高中物理临界问题总结

合集下载

临界问题分析法

临界问题分析法

临界问题分析法临界问题的分析方法孟德飞纵观近年来各省高考物理试题,不难发现,各省都越来越重视考查学生对解决物理问题方法的掌握情况。

例如,物理模型法、整体法与隔离法、等效法、图像法、临界问题分析法等。

在问题练习中,同学们要重视解题过程的思维方法训练。

如果同学们能够熟练掌握各种解题方法的特点和技巧,对物理学习就起到事半功倍的效果。

透析近年的高考考题,本文就解决常见的临界问题解题方法进行分析和总结。

临界状态就是指物理现象从一种状态变化成另一种状态的中间过程,这时存在着一个过渡的转折点。

临界问题的分析对象正是临界状态。

与临界状态相关的物理条件则称为临界条件。

临界条件是解决临界问题的突破点,在物理解题中起着举足轻重的作用,解答临界问题的关键是找准临界条件。

临界条件一般是隐藏着的,需要同学们仔细分析题目才能找出来。

但它也有一定规律:题干含有“恰好”、“刚好”、“最小”、“最大”、“至少”、“最多”的词语认真分析找等词语时,该问题一般是临界问题。

审题时,要抓住这些关键出临界条件。

临界问题一般解题模式为:1.找出临界状态及临界条件;2.列出临界点的规3.解出临界量;4.分析临界量列出公式。

律;下面就一些典型试题进行分析总结:一、动力学中的临界问题分析方法动力学中的临界问题比较普遍,例如“物体恰好离开地面”、“物体速度达到最大值时”、“绳刚好碰到钉子”、“物体刚好通过最高点”、“两物体刚好不相撞”、“物体刚好滑出小车”等就是一些题目中常见的临界状态。

相对应的临界条件应该为:临界状态临界条件物体恰好离开(不离开)地面物体不受地面的支持力物体速度达到最大值时物体所受合力为零绳刚好碰到钉子(绳拉物体做圆周运动) 半径突然变小物体刚好通过最高点只有重力提供向心力两物体刚好不相撞两物体接触时速度相等或者最终速度相等物体刚好滑出小车物体滑到小车一端时与车的速度刚好相等例题1. 一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上。

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

高中物理必修一 第四章 专题强化 动力学临界问题

高中物理必修一 第四章 专题强化 动力学临界问题
12345678
当汽车向右匀减速行驶时,设小球所受车后壁弹力为0时(临界状态) 的加速度为a0,受力分析如图甲所示. 由牛顿第二定律和平衡条件得: Tsin 37°=ma0, Tcos 37°=mg, 联立并代入数据得: a0=7.5 m/s2.
12345678
当汽车以加速度a1=2 m/s2<a0向右匀减速行驶时,小球受力分析如图 乙所示. 由牛顿第二定律和平衡条件得: T1sin 37°-FN1=ma1, T1cos 37°=mg, 联立并代入数据得: T1=50 N,FN1=22 N, 由牛顿第三定律知,小球对车后壁的压力大小为22 N.
4.解答临界问题的三种方法 (1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而 找出临界条件. (2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即 假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再 根据实际情况处理. (3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角 函数等,然后根据数学中求极值的方法,求出临界条件.
A.g2
m k
C.g
2m k
√B.g
m 2k
D.2g
m k
12345678
静止时弹簧压缩量 x1=2mk g,分离时 A、B 之间的压 力恰好为零,设此时弹簧的压缩量为 x2,对 B:kx2- mg=ma,得 x2=32mkg,物块 B 的位移 x=x1-x2=m2kg, 由 v2=2ax 得:v=g 2mk,B 正确.
第四章
专题强化
探究重点 提升素养 / 专题强化练
动力学临界问题
学习目标
1.掌握动力学临界问题的分析方法. 2.会分析几种典型临界问题的临界条件.

