋转中心所连线段的夹角等于 . (二)创设情境,导入新课 (师出示下面的板书)OA /B /C /A C B旋转前后的图形全等.对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.师:(指准图)上节课我们利用这个图归纳出来图形旋转的三个性质.师:(指准图)△ABC经过旋转得到△A′B′C′,显然△ABC与△A′B′C′全等,于是我们有了第一个性质:旋转前后图形全等.师:(指准图)△ABC转到△A′B′C′,显然OA=OA′,OB=OB′,OC=OC′,于是我们归纳出第二个性质:对应点到旋转中心的距离相等.师:(指准图)OA转到OA′,OB转到OB′,OC转到OC′,所以∠AOA′,∠BOB′,∠COC′都等于旋转角,于是我们发现第三个性质:对应点与旋转中心所连线段的夹角等于旋转角.师:(指板书)有了图形旋转的性质,这节课我们就利用这些性质来解决问题,解决什么问题呢?请大家来看一个例题.(三)尝试指导,讲授新课(师出示例题)例任意画一个△ABC,作下列旋转:(1)以A为中心,把这个三角形顺时针旋转50°;(2)以三角形外任取一点O为中心,把这个三角形逆时针旋转90°.师:(指准例题)例题需要我们做什么?任意画一个△ABC(边讲边画△ABC),以点A为中心,把这个三角形顺时针旋转50°,画出旋转后的图形.师:(指准△ABC)要画△ABC旋转后的图形,关键是什么?(稍停)关键是要找到点A、点B、点C旋转后的位置,因为是以点A为中心旋转,所以旋转后点A没动,那点B、点C旋转后在哪里?大家自己先画个草图找一找.(生画图,师巡视)师:下面我们一起来画图.师:利用量角器在AB的顺时针方向画∠BAB′=50°,并且使AB′=AB(边讲边画);再在AC的顺时针方向画∠CAC′=50°,并且使AC′=AC(边讲边画);连接B′C′(边讲边画).师:(指准图)△AB′C′就是以A为中心,△ABC顺时针旋转50°得到的图形.(画好的图形如下所示)师:(指准例题)下面我们来看第(2)小题,(2)小题要我们做什么?任意画一个△ABC (边讲边画△ABC ),以三角形外任取一点O 为中心(边讲边画点O ),把这个三角形逆时针旋转90°,画出旋转后的图形.师:(指准△ABC )要画出△ABC 旋转后的图形,和(1)小题一样,关键是要找到点A 、点B 、点C 旋转后的位置,也就是要找到对应点A ′、点B ′、点C ′的位置. 点A ′、点B ′、点C ′在哪里?大家画个草图找一找.(生画图,师巡视)师:下面我们一起来画.师:先用虚线连接OA (边讲边画),利用三角尺在OA 的逆时针方向画∠AOA ′=90°,并且使OA ′=OA (边讲边画),点A ′就是点A 的对应点.师:用同样的方法画点B ′,先用虚线连接OB (边讲边画),利用三角尺在OB 的逆时针方向画∠BOB ′=90°,并且使OB ′=OB (边讲边画),点B ′就是点B 的对应点.师:用同样的方法画出点C ′(画出点C ′).师:连接A ′B ′,B ′C ′,C ′A ′(边讲边画),(指准图)△A ′B ′C ′就是以O 为中心,△ABC 逆时针旋转90°得到的图形.(画好的图如下所示)B C A OC /A /B /B /C /A CB(四)试探练习,回授调节2.如图,以点O 为中心,把点P 顺时针旋转45°.3.如图,以点O 为中心,把线段AB 逆时针旋转90°.4.如图,以点O 为中心,把△ABC 顺时针旋转120°.5.如图,以点B 为中心,把△ABC 旋转180°.(五)归纳小结,布置作业 B AC B A C.O B O ..O P .师:本节课我们学习了画旋转后的图形,画旋转后的图形关键是要找到对应点.(指准例(2)题图)譬如,要画△ABC旋转后的图形,关键是要找到对应点A′,B′,C′.怎么找对应点A′,B′,C′?(稍停)要利用图形旋转的性质来找.根据性质,OA=OA′,∠AOA′等于旋转角90°,这样我们找到了对应点A′,用同样方法可以找到B′,C′.师:总之,画旋转后的图形,关键是找对应点,而找对应点的根据是图形旋转的性质.(作业:P59习题1.5.)四、板书设计三角形旋转图例旋转前后的图形全等对应点到旋转中心距离相等对应点与旋转中心所连……。

人教版九年级数学上册23.1:图形的旋转(教案)

人教版九年级数学上册23.1:图形的旋转(教案)
五、教学反思
在今天的课堂中,我们探讨了图形的旋转,这是一个既有趣又富有挑战性的课题。我发现,学生们对旋转的概念接受度很高,他们能够很快地理解旋转的基本性质和三要素。在讲授过程中,我尽量用生动的例子和实际操作来解释抽象的几何概念,这样做的效果似乎不错,学生们能够积极参与并有所收获。
让我印象深刻的是,在实践活动环节,学生们分组讨论并操作旋转实验时,他们表现出了极大的兴趣和热情。通过亲自动手,他们不仅加深了对旋转原理的理解,还学会了如何将理论知识应用到解决实际问题中。尤其是在成果展示环节,每个小组都能够清晰地表达他们的思考过程和解决方案,这让我感到很欣慰。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指将一个图形绕着某个点进行转动,这个点称为旋转中心。旋转可以是顺时针或逆时针方向,转动的角度可以是任意度数。图形旋转是几何变换的一种,它在艺术、工程等多个领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将一个三角形绕着某个点旋转一定角度,以及这个过程在建筑设计中的应用。
-创设情境,让学生运用旋转知识解决实际问题,如设计图案、计算工程量等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”比如,门的开合、风车的转动等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(3)运用旋转解决实际问题,如计算旋转后的图形的面积、周长等。
2.教学难点
(1)旋转中心的确定:帮助学生理解旋转中心对图形旋转效果的影响,掌握如何准确找出旋转中心。

