初中几何图形题解题技巧

合集下载

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。

那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。

一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中二年级几何学习技巧利用分数解决几何问题

初中二年级几何学习技巧利用分数解决几何问题

初中二年级几何学习技巧利用分数解决几何问题初中二年级几何学习技巧:利用分数解决几何问题初中阶段是学习几何的关键时期,掌握好几何学习的技巧对于学生们的数学成绩至关重要。

本文将介绍一些初中二年级学生可以利用分数来解决几何问题的技巧。

一、分数的引入和理解在学习几何时,我们经常会遇到分数的概念。

分数可以表示图形的部分与整体之间的比例关系,因此在解决几何问题时,合理运用分数是很重要的。

首先,我们需要引入分数的概念,让学生理解分数的含义和使用场景。

例如,在解决长度比例问题时,我们可以让学生使用分数表示两个线段的比例关系。

通过将线段等分、测量线段长度等活动,让学生逐渐理解分数的表示方法和意义。

二、在平面几何中应用分数1. 利用分数计算图形面积学生可以利用分数计算简单图形的面积,如矩形、三角形等。

以矩形为例,学生可以按照以下步骤进行计算:(1)将矩形分割成若干个小正方形或小矩形;(2)统计小矩形的数量;(3)以小矩形面积为单位,计算整个矩形的面积。

2. 利用分数计算图形的比例尺在图形的缩放和变形问题中,比例尺的计算是必不可少的。

学生可以利用分数来计算图形的放大或缩小比例。

例如,当要求将一个图形放大到原来的两倍时,学生可以使用2/1来表示放大的比例。

三、在空间几何中应用分数1. 利用分数计算体积在学习立体几何时,计算体积是常见的问题。

通过将立体图形分割为小块,然后计算小块的体积并加总,学生可以利用分数来计算立体图形的体积。

2. 利用分数计算表面积同样,在计算立体图形的表面积时,也可以运用分数。

将立体图形分解成各个面的组合,计算每个面的面积再求和,就可以得到立体图形的表面积。

四、综合运用分数解决几何问题通过以上的技巧,学生可以逐渐掌握在几何问题中使用分数的能力。

在实际解题时,学生还需要注意几何问题的转化,将问题转化为使用分数进行计算的形式。

例如,当要求计算一个图形的面积时,学生可以先寻找到具体的形状,然后根据分数计算对应形状的面积并进行相应的运算,最后得到结果。

中考几何解题技巧

中考几何解题技巧

中考几何解题技巧
中考几何解题技巧主要包括以下几点:
1. 图形认知:首先要熟悉常见的几何图形,了解它们的性质和特点。

通过练习和观察,掌握直线、角、三角形、四边形等基本图形的定义和性质。

2. 绘制图形:遇到几何问题时,尽量将图形绘制出来,并按照已知条件进行标记。

这样有助于更好地理解问题并找出解题思路。

3. 利用几何定理和公式:根据题目给出的条件,运用几何定理和公式进行推理和计算。

例如,利用三角形内角和为180度、相似三角形的性质、平行线的性质等。

4. 利用对称性质:如果题目中存在图形的对称性质,可以利用对称性进行推理和计算。

例如,利用对称轴或对称图形的对应部分相等的特点。

5. 利用反证法:有时候可以运用反证法进行证明或推理。

假设结论不成立,然后推导出矛盾的结论,从而证明所假设的条件是正确的。

6. 多角度思考:如果某种方法无法解决问题,可以尝试从不同的角度思考,寻找其他可能的解决办法。

灵活运用多种方法可以提高解题效率。

7. 培养逻辑思维:几何问题常常需要运用逻辑推理和分析能力,在解题过程中
要注重思考和推敲每一步的合理性。

通过不断练习和积累经验,结合上述技巧,可以提高在中考几何题目上的解题能力和应对问题的能力。

初中数学几何动点问题解题技巧

初中数学几何动点问题解题技巧

初中数学几何动点问题解题技巧初中数学中的几何动点问题是一个常见的考点,也是令很多学生感到头疼的问题。

然而,只要掌握了解题技巧,就能够迎刃而解。

下面,我们就一起来了解一下初中数学几何动点问题解题技巧吧!一、建立坐标系首先,我们需要建立一个适合题目的坐标系,把图形往坐标系上放。

这个坐标系可以是平面直角坐标系或极坐标系,具体是哪种坐标系,需要根据题目要求确定。

二、确定动点接下来,我们需要确定几何图形中的动点,画出动点在坐标系上的轨迹。

通常来说,轨迹可以是一个直线、一个抛物线、一个圆、一个椭圆甚至一个不规则图形等等。

三、列方程有了轨迹,我们就可以根据题目所给条件列出方程,从而解题了。

核心思想是,假设动点的坐标为(x,y),然后利用题目给出的条件,将x和y用一个或多个方程表示出来。

四、解方程列出方程后,我们就可以解方程了。

根据方程的形式不同,我们可以采用不同的方法解方程,如代入法、消元法等等。

五、验证答案最后,我们需要验证答案是否合理。

一般情况下,我们需要将求出的结果代入题目中,看看能否符合题目给出的条件。