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高中物理常见临界条件归纳

高中物理常见临界条件归纳
高中物理常见临界条件归纳
临界情况
临界条件
速度达到最大值
物体所受合力为零,加速度等于零
刚好不相撞
两物体最终速度相同或接触时速度相同
(接触式)刚好不分离
速度相同,加速度相同,相互作用力等于零
物体到达极限位置
粒子刚好不飞出电场
轨迹与极板相切或擦边
粒子刚好不飞出电磁场
轨迹与极板磁场边界相切或擦边
物块刚好滑出(滑不出)小车
物块到达小车边沿恰好速度相同
物块恰好能到达某点(等效最高点)
到达该点时物块速度为零
绳约束物体恰好通过最高点
最高点重力提供向心力,
杆约束物体恰好通过最高点
最高点处物体速度为零
(最短),两物体速度相同,不一定等于零
圆形磁场区域半径最小
磁场区域是以公共弦长为直径的圆
绳约束物体摆动遇到(离开)钉子
圆周运动半径变化,拉力发生突变
绳约束临界点
绳子刚好伸直/松弛
绳上拉力为零
绳子刚好被拉断
绳上拉力等于绳子能够承受的最大拉力
使通电导线静止在斜面的最小磁感应强度
安培力平行于斜面,磁感应强度垂直于墙面
两物体距离最近(远)
速度相同
动静分界点
转盘上物体刚好发生滑动
向心力为最大静摩擦力
斜面上物体恰好不滑动时外力取值范围
摩擦力达到最大静摩擦,方向向上/下,物体平衡
运动状态的突变
天车悬挂重物水平运动,天车突然停止
重物由直线运动转为圆周运动,绳子拉力突然增加

高中物理临界极值问题2

高中物理临界极值问题2

v12-v02 0-v12 由 + =4.45 m 2a1 2a2 解得 v1=4 m/s,即要把米袋送到 D 点,传送带 CD 部分的速度 vCD≥v1=4 m/s 米袋恰能运到 D 点所用时间最长为: v1-v0 0-v1 tmax= + =2.1 s a1 a2 若 CD 部分传送带的速度较大,使米袋沿 CD 上滑时所受摩擦力一 直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为 a2 1 由 sCD=v0tmin+ a2tmin 2,得 tmin=1.16 s 2 所以,米袋从 C 端到 D 端所用的时间 t 的范围为 1.16 s≤t≤2.1 s.
当传送带的速度大于 10 m/s 后, 旅行包加速直至与传送带有 共同速度后再抛出, 旅行包加速到 B 点恰好与传送带有共同 速度的临界速度为 v′,由 v′2-v2=2 μgL 得 v′=14 m/s. 当传送带的速度大于 14 m/s 后, 旅行包到达 B 点也没有加速 到传送带的速度,包的速度总等于 14 m/s,平抛的水平距离 2h x=v′· t=14× g =4.2 米.见图
(3)设皮带轮以不同的角速度顺时针匀速转动, 在图 6 中画出 旅行包落地点距 B 端的水平距离 x 随皮带轮的速度 v 变化的 图象.
图5
解析
图6
(1)v= v02-2aL= v02-2μgL=2 m/s.包的落地点距 2×0.45 2h B 端的水平距离为 x=vt=v m=0.6 m. g =2× 10
图 3
环内侧做圆周运动,为保证小球能通过环的最高点,且不 ( )
解析
为保证小球能通过环的最高点,对小球在最高点进行 v2 受力分析,临界条件下是小球只受重力,由 mg=m r 知小球 在最高点时的速度至少为 v= gr 从小球开始运动到最高点过程由机械能守恒定律得 1 1 2 2 mv = mv +2mgr 2 1 2 小球在最低点时 v1= 5gr 所以小球在最低点时的瞬时速度至少为 v1min= 5gr, 正确. C 如果要使环不会在竖直方向上跳起,则在最高点时小球对 A 的弹力最多为 FN′=5mg,A 对小球的竖直向下的弹力最多 为 FN=FN′=5mg, 对小球在最高点进行受力分析可知 FN+ v′2 mg=m r