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计

人教版数学九年级上册23.1.1《图形的旋转》教学设计一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第五章第二节的内容。

本节内容是在学生已经掌握了图形的平移、缩放、轴对称等基本变换的基础上进行学习的,是进一步培养学生的空间想象能力和抽象思维能力的重要内容。

图形旋转的概念和性质在日常生活和生产实践中有着广泛的应用,如地图的绘制、机械设计等。

通过本节课的学习,让学生了解图形的旋转概念,理解旋转的性质,学会用旋转来解决实际问题。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,对于图形的平移、缩放、轴对称等基本变换已经有了一定的了解。

但是,学生在学习过程中可能对旋转的概念和性质理解不深,不易掌握旋转的计算方法。

因此,在教学过程中,教师需要通过大量的实例和练习,帮助学生理解和掌握旋转的相关知识。

三. 教学目标1.知识与技能:使学生掌握图形旋转的概念,理解旋转的性质,学会用旋转来解决实际问题。

2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:图形旋转的概念,旋转的性质。

2.教学难点:旋转的计算方法,旋转在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣,激发学生的学习欲望。

2.探究式教学法:引导学生观察、操作、猜想、验证,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.教学课件:制作课件,展示图形旋转的实例和性质。

2.教学素材:准备一些图形,如正方形、三角形等,用于讲解和练习。

3.计算器:为学生提供计算器,便于进行旋转的计算练习。

七. 教学过程1.导入(5分钟)教师通过一个有趣的数学故事引入本节课的内容,引发学生的兴趣。

2.呈现(10分钟)教师通过课件展示一些图形旋转的实例,如地球的自转、钟表的指针等,引导学生观察和思考。

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计

人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。

本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。

通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。

二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。

但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。

同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。

三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。

2.能够运用图形旋转的性质解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.图形旋转的性质的理解和运用。

2.旋转的表示方法的掌握。

五. 教学方法采用问题驱动法和案例教学法进行教学。

通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。

六. 教学准备1.多媒体教学设备。

2.图形旋转的实例和练习题。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。

2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。

3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。

4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。

5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。

23.1图形的旋转 教案

23.1图形的旋转 教案
23.1图形的旋转教案
一、【学习目标】
1、知识与技能
了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2、过程与方法
感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.
3、情感态形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情。
2、由三角形的旋转判断旋转中心。
3、三角形的整体旋转,找旋转角,旋转中心,旋转的对应边对应角
4、把旋转运用到正方形中
四、课堂小结
1、旋转的概念
2、旋转的三要素
3、旋转的性质
五、作业布置
六、板书
23.1图形的旋转
旋转定义:旋转的性质例1:
例2:
七、课后反思
1、教学过程中的反思:
2、教学效果的反思:
3、学生状态的反思:
二、重难点、关键
1、重点:旋转及对应点的有关概念及其应用。
2、难点与关键:从现实生活中抽象出数学概念。
三、【学习过程】
(一)、创设情景
结合教材59页“思考”,现实生活中的旋转现象和俄罗斯方块游戏等,探究这些现象有什么共同特点?
(二)、探究新知
1总结归纳旋转的定义:像这样,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的 ,点O叫做 ,转动的角叫做 。如果图形上的点P经过旋转变为点P′,那么这两个点P和P′叫做这个旋转的
2完成教材60页探究归纳旋转的性质:
1、对应点到旋转中心的距离 ;

23.1 图形的旋转教案

23.1 图形的旋转教案

活动四:巩固练习 教师提出问题 1、教科书 P64 练习 1、2、 3 2、课本 57 页例题 学生独立思考、分 析、解答问题。
学生巩固和提高 通过解决蕴含所学 知识的实际总是和 数学问题将新知识 内化入学生已有的 认知结构中。
活动五 课堂回顾 教师提出问题,学生回 学生通过反思已学 1、这节课,主要学习了 顾总结;分析对比归纳 过的有关图形变换 什么? 平移与旋转的异同。 2、你还有什么困惑? 旋转变换的本质特 3、平移和旋转有什么异 征,调动学生的学 同? 习兴趣。 得知识,深入理解
D.5 2、 如图: E 是正方形 ABCD 内一点,将△ABE 绕点 B 顺 时针方向旋转到△CBF, 其中 EB=3cm,则 BF=_cm , ∠EBF=___ A E B F 3、课外作业 教科书习题 23.1 第 1、4 题 C D
(2)经过旋转,点 A、B 分别移动到什么位置? (3)旋转角是什么? (4)猜一猜:AO 与 DO 的 长有什么关系?BO 与 EO 呢?∠AOD 与∠BOE 有什 么大小关系? 2、请大家在硬纸板上, 挖一个三角形洞,再挖一 验: 用课件操作图形的 现”,培养学生观 个小洞 O 作为旋转中心, 旋转变换后,指出进一 察、分析、比较、 硬纸板下面放一张白 步探究的方向。 抽象、概括的思维 纸.先在纸上描出这个挖 组织学生交流,得出 能力。 掉的三角形图案(△ 正确结论。 ABC),然后围绕 O 转动 硬纸板,再描出这个挖掉 的三角形(△A′B′ C′ ),移开硬纸板. 究方向度量、分析,小 线段 OA 与 OA′有什么关 组交流归纳抽象概括出 系?∠A OA′与∠BO 图形旋转的特征。 B′有什么关系?⊿A BC与 ⊿A′B′ C′有什么关系? 学生独立进行数学实 验,按照老师提出的探 通过设置数学实验 让学生主动参与数 教 师 设 计 数 学 探 究 实 学知识的“再发