如果符合条件,那么我们的答案就是正确的。

在解初中数学几何动点问题时,我们需要注意以下几点:1. 确定坐标系时,要选择适合题目的坐标系。

2. 在列出方程时,要注意是否有无效信息,如引入了负数、零,或者不可取的解等等。

3. 解方程时,要注意正确使用代入法、消元法等各种解法,尤其是在多解的情况下,选择符合题意的解。

4. 最后,做题要认真,润色答案要细心,保证答案的正确性。

通过以上的步骤,我们就能够迎刃而解初中数学几何动点问题,而且效率也会大大提高!。

初中数学几何模型的60种解题技巧

初中数学几何模型的60种解题技巧

初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。

掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。

本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。

1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。

2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。

3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。

4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。

5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。

6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。

7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。

8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。

9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。

10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。

11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。

12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。

13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。

初中几何经典例题及解题技巧

初中几何经典例题及解题技巧

初中几何证明技巧及经典试题证明两线段相等1. 两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

初中几何题解题技巧(带例题)

初中几何题解题技巧(带例题)
S△ACD ,则 S 四边形 EFGO=S 阴影-S△ACD 。四边形 EFGO 的面积为:880 -1500÷2=130(平方厘米)。
练一练 7: 如图 19 所示,已知平行四边形 EFGH 的底是 8 厘米,高是 6 厘 米,阴影部分的面积是 16 平方厘米,求四边形 ABCD 的面积。
八、两次求差法 两次求差法是指根据图形之间相容相斥的原理,通过两次求差求出面积的方 法。 例 8 如图 20,长方形 ABCD 的长是 6 厘米,宽是 4 厘米,求阴影部分的面积。
分析与解:通过作辅助线,可以将三角形 ABC 平均分成 16 个完全一样的小 三角形(如图 11 所示),阴影部分为其中 3 个小三角形,即阴影部分的面积占 三角形 ABC 的面积的。阴影部分的面积为:48×=9(平方分米)。
练一练 4: 如图 12 所示,长方形 ABCD 的长是 10 厘米,宽是 6 厘米,E、F 分别是 AB 和 AD 的中点,求阴影部分的面积。
七、等量代换法 等量代换法是指根据题目中图形之间面积相等的关系,以此代彼,相互替换, 从而求出面积的方法。 例 7 如图 18,长方形 ABCD 的面积为 1500 平方厘米,阴影部分的面积为 880 平方厘米,求四边形 EFGO 的面积。
分析与解:在长方形 ABCD 中,△ABF 与△DBF 同底(即 BF 的长)、等高(即 长方形的宽),所以 S△ABF= S△DBF 。若从这两个三角形中同时减去△BEF, 则剩下的图形面积相等,即:S△ABE=S△DEF 。这样 S 阴影=S 四边形 EFGO+
分析与解:通过仔细观察图形,我们可以发现:在大圆中,与阴影Ⅰ、阴影 Ⅱ、阴影Ⅲ面积相等的图形均有 4 个,其中阴影 1 个,空白 3 个。要求阴影部分 的面积,就相当于把大圆的面积平均分成 4 份,求其中一份的面积,列式为: 3.ቤተ መጻሕፍቲ ባይዱ4×(20÷2)2÷4=78.5(平方厘米)。