牛顿第二定律的临界问题

牛顿第二定律的临界问题
公式
F=ma,其中F表示作用力,m表示物 体的质量,a表示物体的加速度。
适用范围与限制
适用范围
适用于宏观低速物体,即物体速度远小于光速的情况。
限制
不适用于微观粒子或高速运动的情况,此时需要考虑相对论效应。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,为物 理学和工程学提供了重要的理论支持。
流体动力学临界问题主要研究流体在流速达 到极限状态时的流动规律和受力情况。
详细描述
当流体的流速达到极限值时,如湍流或流体 中的音速,其流动规律和受力情况会发生显 著变化。在流体动力学临界问题中,需要运 用牛顿第二定律和流体动力学的基本原理, 分析流体的流动规律和受力情况,以确定其 极限流速和安全系数。
在物理教学中的应用
高中物理教学
高中物理教学中,牛顿第二定律临界问题是一个重要的知识点, 有助于学生理解力和运动的关系。
大学物理教学பைடு நூலகம்
在大学物理教学中,牛顿第二定律临界问题可以帮助学生深入理解 力学的基本原理,提高他们的科学素养。
物理竞赛
在物理竞赛中,牛顿第二定律临界问题是一个常见的考点,有助于 选拔具有潜力的优秀学生。
利用牛顿第二定律临界问题,工程师 可以优化车辆的动力学设计,提高车 辆的稳定性和安全性。
在机械系统设计中,牛顿第二定律临 界问题可以帮助工程师优化机器的性 能,提高机器的工作效率和稳定性。
航空航天设计
在航空航天领域,牛顿第二定律临界 问题被广泛应用于飞行器的设计和优 化,以确保飞行器的稳定性和安全性。
在物理、工程和科学实验等领域中, 当需要精确地找出临界点和临界条件 时,解析法具有广泛的应用价值。
解析法的优缺点分析

高中物理的临界问题解析

高中物理的临界问题解析
• (3)若被追赶的物体做匀减速运动,一定要注意 追上前该物体是否已停止运动.
例3 .甲火车以4m/s的速度匀速前进,这时乙 火车误入同一轨道,且以20m/s的速度追向 甲车.当乙车司机发现甲车时两车仅相距 125m,乙车立即制动,已知以这种速度前 进的火车制动后需经过200m才能停止,问 两车是否发生碰撞?
力和绳的拉力作用,绳与水平方向的夹角未知, 题目中要求a=10 m/s2时绳的拉力及斜面的支 持力,必须先求出小球离开斜面的临界加速度 a0.(此时临界条件,小球所受斜面支持力恰好 为零)
由mgcotθ=ma0 所以a0=gcotθ=7.5 m/s2
因为a=10 m/s2>a0 所以小球离开斜面N=0,小球受力情况如图,
分析:A.B物体间不发生相对 滑动F的最大值,A向前运动 靠静摩擦力提供最大加速度
AF B
点击高考2:(2011天津卷2 )如图所示,
A、B两物块叠放在一起,在粗糙的水平面 上保持相对静止地向右做匀减速直线运动, 运动过程中B受到的摩擦力( )
A.方向向左,大小不变
B.方向向左,逐渐减小
C.方向向右,大小不变
斜面静止时,球紧靠在斜面上,绳
与斜面平行,不计摩擦,当斜面以 10 m/s2的加速度向右做加速运动时, 求绳的拉力及斜面对小球的弹力.
分析:极限法,当加速度a较小时,小球与斜面 体一起运动,此时小球受重力、绳拉力和斜面 的支持力作用,绳平行于斜面,当加速度a足 够大时,小球将“飞离”斜面,此时小球受重
D.方向向右,逐渐减小
例10.如图所示,质量均为M的两个木块A、B 在水平力F的作用下,一起沿光滑的水平面 运动,A与B的接触面光滑,且与水平面的 夹角为60°,求使A与B一起运动时的水平 力F的范围。

高中物理常见的重要临界状态及极值条件

高中物理常见的重要临界状态及极值条件

1.雨水从水平长度一定的光滑斜面形屋顶流淌时间最短——屋面倾角为45°。

2.从长斜面上某点平抛出的物体距离斜面最远——速度与斜面平行时刻。

3.物体以初速度沿固定斜面恰好能匀速下滑(物体冲上固定斜面时恰好不再滑下)—μ=tgθ。

4.物体刚好滑动——静摩擦力达到最大值。

5.两个物体同向运动其间距离最大(最小)——两物体速度相等。

6.两个物体同向运动相对速度最大(最小)——两物体加速度相等。

7.位移一定的先启动后制动分段运动,在初、末速及两段加速度一定时欲使全程历时最短——中间无匀速段(位移一定的先启动后制动分段匀变速运动,在初速及两段加速度一定时欲使动力作用时间最短——到终点时末速恰好为零)8.两车恰不相撞——后车追上前车时两车恰好等速。

9.加速运动的物体速度达到最大——恰好不再加速时的速度。

10.两接触的物体刚好分离——两物体接触但弹力恰好为零。

11.物体所能到达的最远点——直线运动的物体到达该点时速度减小为零(曲线运动的物体轨迹恰与某边界线相切)12.在排球场地3米线上方水平击球欲成功的最低位置——既触网又压界13.木板或传送带上物体恰不滑落——物体到达末端时二者等速。