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例

人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
人教版数学九年级上册第23章旋转23.1图形的旋转优秀教学案例
一、案例背景
本节课为人教版数学九年级上册第23章旋转23.1图形的旋转。旋转是几何中的基本变换之一,是学生在之前的学习过程中已经接触过的内容,但九年级的学习要求更深入、更系统地掌握旋转的性质和应用。通过本节课的学习,学生需要理解旋转的定义、掌握旋转的性质、了解旋转在实际生活中的应用。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如旋转的定义、性质及应用等。
2.学生分享小组讨论的成果,让大家共同学习,提高理解程度。
3.教师对学生的总结进行点评,指出优点和不足,给予改进建议。
(五)作业小结
1.布置作业:设计一道有关旋转的实际问题,让学生运用所学知识解决。
2.要求学生在作业中运用旋转的性质,表述清晰、步骤简洁。
3.通过具体例子,讲解旋在实际生活中的应用,如设计图案、制作模型等。
4.强调旋转的性质,让学生理解旋转的本质,提高空间想象能力。
(三)学生小组讨论
1.布置讨论任务:以小组为单位,探讨图形旋转的性质,并举例说明。
2.引导学生运用合作交流的方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
2.引导学生运用讨论、交流、总结等方式,共同探讨旋转的相关知识,提高合作意识和团队精神。
3.鼓励小组成员之间相互倾听、理解,培养良好的人际沟通能力,促进共同进步。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习中遇到了哪些问题?是如何解决的?”等,培养学生自我评价和反思的能力。
3.小组合作:本节课采用小组合作的学习方式,让学生在合作中探讨旋转的性质。这种方式培养了学生的合作意识和团队精神,提高了学生的沟通能力和协作能力。同时,小组合作也使得课堂氛围更加活跃,激发了学生的学习兴趣。

人教版九年级数学上册优秀教学案例:23.1图形的旋转

人教版九年级数学上册优秀教学案例:23.1图形的旋转
2.练习作业:检查学生完成作业的质量,巩固学生对旋转性质的掌握;
3.小组讨论:评价学生在团队合作中的表现,培养学生的团队合作精神。
二、教学目标
(一)知识与技能
1.理解旋转的定义及性质,掌握旋转变换的方法。
2.能够运用旋转变换解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力,提高学生对几何图形的认识和理解。
2.讨论问题:每组选择一个实际问题,运用旋转变换解决,讨论解决问题的方法和过程。
3.讨论成果分享:各小组代表汇报本组讨论成果,分享解决问题的方法,促进学生之间的交流与合作。
(四)总结归纳
1.教师总结:教师对旋转变换的性质及应用进行总结,强调重点和难点,帮助学生形成知识体系。
2.学生归纳:让学生归纳总结本节课所学内容,加深对旋转变换性质的理解和记忆。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发学生的学习兴趣和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用情景创设、问题导向、小组合作和反思与评价等教学策略,激发学生的学习兴趣,培养学生的思维能力、团队合作精神和解决问题的能力。同时,我将以学生为主体,关注每一个学生的成长,尊重学生的个性差异,激发学生的潜能,让每个学生都能在学习中感受到快乐和成就感。通过科学合理的教学策略,引导学生积极参与课堂活动,提高学生的学习效果,为学生的可持续发展奠定基础。
3.结合实际例子,让学生感受数学与生活的紧密联系;
4.采用小组合作、讨论交流的方式,培Βιβλιοθήκη 学生的团队合作精神。教学过程:
1.导入新课:以生活中常见的旋转现象为例,如旋转门、风车等,引导学生思考旋转的定义及性质;
2.自主学习:让学生通过阅读教材,了解旋转的基本性质;

《23.1图形的旋转》 教学设计

《23.1图形的旋转》 教学设计

《23.1图形的旋转》教学设计一、教学目标⒈知识与技能1、掌握旋转的有关概念,理解旋转变换也是图形的一种基本变换.2、经历探索图形旋转特征的过程,体验和感受图形旋转的主要特征,理解图形旋转的基本性质.⒉过程与方法通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力、以及与他人合作交流的能力.⒊情感目标:经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神.二、学习重点、难点学习重点: 旋转的有关概念和旋转的基本性质学习难点: 探索旋转的基本性质三、教学对象分析:⒈八年级学生是抽象思维逐渐形成的时期,教学过程要强调问题情境创设的直观性,借助于活动引发学生的积极思考。

⒉八年级学生已经具备了一定的学习能力,教学中要多提供机会,让他们在主动参与、勤于动手中自主创新、相互学习,从而乐于探究。

四、教学策略课堂组织策略:创设生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,探索旋转的基本性质,并能解决一些实际问题.学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握知识。