初中几何最值问题解题技巧

初中几何最值问题解题技巧

初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。

下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。

例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。

2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。

例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。

利用这些不等式,可以推导出一些关于几何元素的最值关系。

3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。

例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。

对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。

4.利用几何定理:几何定理是解决几何最值问题的有力工具。

例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。

对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。

5.利用数形结合:数形结合是解决几何最值问题的常用方法。

通过将几何问题转化为代数问题,可以更容易地找到问题的解。

例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。

以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答.doc

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答.doc

学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答今天为大家分享10种基本几何图形解题思路,几何证明题,好多都是有一些基本的图形通过旋转变换,拉伸而出来的图形,然后把已知条件再做改变就出来一道新的题目。

很多学霸都是掌握这一规律,就可以轻松解出看似复杂的集合题,下面我们就来看看他们是怎样变形变换的吧!学霸解题思路,初中10种基本几何题型分享,看完证明题轻松解答基本图形(1)这是最常见的直线形状,很简单了,但是有两个重要的规律要记住,若AC=BD则AB=CD,当然相反也是成立的。

基本图形(2)上面一个是线段的最基本的图形,这个是角最基础的图形,这里的规律就是若∠1=∠2,则∠EAC=∠DAB,当然它的逆命题也是成立的。

基本图形(3)——箭头模型这个图形我们在做题时候见得就比较多了,记住一个规律∠1+∠2=∠3+∠4+∠B+∠C,也就是∠BPC=∠A+∠B+∠C。

我们在做题过程中,发现这个形状就能找到这个规律,在我们求角的度数,证明三角形全等等好多情况下都能用到。

基本图形(4)——蝶形这个形状相信都不陌生,都见过它的好多变种,但无论怎么变有一个规律是不会变的,那就是∠A+∠B=∠C+∠D。

基本图形(5)如上图,A、O、B在同一直线上,OD、OE分别平分∠AOC和∠BOC,则有OD⊥OE,或∠DOE=90°。

基本图形(6)上图模型是不是有点熟悉,前面的箭头模型多了点东西,但是如果这个模型还满足BP、CP是角平分线的话,咋还有∠BPC=90°+1/2∠BAC基本图形(7)如上图,①AC平分∠DAB,②AD=CD,③DC∥AB,这个模型如果满足前面三个条件中的任两个,那么就能推出第三个。

基本图形(8)这个是角平分线定理和逆定理的模型不再说了,就是AP 为角平分线,则PC=PB,反过来也成立!基本图形(9)这个图形已经复杂了,严格地说已经不能算基本图形,但在实际应用中比较常见还是单列,它是蝶形,箭头形状组合而成。

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法

初中数学几何常用十大解题方法
初中数学几何是一门非常重要且广泛运用的学科,掌握一些常用的
解题方法能够加深对这门学科的理解,也有助于我们在考试中更为得
心应手。

下面是我总结的初中数学几何常用的十大解题方法。

1. 引理法:在证明一个重要的结论时,我们可以先引入一个类似的但
容易证明的结论,然后再运用这个结论推导得出所要证明的结论。

2. 分类讨论法:将不同情况按照不同性质分为若干个类别,然后分别
进行讨论,最后再根据各个情况得出所要求的答案。

3. 反证法:这种证明方法常用于证明命题的否定。

先假设结论不成立,然后推导得到一个矛盾的结论,说明原命题是成立的。

4. 相似性质法:找出几何图形之间的相似性质,利用这些性质建立几
何方程来求解未知量。

5. 对称性法:通过图形的对称性质,将几何问题转化为已知问题来解决。

6. 等角定理法:利用三角形等角定理推导问题,解决几何题。

7. 重心法:通过计算三角形各顶点的坐标,进而求出三角形的重心坐标,从而解决几何问题。

8. 勾股定理法:利用勾股定理解决几何题,是一种非常常见的解题方法。

9. 同位角反向法:通过同位角的反向推导,建立几何方程求解未知量。

10. 线性规划法:用代数的方法求解对于一些线性方程的优化问题,对
于一些几何问题也可以通过线性规划进行求解。

以上就是初中数学几何常用的十大解题方法,这些方法都有着广泛的
运用场景,希望大家在学习中能够加以应用,并且能够掌握更多的解
题方法。

初中数学:常用几何题的原理及解题思路(基础教资)