14.线(杆)端物在竖直面内做圆周运动恰能到圆周最高点—最高点绳拉力为零(=0v杆端)15.竖直面上运动的非约束物体达最高点——竖直分速度为零。

16.细线恰好拉直——细线绷直且拉力为零。

17.已知一分力方向及另一分力大小的分解问题中若第二分力恰为极小——两分力垂直。

18.动态力分析的“两变一恒”三力模型中“双变力”极小——两个变力垂直。

19.欲使物体在1F2F两个力的作用下,沿与1F成锐角的直线运动,已知1F为定值,则2F最小时即恰好抵消1F在垂直速度方向的分力。

20.渡河中时间最短——船速垂直于河岸,即船速与河岸垂直(相当于静水中渡河)。

21.船速大于水速的渡河中航程最短——“斜逆航行”且船速逆向上行分速度与水速抵消。

高中 高考物理 圆周运动的临界问题

高中 高考物理  圆周运动的临界问题

[跟进训练] 2.( 多选 )(2017· 河北石家庄质检 ) 如图所 示,长为 3L 的轻杆可绕光滑水平转轴 O 转 动,在杆两端分别固定质量均为 m 的球 A、 B,球 A 距轴 O 的距离为 L。现给系统一定 能量,使杆和球在竖直平面内转动。当球 B 运动到最高点 时,水平转轴 O 对杆的作用力恰好为零,忽略空气阻力, 已知重力加速度为 g,则球 B 在最高点时,下列说法正确 的是( )
[解析]
当小球到达最高点且杆的弹力为零时,重力提
v2 供向心力, 有 mg=m R , 解得 v= gR, 即当速度 v= gR时, 杆所受的弹力为零,故 A 正确;小球通过最高点的最小速度 为零,故 B 错误;小球在最高点,若 v< gR,则有 mg-F v2 =m R ,杆对小球的作用力随着速度的增大而减小,若 v2 v> gR,则有 mg+F=m R ,杆对小球的作用力随着速度增 大而增大,故 C、D 错误。 [答案] A
|竖直平面内圆周运动的临界
问题——轻杆模型
如图所示, 小球固定在轻杆上, 在竖直平面内做圆周运动, 或小球在竖直放置的光滑圆管中运动。该题型的特点是小 题 球到达最高点时杆不但可以对小球有拉力,还可以对小球 型 产生支持力,而光滑圆管不仅可以对小球产生向下的压 简 力,还可以对小球产生向上的支持力。 述
A. 3mg C.3mg
B.2mg D.4mg
解析:选 A 当小球到达最高点时速率为 v, v2 两段线中张力恰好均为零,有 mg=m r ;当小球 到达最高点时速率为 2v,设每段线中张力大小为 2v2 F,作出示意图如图所示,应有 2Fcos 30° +mg=m r ; 解得 F= 3mg,选项 A 正确。
A.球 B 的速度为零 B.球 B 的速度为 2gL C.球 A 的速度为 2gL D.杆对球 B 的弹力方向竖直向下

高中物理板块中的临界问题汇总

高中物理板块中的临界问题汇总

高中物理板块中的临界问题汇总
常见模型1 光滑水平面
运动情况(A、B质量分别为m1, m2;
A与B间的动摩擦因数为μ)
⑴F≤,两者相对静止;
⑵F>,两者相对滑动。

⑴F≤,两者相对静止;
⑵F>,两者相对滑动。

常见模型2 粗糙水平面
运动情况(A、B质量均为m,
A与B间,B与地面间动摩擦因数均为μ)
⑴F≤,A、B均静止;
⑵<F≤两者相对静止;a A=a B=
⑶F>,两者相对滑动。

a A= ,a B= 。

⑴F≤,A、B均静止;
⑵F>,A,B。

a A= ,a B= 。

常见模型3 粗糙水平面
运动情况(A、B质量均为m,
A与B间,B与地面间动摩擦因数分别为μ,0.3μ)
⑴F≤,A、B均静止;
⑵<F≤
两者相对静止;a A=a B=
⑶F>,两者相对滑动。

a A= ,a B= 。

⑴F≤,A、B均静止;
⑵<F≤
两者相对静止;a A=a B=
⑶F>,两者相对滑动。

a A= ,a B= 。

常见模型4
运动情况(A、B质量均为m,
A与B间,B与地面间动摩擦因数分别为μ1、μ2)
v-t图象
光滑水平面A减速,B ,达到共同速度后
两者;
滑块A木板B
粗糙水平面⑴μ1mg≤2μ2mg;B ,A减速至静止;
⑵μ1mg>2μ2mg;B 至共速,
后两者。