辅助策略:借助实物投影仪及课件,使学生直观形象地观察、动手操作。

教法:演示法:把实物模型、教具或多媒体课件演示给学生看,使学生直观、具体、形象地感知图形的旋转变换。

讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。

练习法:精心设计随堂练习,巩固和提高学生的认知水平。

五、教学过程设计:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。

我在教学过程中设计了五个活动,分别为:活动1:创设情境,导入新课活动2:演示导学,形成概念活动3:举例应用,加深认识活动4:课堂练习,巩固提高活动5:归纳小结,布置作业活动一、创设情境导入新课(个体活动)(教师利用多媒体出示)创设问题情境,激发学生的学习兴趣和求知欲,为发现新知创造一个最佳的心理和认识环境,是学生主动学习的前提,本活动通过折纸游戏,导入本课1、手工制作:制作一个小风车.2、欣赏日常生活中部分物体的旋转现象.思考:在这些运动中有哪些共同特征?(投影1)本次活动中,教师应重点关注:(1)学生参与的全面性;(2)学生观察实例的角度;(3)学生活动后,试着描述出旋转的定义.【设计意图】:通过小制作,图形欣赏,导入主题,调动学生的主观能动性,激发好奇心和求知欲.活动二、演示导学形成概念1、观察:时钟上分针的运动.(动画演示)问题:时钟上分针的转动是绕哪一个点转动?沿着什么方向转动?从5分到15分转动了多少角度.(投影2)学生在观察后,回答问题,然后教师讲解:把一个图形绕着某一个点O转动一个角度的图形变换叫做旋转,点O叫旋转中心,转动的角叫旋转角.2、动手做一做:在一张半透明的薄纸与另一张纸片之间垫上一张复写纸,在薄纸上画ΔABC,并在ΔABC外面找一点0,再用一枚图钉在0处穿过.将薄纸绕点0旋转一个角度,再次把ΔABC复印在纸片上,并记成ΔA´B´C´.在纸片上分别连接0A、0B、0C、0A´、0B´、0C´.问题:(1)根据所画的图形,用直尺量出OA与OA´、OB与OB´、OC´的大小;用量角器量出∠AOA´、∠BOB´、∠COC´的度数,观察这三个角的大小,并指出旋转中心,旋转角. (2)说出其中的对应点,对应角和对应线段.(3)旋转后图形的形状和大小是否发生变化.(投影3)学生在老师的指导下,动手操作,并动手完成老师交给的任务.3、交流、归纳(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连结的线段的夹角等于旋转角.(3)旋转前、后的图形全等.(投影4)课件演示及学生的动手操作,培养了学生观察能力和探究问题的能力、动手能力,以及与他人合作交流的能力,充分体现了教师为主导,学生为主体的教学思想,同时也突出了重点,突破难点.本次活动中,教师应重点关注:(1)旋转的基本性质的探究过程应循序渐进,即演示→观察→猜想→讨论→归纳.(2)要给学生充足的时间和空间.【设计意图】通过观察,使学生形象、直观地理解旋转的有关概念,是学生探究、发现,实现“再创造”的过程.学生动手练习,教师及时展示学生练习结果,并及时给予点评.活动三、举例应用加深认识(投影5)1、如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把ΔADE顺时针旋转90°,画出旋转后的图形2、分析香港特别行政区的区徽图中的图形的旋转现象.学生思考后,展示结果.本次活动中,教师应重点关注:(1)学生画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据.(2)学生中作图的不同方法.通过图形欣赏让学生感受数学图形的魅力,激发学生兴趣.【设计意图】通过例题讲解,让学生加深对新知识的理解,培养学生分析问题和解决问题的能力.活动四、课堂练习巩固提高1、P64页练习2、图形:线段、角、圆、梯形、正方形、菱形中绕一定点转动一定角度(小于360°)能与原图形重合的图形有()A、2个B、3个C、4个D、5个3、P65页练习(全体活动.)学生单独完成后及时反馈,教师及时点评. 本次活动中,教师应重点关注:(1)点评的针对性、典型性;(2)给学生相对充足的时间与空间.【设计意图】通过练习,让学生再次明确旋转的主要因素,从而让学生在知识不断重视的基础上加深理解,形成能力,实现本课的知识目标.活动五、归纳小结,布置作业根据认知心理学的学习理论:学习的过程,就是学习者认知结构不断改组和完善的过程.在学完本节内容后,我提出如下三个问题:(投影11)1. 通过本节课的学习,你体会最深的是什么?2. 在学习这节课时要注意的问题是什么?3. 在下节课中的什么地方,你会比这节课做的更好?学生交流获得的知识和感受,教师聆听,并与学生交流.本次活动中,教师应重点关注:(1)学生概括的是否全面,教师应及时补充;(2)不同层次对知识的掌握的程度. 通过小结,概括出本节课的知识与方法.体验探究过程中的感受.【设计意图】通过小结让学生谈体会及注意的问题,体验成功的喜悦,增强自信心,同时也培养了学生的口头表达能力和概括总结能力,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.通过问题3培养学生的自我反思、监控能力.(2)布置作业P66页T3、T7。

23.1图形的旋转教学课件(共35张PPT)

23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。

23.1图形的旋转 教案- 2022-2023学年人教版九年级数学上册

23.1图形的旋转 教案- 2022-2023学年人教版九年级数学上册

23.1 图形的旋转教案- 2022-2023学年人教版九年级数学上册一、教学目标1.理解图形的旋转概念,能够描述旋转的方向和角度;2.掌握图形旋转的基本性质,能够判断旋转后图形是否重合;3.运用旋转的性质解决相关问题。