初中数学:常用几何题的原理及解题思路(基础教资)

初中数学:常用几何题的原理及解题思路几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助!证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。

在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。

正逆结合,战无不胜。

证明题要用到哪些原理要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题…证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

初中几何题的解题技巧

初中几何题的解题技巧

初中几何题的解题技巧可以归纳为以下几点:
1.认真审题:读题时要理解题意,搞清楚已知条件和要求解的问题。

对于一些较复杂的题目,要反复读几遍,弄清题目的条件和结论,以及各个条件之间的关系。

2.画图分析:对于较复杂的几何题,可以画图进行分析。

先画出图形,再根据题目要求进行标注和解释。

这样可以帮助我们更好地理解题意和分析问题。

3.找出关键点:几何题中往往会有一些关键点,如中点、垂直平分线等。

这些关键点可以帮助我们找到解题的突破口。

4.逆向思维:有时候正向思考问题比较困难,可以从结论出发,逆向推理,找到需要的条件和证明的步骤。

5.分类讨论:对于一些分类讨论的题目,要明确讨论的对象和范围,以及讨论的各个情况之间的联系和区别。

6.善于总结:做完一道几何题后,要总结解题思路和用到的知识点,以及解题的技巧和方法。

这样可以帮助我们更好地掌握解题的方法和思路,提高解题能力。

总之,初中几何题的解题技巧需要平时多加练习和总结。

只有掌握了这些技巧和方法,才能在考试中快速准确地解答几何题。

中考数学几何压轴题解题技巧

中考数学几何压轴题解题技巧

初中几何证明技巧及经典试题证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5 .直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

门.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4•两条平行线的同位角、内错角或平行四边形的对角相等。

5•同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直1•等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4•邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

初二数学几何辅助线解题技巧

初二数学几何辅助线解题技巧

初二数学几何辅助线解题技巧
几何辅助线解题法是初中数学课中常用的一种解题方法。

下文着重介绍在初二的数学课中,如何运用几何辅助线解题的解题技巧和方法。

几何辅助线解题法是将画出几何图形,然后利用几何辅助线,来推断出图形关系,以及可
能存在的解决办法。

其中,几何辅助线可以分为直角尺和极尺两类。

直角尺常用于求解矩形的面积、对边的比例等问题。

其中,我们可以让直角尺的顶点和另
一个边的一个点在一条垂线上,此时此尺可以将这三点所在的两条直线分成等比例的四份;其次,可以将此直角尺直接交叉在图形上画出一个矩形,让其中的两条边分别与其余两点
相连,从而求出这个矩形的面积;最后,我们可以使用直角尺,将图形中两条相对的边分
别比较,以计算其大小比例。

极尺法是一种特殊的几何辅助线,它用来求解多边形的角度、边的比例等问题。

首先,可
以将极尺的顶点作为圆心,根据给定的条件将极尺放在图形中;其次,可以把极尺放于图
形中任意两条边之间,从而根据给定的要求将边扩展并改变比例;最后,可以将极尺放在
多边形的点上求出多边形的夹角大小。

综上考虑,初二的数学课中,几何辅助线解题的技巧大致有以上三种:一是利用直角尺来
求解矩形的面积、对边的比例;二是使用极尺来求多边形的角度、边的比例;三是根据图
形的关系推断出可能的解决办法。

在学习中,学生可以不断练习,以提高自身的几何辅助
线解题能力。

初中数学几何图形中的折叠问题解题思路-word

初中数学几何图形中的折叠问题解题思路-word

初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。

轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为 AB、BC 上的点,沿线段 EF 将 ∠B 折叠,使点 B 恰好落在 AC 上的点 D 处,试问当△ADE 恰好为直角三角形时,此时 BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE =90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。

解答过程:当 ∠ADE = 90°时,如下图所示:证明:先来证明四边形 DEBF 为棱形:∵ 在Rt△ABC 中,∠ACB=90°,∠ADE =90° ,∴ DE∥BC ,∴ ∠DEF = ∠EFB ,又∵ 沿线段 EF 将 ∠B 折叠,∴ DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴ ∠DEF = ∠DFE ,DE = DF = BF ,∴ 四边形 DEBF 为棱形。