滑块A木板B(2)。

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

好---高中物理力学中的临界问题分析

好---高中物理力学中的临界问题分析

高中物理力学中的临界问题分析1、运动学中的临界问题例题一:一辆汽车在十字路口等待绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车.试问:(1)汽车从路口开动后,在赶上自行车之前经过多长时间两车相距最远?此时距离是多少?(2)当两车相距最远时汽车的速度多大?例题二、在水平轨道上有两列火车A和B相距s,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度为a的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A车的初速度v0应满足什么条件?针对练习:(07海南卷)两辆游戏赛车、在两条平行的直车道上行驶。

时两车都在同一计时线处,此时比赛开始。

它们在四次比赛中的图如图所示。

哪些图对应的比赛中,有一辆赛车追上了另一辆(AC)二、平衡现象中的临界问题例题:跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).针对练习1:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F针对练习2:(98)三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳A、必定是OAB、必定是OBC、必定是OCD、可能是OB,也可能是OC三、动力学中的临界问题例题一:如图所示,在光滑水平面上叠放着A、B两物体,已知m A=6 kg、m B=2 kg,A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20N,现水平向右拉细线,g取10 m/s2,则 ( )A.当拉力F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受A的摩擦力等于4 ND.无论拉力F多大,A相对B始终静止针对练习:(2007)江苏卷如图所示,光滑水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg。

《高中物理---动力学中的临界极值问题和传送带问题》优秀文档

《高中物理---动力学中的临界极值问题和传送带问题》优秀文档

动力学中的临界极值问题动力学中极值问题的临界条件和处理方法1.“四种”典型临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.2.“四种”典型数学方法 (1)三角函数法; (2)根据临界条件列不等式法;(3)利用二次函数的判别式法;(4)极限法. 【练习】1.如图所示,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静止,用大小等于mg 的恒力F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mg hD .在B 与A 分离之前,它们做匀加速直线运动2. (多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( )A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3.如图所示,物体A 放在物体B 上,物体B 放在光滑的水平面上,已知m A =6 kg ,m B =2 kg.A 、B 间动摩擦因数μ=0.2.A 物体上系一细线,细线能承受的最大拉力是20 N ,水平向右拉细线,下述中正确的是(g 取10 m/s 2)( )A .当拉力0<F <12 N 时,A 静止不动B .当拉力F >12 N 时,A 相对B 滑动C .当拉力F =16 N 时,B 受到A 的摩擦力等于4 ND .在细线可以承受的范围内,无论拉力F 多大,A 相对B 始终静止 4.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小. (2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?“传送带模型”问题分析传送带问题的三步走1.初始时刻,根据v物、v带的关系,确定物体的受力情况,进而确定物体的运动情况.2.根据临界条件v物=v带确定临界状态的情况,判断之后的运动形式.3.运用相应规律,进行相关计算.【练习】5.(多选)如图所示,水平传送带A、B两端相距x=4 m,以v0=4 m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A端,由于煤块与传送带之间有相对滑动,会在传送带上留下划痕.已知煤块与传送带间的动摩擦因数μ=0.4,取重力加速度大小g=10 m/s2,则煤块从A运动到B的过程中()A.煤块到A运动到B的时间是2.25 s B.煤块从A运动到B的时间是1.5 sC.划痕长度是0.5 m D.划痕长度是2 m6.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从Α到Β端一直做匀加速运动,且加速度a≥g sinθ7.(多选)如图所示,水平传送带A、B两端相距x=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是()A.若传送带不动,v B=3 m/sB.若传送带逆时针匀速转动,v B一定等于3 m/sC.若传送带顺时针匀速转动,v B一定等于3 m/sD.若传送带顺时针匀速转动,有可能等于3 m/s8.如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8.g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.9.如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距L=5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物体从A点到达B点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少?。

高中物理常见临界条件汇总,学霸都收藏的干货知识!