二、教学准备1.教材:人教版九年级数学上册;2.工具:直尺、铅笔、量角器。

三、教学过程步骤一:导入与引入1.引入问题:小明在画画时,想把一个图形旋转90度,你能告诉他应该怎么做吗?2.学生回答后,引导学生思考旋转的概念。

步骤二:旋转的概念1.定义旋转:将一个图形按照一定的方式和角度,沿着一个固定的点旋转。

2.引导学生找出旋转中的三个要素:旋转中心、旋转方向和旋转角度。

3.通过示例和讲解,让学生理解旋转的基本概念。

步骤三:旋转的性质1.引导学生观察并总结旋转的性质:–旋转前后,线段的长度保持不变;–旋转前后,线段的平行关系保持不变;–旋转前后,角的度数保持不变。

2.通过练习题,让学生巩固旋转的性质。

步骤四:判断旋转后图形的重合性1.如果两个图形旋转后重合,我们称它们是旋转同一图形。

2.引导学生思考如何判断旋转后的两个图形是否重合:–比较线段的长度和角的度数是否相等。

3.通过练习题,让学生练习判断旋转后图形的重合性。

步骤五:解决问题1.给学生设计一些实际问题,要求运用旋转的概念解决问题,如:根据指定旋转角度和顺时针/逆时针方向,求旋转后图形的坐标。

2.引导学生分析问题,并逐步解决。

3.鼓励学生自主思考和讨论,提供帮助和指导。

四、教学延伸1. 图形的旋转应用图形的旋转在现实生活中有着广泛的应用,比如旋转扇叶、旋转木马等。

通过图形旋转的相关知识,我们能够更好地理解和应用这些实际问题。

2. 旋转的其他性质在进一步学习中,学生可以了解到旋转还有其他的性质,比如: - 旋转的合成:将一个图形先按一定角度旋转,然后再按另一个角度旋转,可以用一个旋转的角度表示这两次旋转的合成。

- 旋转的反运算:旋转后再按相反的角度旋转,可以得到旋转前的图形。

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿

人教版数学九年级上册23.1《图形的旋转》说课稿一. 教材分析《图形的旋转》是人民教育出版社九年级上册数学教材第23.1节的内容。

本节内容是在学生已经掌握了图形的平移、翻转的基础上,引入图形的旋转概念,让学生进一步理解图形的变换,提高学生的空间想象力。

教材通过丰富的实例,引导学生探究图形的旋转性质,培养学生的观察能力、操作能力和推理能力。

二. 学情分析九年级的学生已经掌握了图形的平移、翻转知识,具备一定的学习基础。

但是,对于图形的旋转,学生可能在生活中接触较少,对其理解和掌握可能存在一定的困难。

因此,在教学过程中,教师需要通过生动的实例,让学生感受图形的旋转,帮助学生建立直观的空间观念。

三. 说教学目标1.知识与技能目标:让学生理解图形的旋转概念,掌握图形旋转的性质,能够运用旋转知识解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象力,提高学生的观察能力和操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:图形的旋转概念及其性质。

2.教学难点:图形的旋转在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生的直观感受,帮助学生理解和掌握知识。

六. 说教学过程1.导入新课:通过一个生活中的实例,如风车的旋转,引导学生思考图形的旋转现象,激发学生的学习兴趣。

2.探究新知:引导学生观察和操作实物模型,让学生亲身体验图形的旋转,从而引导学生总结出图形的旋转性质。

3.深化理解:通过几何画板演示图形的旋转过程,让学生更直观地理解旋转性质,帮助学生建立空间观念。

4.应用拓展:设计一些实际问题,让学生运用旋转知识解决,巩固所学知识,提高学生的应用能力。

人教版九年级数学上册图形的旋转(第一课时)教学设计

人教版九年级数学上册图形的旋转(第一课时)教学设计

23.1图形的旋转(第一课时)一、教学内容旋转的概念、旋转的性质二、教学目标知识与技能:通过观察具体实例认识旋转,探索其基本性质。

过程与方法:在发现探索过程中完成对旋转这一图形变换从直观到抽象,从感性认识到理性认识的转变,发展学生的观察、分析、归纳、抽象、概括能力。

情感态度与价值观:学生在经历了实验探究,知识应用及内化等数学活动中,体验数学的具体,生动,灵活性,调动学生学习数学的主动性.三、重难点重点:1、理解旋转的基本概念2、探索旋转的性质.难点:找准旋转变换关系及性质的形成。

四、教学过程设计(一)创设情境、引入新课1、介绍风车2、欣赏风车师生活动:教师展示旋转的风车图片,学生欣赏,并回忆小学曾经知道的旋转。

设计意图:通过转动的风车,引入本节课的研究对象。

(二)师生互动,探求新知1、观察转动的风车得出旋转的概念问题1:观察转动的风车实例:思考这些转动的风车有什么共同特点?师生活动:展示转动的风车图片,学生观察并思考,教师引导学生进行归纳图形旋转的定义。

在师生共同得出旋转定义后,教师射线OA绕着点O旋转到OB的位置为例,介绍图形旋转的相关概念“旋转中心”、“旋转角”、“旋转方向”设计意图:让学生从具体的实例中发现旋转现象,抽象出旋转的本质属性,即将“生活中的旋转”抽象为“数学中的旋转”让学生理解数学概念,同时发展抽象概括能力。