(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。

再来证明 R t△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵ 在三角形 ACB 中,DE∥BC ,∴ Rt△ADE ∽ Rt△ACB ,设棱形 DEBF 的边长为 x , 则有 DE = x , AE = 10 - x ,在Rt△ACB 中,AB = 10 , AC = 8 ,由勾股定理得:BC = 6 。

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧

初中数学48个几何模型解题技巧1.了解基本图形的性质,如正方形、长方形、三角形、圆等。

2. 利用相似三角形或等比例线段解决问题。

3. 利用勾股定理或勾股定理的逆定理解决问题。

4. 利用平移、旋转、翻转的性质解决问题。

5. 利用圆的性质解决问题,如切线定理、弦切角定理等。

6. 利用三角形内部角的性质解决问题,如角平分线定理、外角定理等。

7. 利用平行线的性质解决问题,如平行线截割定理、平行四边形性质等。

8. 利用角度的概念解决问题,如同位角、对顶角等。

9. 利用中垂线的性质解决问题,如中垂线定理等。

10. 利用重心的性质解决问题,如重心定理等。

11. 利用向量的概念解决问题,如向量的加减、数量积等。

12. 利用相交线的性质解决问题,如对角线定理、相交弦定理等。

13. 利用相似形的性质解决问题,如面积比、周长比等。

14. 利用三角形的中线、角平分线、高线等性质解决问题。

15. 利用角度的平分线定理、角的外接圆等性质解决问题。

16. 利用正方形、长方形、菱形等图形的性质解决问题。

17. 利用圆锥、圆柱、圆台等图形的性质解决问题。

18. 利用立体几何的性质解决问题。

19. 利用等比例线段的性质解决问题,如中线定理等。

20. 利用三角形的外心、内心、垂心等点的性质解决问题。

21. 利用连线的性质解决问题,如割线定理等。

22. 利用三角形的面积公式解决问题。

23. 利用数学归纳法解决问题。

24. 利用解析几何解决问题。

25. 利用三角函数解决问题。

26. 利用平行四边形的性质解决问题。

27. 利用平面向量的性质解决问题。

28. 利用勾股定理的推广形式解决问题。

29. 利用相似三角形的性质解决问题,如三线共点定理等。

30. 利用相似形与等比例线段的性质解决问题。

31. 利用垂直线的性质解决问题,如垂心定理等。

32. 利用圆的弧长、扇形面积等性质解决问题。

33. 利用三角形的周长、面积等性质解决问题。

34. 利用对称和旋转的性质解决问题。

人教版七年级数学几何图形初步解题技巧总结

人教版七年级数学几何图形初步解题技巧总结

(每日一练)人教版七年级数学几何图形初步解题技巧总结单选题1、如图,∠AOB=68°,OC平分∠AOD且∠COD=15°,则∠BOD的度数为().A.28°B.38°C.48°D.53°答案:B解析:根据OC平分∠AOD且∠COD=15°可得∠AOD=30°,再结合∠AOB=68°即可求得答案.解:∵OC平分∠AOD且∠COD=15°,∴∠AOD=2∠COD=30°,又∵∠AOB=68°,∴∠BOD=∠AOB−∠AOD=38°,故选:B.小提示:本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.2、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.答案:A解析:由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.小提示:本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.3、如图,下列各组角中,表示同一个角的是()A.∠ABE与∠EBC B.∠BAE与∠DACC.∠AED与∠AEB D.∠ACD与∠ADC答案:B解析:根据角的表示方法,用三个字母表示角,顶点字母写在中间,例如∠AOC表示该角是射线OA和线段OC的夹角,据此分析即可.A. ∠ABE表示射线BA,BE的夹角,∠EBC表示射线BE,BC的夹角,不是同一个角,不符合题意;B. ∠BAE表示射线AB,AE的夹角,∠DAC表示射线AD,AC的夹角,是同一个角,符合题意;C. ∠AED表示射线EA,ED的夹角,∠AEB表示射线EA,EB的夹角,不是同一个角,不符合题意;D. ∠ACD表示射线CA,CD的夹角,∠ADC表示射线DA,DC的夹角,不是同一个角,不符合题意.故选B.小提示:本题考查了角的表示方法,理解三个字母表示角的方法是解题的关键.填空题4、如图所示的某种玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm, 为了美观,现要在其表面喷涂油漆,如果喷涂1dm2需用油漆5g,那么喷涂这个玩具共需油漆_________g.答案:140解析:根据题意先求出玩具的表面积,然后再求需要的油漆质量.解:玩具的表面积为:6×(2×2)+4×(1×1)=28平方分米,所以喷涂这个玩具共需油漆28×5=140克.所以答案是:140.