2、再次观察旋转的风车强调旋转的三要素问题:仔细观察两个旋转的风车有哪些异同点?师生活动:展示两个旋转方向、旋转角度都不同的风车,抛出问题,学生观察思考,寻找异同点。

设计意图:帮助学生巩固对旋转概念的认识,使学生初步感受决定旋转的三要素的重要性,缺少任何一条都会导致旋转的结果有所不同。

3、观看学生表演,强调图形旋转的三要素的重要性表演:(1)逆时针旋转900;(2)绕着肩关节旋转600;(3)绕着肘关节顺时针旋转。

师生活动:教师提出要求,两名同学表演,其他同学说明为什么表演的结果确不同。

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计

人教版九年级数学上册《23.1图形的旋转(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《23.1图形的旋转(第1课时)》这一章节主要介绍了图形的旋转性质及其在实际问题中的应用。

通过本节课的学习,学生能够理解图形旋转的定义,掌握图形旋转的性质,并能够运用旋转性质解决一些实际问题。

本节课的内容是学生进一步学习图形变换的基础,对于培养学生的空间想象能力和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算规则有一定的了解。

但是,对于图形旋转这一概念,学生可能较为陌生,因此需要在教学中给予充分的引导和解释。

此外,学生可能对于实际问题中的应用方面存在一定的困难,因此需要通过具体的例子和练习来帮助学生理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解图形旋转的定义和性质,并能够运用旋转性质解决一些实际问题。

2.过程与方法目标:通过观察和操作,学生能够培养空间想象能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对图形变换产生兴趣,并能够自主学习和探索。

四. 教学重难点1.重点:图形旋转的定义和性质。

2.难点:图形旋转在实际问题中的应用。

五. 教学方法1.引导法:通过提问和解释,引导学生思考和探索图形旋转的性质。

2.实例教学法:通过具体的例子和练习,帮助学生理解和掌握图形旋转的应用。

3.小组合作学习:学生分组进行讨论和练习,培养学生的合作和沟通能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示图形旋转的定义和性质,以及一些实际问题的例子。

2.练习题:准备一些与图形旋转相关的练习题,用于巩固学生对知识的理解和应用能力。

3.教学工具:准备一些教具,如图形模板和旋钮,用于直观地展示图形旋转的过程。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习过的图形成交和平移的知识,为新课的学习做好铺垫。

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿

九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:引导学生回顾本节课的学习内容,进行自我评价,总结学习收获和不足。
2.同伴互评:组织学生相互评价,提出改进建议,促进相互学习。
3.教师评价:教师针对学生的课堂表现、作业完成情况进行评价,给予有效的反馈和建议。
(五)作业布置
课后作业布置如下:
3.情感态度与价值观目标:
(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)了解旋转在实际生活中的应用,体会数学与现实生活的联系,增强数学应用意识。
(三)教学重难点
1.教学重点:
(1)旋转的定义及三要素。
(2)旋转的性质及其应用。
(3)旋转作图的基本方法。
2.教学难点:
(1)理解旋转的性质,尤其是旋转前后图形的全等关系。
九年级数学上册高效课堂(人教版)23.1图形的旋转说课稿
一、教材分析
(一)内容概述
本节课选自人教版九年级数学上册第23章第1节,主题为“图形的旋转”。该章节在整个课程体系中具有承上启下的作用,既是对以往所学平面几何知识的巩固与拓展,也为后续学习立体几何打下基础。本节课的主要知识点包括:旋转的定义、旋转的性质、旋转作图以及旋转在实际中的应用。
(2)灵活运用旋转作图,正确绘制旋转后的图形。
二、学情分析导
(一)学生特点
本节课面向的是九年级学生,这个年龄段的学生具有较强的逻辑思维能力,好奇心旺盛,喜欢探索新知识。在认知水平上,他们已经具备了一定的几何知识基础,能够理解抽象的几何概念。学习兴趣方面,学生对具有趣味性和挑战性的内容更感兴趣,喜欢通过动手操作来解决问题。然而,部分学生的学习习惯仍需改进,如自主学习能力较弱,对教师的依赖性较强。

23.1图形的旋转(第1课时)教案

23.1图形的旋转(第1课时)教案

课题: 23.1 图形的旋转第一课时主备人:___________ 使用人:__________ 使用时间:______年_____月_____日二、【教学流程】自主探究【探究1】结合上图阅读课本59页,了解旋转,旋转中心,旋转角,对应点等概念像这样,把一个图形绕着转动一个_______.这种图形的变换叫做旋转.点O叫做__________.转动的角叫做_________.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的____________.【探究2】在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′),移开硬纸板.连结OA﹑OB﹑OC﹑OA′﹑OB′﹑OC′,讨论:⑴线段OA与线段OA′间有什么关系?⑵∠ AO A′与∠BOB′有什么关系?⑶△ABC与△A′B′C′形状和大小有什么关系?学生阅读课本并完成探究1独立思考后小组讨论展示讨论结果,相互补充尝试应用【尝试1】如图,△ABO绕点O旋转得到△CDO,则:点B的对应点是点_____;线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是______;旋转中心是点______;旋转的角是 ______.【尝试2】在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12AB.(1)在如图4所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?(2)指出如图4所示中的线段BE与DF之间的关系.教师提出问题学生独立思考解答针对探究1的练习巩固理解认识CABO D补偿提高已知,如图边长为1的正方形EFOG绕与之边长相等的正方形ABCD的中心O旋转任意角度,求图中阴影部分的面积.GEFOCABD分析:连接AO,BO.通过证明两个三角形全等,得出阴影部分面积等于正方形ABCD面积的四分之一.小结1.通过本节课的学习你有什么收获?2. 你还有哪些疑惑?学生独立思考,师生梳理本课的知识点及方法1.图形旋转的概念.2.图形旋转的性质.作业必做:1.教科书61页第1、 2题.2.预习第二课时选做:如图,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=______°教师布置作业,并提出要求.学生课下独立完成,延续课堂.三、【板书设计】四、【教后反思】。

《图形的旋转》教案

《图形的旋转》教案

水平、动手水平,
师生共同探究,旋转的性质
(2)对应点与旋转中心所连 以及与他人合作
结的线段的夹角等于旋转角.
交流的水平,充
(3)旋转前、后的图形全等. 分表达了教师为
4、基本练习(见课件)
主导,学生为主
体的教学思想,
同时也突出了重
学生寻找图形中的基本要素 点,突破难点.同
及其相互间的数量关系
时也体验了研究
学生再次明确旋
2、学生练习(见幻灯)
转的主要因素,
从而让学生在知
识持续重视的基
础上加深理解,
形成水平,实现
本课的知识目
标.
活动五 归纳小结 布置作业
学生交流获得的知识和感受,
通过小结,
(1)本节课你有什么收获?
教师聆听,并与学生交流.
概括出本节课的
(2)1、作业练习:
本次活动中,教师应重点注重: 知 识 与 方 法 . 体

情感 与
态度
经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知 数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作 交流活动,培养学生合作学习的意识和研究探索的精神.
重 点 旋转的相关概念和旋转的基本性质
难 点 探索旋转的基本性质 活动流程图
教学流程安排
活动内容和目的
活动 1:创设情境,导入新课 活动 2:演示导学,形成概念 活动 3:举例应用,加深理解 活动 4:课堂练习,巩固提升 活动 5:归纳小结,布置作业
面积.
G
A
D
O E
在哪里?
通过练习,
学生结合基本概念解题
理解旋转的基本
2、基本练习:(见课件)
概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵ AF 是AE 的对应边
∴ AF = AE = 1 7 (对应边相等)
4
(4)∵ ∠EAF=90°(与旋转角相等) 且 AF=AE(对应边相等) ∴△EAF是等腰直角三角形。
旋转的基本性质之一
• 图形的旋转是由旋转中心和旋转角度决定。
观察
旋转中心不变,改变旋转角。
这两幅图分别经历 怎样的旋转?有什么不
_6_0__度,其中的对应点有__A_与__B__、 __B_与__C__、 _C__与__D__、 _D__与__E__、 __E_与__F__、 __F_与__A__ 。
杠杆绕支点转动撬起重物,杠杆的旋转中心就 __O__,旋转角是__∠_A__O_A_′___或__∠__B_O_B__′ _____。
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。
旋转的三要素
• 旋转中心 • 旋转方向 • 旋转角度
B′
B A A′ 35°60° O
B′ A
1C00°
A′
B
O
C′
观察
A
点A、线段AB、∠ABC 分别旋转到了什么位置?
B
OC上截取OA′=OA 。
3. 连接OB 。
4. 作∠BOD=100°,
在OD上截OB′=OB 。
D B′
O
A
5. 连接A′B′,则
△OA′B′即为所求作。
注:作旋转后的图形可以转化为作旋转后的对应点。
例题
四边形ABCD是边长为1的正方形,且DE= 1 ,
△ABF是△ADE的旋转图形。
4
(1)旋转中心是哪一点?点A 。
• 旋转前、后的图形全等。
方法?
• 图形的旋转是由旋转中心和旋转角决定。
• 图形的旋转不改变图形的形状、大小,只改变图 形的位置。
证明:△ABC≌ △A′B′C′。
三角形中的边角相等关系
AB=A′B′
BC=B′C′
SSS SAS ASA
CA=C′A′ ∠ABC=∠A′B′C′ ∠BCA=∠B′C′A′
显然,画出后的图 案不是菊花,而是另外 的一种花了.
10. 如图所示的方格纸中,将△ABC向右平 移8格,再以O为旋转中心逆时针旋转90°,画 出旋转后的三角形。
C
O
B A
11. 将点阵中的图形绕点O按逆时针方向旋转 900,画出旋转后的图形。

解:面积不变。
理由:设任转一角度,如图所示。
在Rt△ODD′和Rt△OEE′中
解:(1)连结OA (2)以O点为圆心,OA长为半径
旋转45°,得A。 (3)依此类推画出旋转角分别为
90°、135°、180°、225°、270°、 315°的A、A、A、A、A、A。
(4)按菊花一叶图案画出各菊花 一叶。
那么所画的图案就是绕O点旋转后 的图形。
9. 如图,如果上面的菊花一叶,绕下面的 点O′为旋转中心,请同学画出图案,它还是原 来的菊花吗?
随堂练习
1. 钟表的分针匀速旋转一周需要60分。 (1)指出它的旋转中心; (2)经过20分,分针旋转了多少度?
2. 本图案可以看做是一个菱形通过几次旋 转得到的?每次旋转了多少度?
5次。 60°, 120°, 180°, 240°, 300°
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的心针动指固当了针定成_在1_点一2_不0_转个°_停_动图地度一形转。定,动角那,度么从。它12可时到4
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
知识要点
P