小提示:本题主要考查了立体图形的视图问题.解题的关键是能把从不同的方向上看到的图形面积抽象出来(即利用视图的原理),从而求得总面积.5、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的方式滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的点数是_______.答案:2解析:观察图形知道第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,从而确定答案.观察图形知道:第一次点数五和点二数相对,第二次点数四和点数三相对,第三次点数二和点数五相对,第四次点数三和点数四相对,第五次点数五和点二数相对,且四次一循环,∵2021÷4=505…1,∴滚动第2021次后与第一次相同,∴朝下的数字是5的对面2,所以答案是:2.小提示:本题考查了正方体相对两个面上的文字及图形类的变化规律问题,解题的关键是发现规律.解答题6、如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=______,b=_________;(2)先化简,再求值:−3(ab−a2)−[2b2−(5ab−a2)−2ab].答案:(1)−1,−13;(2)2a2+4ab−2b2,289解析:(1)先根据正方体的平面展开图确定a、b、c所对的面的数字,再根据相对的两个面上的数互为倒数,确定a、b、c的值;(2)先去括号,再合并同类项化简代数式后代入求值即可.解:(1)由长方体纸盒的平面展开图知,a与-1、b与-3、c与2是相对的两个面上的数字或字母,因为相对的两个面上的数互为倒数,所以a=−1,b=−13,c=12.所以答案是:−1,−13.(2)−3(ab−a2)−[2b2−(5ab−a2)−2ab]=−3ab+3a2−2b2+5ab−a2+2ab=2a2+4ab−2b2将a=−1,b=−13,代入,原式=2×(−1)2+4×(−1)×(−13)−2×(−13)2=2+43−29=289.小提示:本题考查了正方体的平面展开图、倒数及整式的加减化简求值,解决本题的关键是根据平面展开图确定a、b、c的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何图形题解题技巧
一、分割法
二、添加辅助线法
三、倍比法
四、割补平移法
五、等量代换法
六、等腰直角三角形法
七、扩倍、缩倍法
八、代数法
九、外高法
十、概念法
初中数学学习方法
1.主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。

如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

2.主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

主要原因还是听课过程中不思考惹的祸。

除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!
3.善于总结规律
解答数学问题总的讲是有规律可循的。

在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?
(2)解本题用了哪些基本知识与基本图形?
(3)本题你是怎样观察、联想、变换来实现转化的?
(4)解本题用了哪些数学思想、方法?
(5)解本题最关键的一步在哪里?
(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?
(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?
把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,孩子解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。

4.扩宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

5.必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。

有很多学霸都是因为积极使用了错题本,而考取了高分。

6.“1x5”学习法
“1×5”学习法,就是做一道题,要从五个方面思考,这点可以结合前面说到的“总结规律”“拓展思路”。

五个方面分别为:
①这道题考查的知识点是什么。

②为什么要这样做。

③我是如何想到的。

④还可以怎样做,有其它方法吗?
⑤一题多变看看它有几种变化的形式。

千万不要觉得麻烦,学习习惯的培养最难的就是最初的一个月,这就像火箭升空一样,最难的就是点火起飞阶段,一旦养成了良好的数学学习习惯和思维方式,在今后的学习中就会非常的轻松。

7.独立完成作业
现在很多学生用一些APP来帮助写作业,找个照片就有答案,或者是抄袭其他同学的作业,这可以分两种情况来说,一种是为了图快、求速度,如果经常这样会养成不良的审题习惯,容易走马观花、粗心大意。

还有一种是为了图方便,这会导致同学们养成“怕麻烦”的心理,一旦题目有些难度,自己就开始心烦意乱,思路模糊,因此,大家一定要养成良好的独立完成作业的习惯。

相关文档
最新文档