旋转角 点
O 120
旋转中心
P′
把一个图形绕着某点O沿某个方向转动 一个角度的图形变换叫做旋转(rotation)。
例题
如图,四边形ABCD、四边形EFGH都是边长 为1的正方形。
(1)这个图案可以看做是哪个“基本图案”通 过旋转得到的?
(2)请画出旋转中心和旋转角。
(3)指出经过旋转,点A、B、C、D分别移到 什么位置?
13. K是正方形ABCD内一点,以AK为一边作正 方形AKLM,使L、M在AK的同旁,连接BK和DM, 试用旋转的思想说明线段BK与DM的关系。
解:∵四边形ABCD、四边形 AKLM是正方形
∴AB=AD,AK=AM,且 ∠BAD=∠KAM为旋转角且为 90°
∴△ADM是以A为旋转中心, ∠BAD为旋转角由△ABK旋转 而成的
AAS ∠CAB=∠C′A′B′
证三角形全等的方法
例题
将A点绕O沿顺时针方向旋转60˚。
点的旋转作法
B
A
O
作法: 1. 以O为圆心,OA长为半 径画圆; 2. 连接OA,用量角器或三 角板(限特殊角)作出∠AOB, 与圆周交于B点; 3. B点即为所求作。
例题 将线段AB绕O沿顺时针方向旋转60˚。
能。看做是一条边(如 线段AB)绕O点,按照同 一方法连续旋转60°、 120°、180°、240°、 300°形成的。
6. △ABC绕C点旋转后,顶点A的对应点为 点D,试确定顶点B•对应点的位置,以及旋转 后的三角形。
解:(1)连结CD (2)以CB为一边作∠BCE, 使得∠BCE=∠ACD (3)在射线CE上截取
【过程与方法】
➢ 经历探索图形在旋转变换中的变化情况的过 程,体会旋转变换对研究图形变化的重要性。
【情感态度与价值观】
➢ 经历对生活中旋转图形的观察、讨论、实践 操作,使学生感知数学美,培养学生学习数学 的兴趣和热爱生活的情感。
教学重难点
➢ 探索图形旋转的特征,能准确找出旋转前 后图形中的对应点、对应线段、对应角、旋 转中心、旋转角。 ➢ 学会按一定的角度有规律的旋转。
∴BK=DM
14. P是等边ABC内的一点,把ABP按不同的方 向通过旋转得到BQC和ACR,
(1)指出旋转中心、旋转方向和旋转角度? (2) ACR是否可以直接通过把BQC旋转得到?
A
R
P
B
C
Q
15. 画出△ABC绕点C按顺时针方向旋转 120°后的对应的三角形。
M
D
B N
E
A
C
到△A1/6B./将C 等边△ABC绕着B/点O按某个方向旋转90°后得
同?
30°
60°
图1
四边形ABCD绕点O 顺时针旋转30°。
图2
四边形ABCD绕点O 顺时针旋转60°。
旋转角不变怎,样的这改旋两变转幅旋?图有分转什别中么经心不历。
同?
30°
30°
图3
四边形ABCD绕点 O1 顺时针旋转30°。
图4
四边形ABCD绕点 O2 逆时针旋转30°。
归纳
因此,选择不同的旋转角, 不同的旋转中心,会出现不同的 效果,我们可以经过旋转,设计 出美丽的图案。
线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
点D和点E的位置 (3)旋转角是什么?∠AOD和∠BOE都是 (4)AO与DO的长有什么关系?BO与EO呢?
AO=DO,BO=EO (5)∠AOD与∠BOE有 什么大小关系?
∠AOD=∠BOE
5. 如图,O是六个正三角形的公共顶点,正 六边形ABCDEF能否看做是某条线段绕O点旋转 若干次所形成的图形?
B
对应点 点A 对应边 线段AB 对应角 ∠ABC

C A´
O

点A´
线段A´B´
∠A´ B´ C´
观察
△ABO绕点O旋转得到△CDO,则:
点B的对应点是___点__D___; 线段OB的对应线段是_线__段__O__D_; 线段CD的对应线段是_线__段__A_B__; ∠AOB的对应角是_∠__C_O__D__; ∠B的对应角是___∠__D___; 旋转中心是___点__O___; 旋转角是___∠__A_O__C_、_∠__B__O_D__;
CB′=CB 则B′即为所求的B的对应点。 (4)连结DB′ 则△DB′C就是△ABC绕C点 旋转后的图形。
7. 如图,ΔDEF是由△ABC绕某一中心旋转一定 的角度得到,请你找出这旋转中心。
C
A
D B
E
O
F
旋转中心在对应点连 线的垂直平分线上。
8. 如下图是菊花一叶和中心与圆圈,现以O•为 旋转中心画出分别旋转45°、90°、135°、180°、225°、 270°、315°的菊花图案。
A/ A
C/
O
B
C
17. 两个边长为1的正方形,如图所示, 让一 个正方形的顶点与另一个正方形中心重合,不难 知道重合部分的面积为,现把其中一个正方形固 定不动,另一个正方形绕其中心旋转,问在旋转 过程中,两个正方形重叠部分面积是否发生变化? 说明理由。
奔驰旋车转汽的车摩标天志楼
自己动手画一包 含旋转的图案
课堂小结
1. 旋转的定义:
把一个图形绕着某点 O 沿某个方向转动一 个角度的图形变换叫做旋转。
相关文档
最新文档