高中物理常见临界条件汇总,学霸都收藏的干货知识!
绳刚好被拉直
绳上拉力为零
绳刚好被拉断
绳上的张力等于绳能承受的最大拉力
运动的突变
天车下悬挂重物水平运动,天车突停
重物从直线运动转为圆周运动,绳拉力增加
绳系小球摆动,绳碰到(离开)钉子
圆周运动半径变化,拉力突变
物体刚好滑出(滑不出)小车
物体滑到小车一端时与小车的速度刚好相等
刚好运动到某一点(“等效最高点”)
到达该点时速度为零
绳端物体刚好通过最高点
物体运动到最高点时重力(“等效重力”)等于向心力速度大小为
杆端物体刚好通过最高点
物体运动到最高点时速度为零
某一量达到极大(小)值
双弹簧振子弹簧的弹性势能最大
弹簧最长(短),两端物体速度为零
圆形磁场区的半径最小
磁场区是以公共弦为直径的圆
使通电导线在倾斜导轨上静止的最小磁感应强度
安培力平行于斜面
两个ห้องสมุดไป่ตู้体距离最近(远)
速度相等
动与静的分界点
转盘上“物体刚好发生滑动”
向心力为最大静摩擦力
刚好不上(下)滑
保持物体静止在斜面上的最小水平推力
拉动物体的最小力
静摩擦力为最大静摩擦力,物体平衡
关于绳的临界问题
临界情况
临界条件
速度达到最大
物体所受合外力为零
刚好不相撞
两物体最终速度相等或者接触时速度相等
刚好不分离
两物体仍然接触、弹力为零
原来一起运动的两物体分离时不只弹力为零且速度和加速度相等
运动到某一极端位置
粒子刚好飞出(飞不出)两个极板间的匀强电场
粒子运动轨迹与极板相切
粒子刚好飞出(飞不出)磁场
粒子运动轨迹与磁场边界相切

浅谈高中物理力学中几种常见的临界问题

浅谈高中物理力学中几种常见的临界问题

浅谈高中物理力学中几种常见的临界问题【摘要】高中物理力学是学生学习物理学中的重要基础课程,其中有几种常见的临界问题需要深入研究。

静摩擦力和滑动摩擦力的临界问题涉及物体开始运动的临界情况;弹簧的临界弹性形变问题探讨弹簧达到最大形变时的状态;自由落体速度的临界问题涉及物体落地时的速度;动能和势能的临界转化问题探讨能量转化的临界点;动量守恒的临界问题考察碰撞系统中动量守恒的极限情况。

通过对这些临界问题的研究,有助于学生深入理解物理规律和原理。

未来,物理教育需重视培养学生解决问题的能力,提高实践操作的机会,为学生创造更加丰富的学习环境,进一步推动物理教育的发展。

物理临界问题的讨论将促进学生对物理学的理解和兴趣,培养学生分析问题、解决问题的能力。

【关键词】高中物理力学、临界问题、静摩擦力、滑动摩擦力、弹簧、弹性形变、自由落体、速度、动能、势能、转化、动量守恒、总结、展望、物理教育、发展。

1. 引言1.1 介绍高中物理力学的重要性高中物理力学作为物理学的基础课程,对于学生的科学素养和思维能力培养具有重要意义。

它不仅能帮助学生建立起深厚的物理学基础,还可以培养学生的观察力、实验能力和逻辑思维能力。

通过学习高中物理力学,学生可以深入了解物质的运动规律和相互作用规律,使他们更好地理解周围世界的运行规律。

物理学中的数学运用也可以提高学生的数学素养,使他们在未来的学习和工作中受益匪浅。

在现代科技的发展趋势下,物理学也在不断拓展和深化,高中物理力学作为物理学的起步阶段,为学生打下坚实基础。

通过学习高中物理力学,学生可以引起对物理学的兴趣,培养他们对科学的探索精神,为未来从事科技领域的工作奠定基础。

高中物理力学的重要性不仅在于帮助学生掌握物理学的基本理论知识,更在于培养学生的科学思维和创新能力,为他们未来的发展提供坚实支撑。

1.2 解释临界问题的概念临界问题是高中物理力学中一个非常重要的概念。

在这个概念中,我们关注的是一些特定参数或条件达到某个临界数值时,系统将发生显著的变化或转变。

高中物理 经典复习资料 热学中的临界问题

高中物理 经典复习资料 热学中的临界问题

类型一、升温溢出水银例1粗细均匀的玻璃管的长度L=100cm,下端封闭,上端开口,竖直放置如图1甲所示,在开口端有一段长度为h=25cm的水银柱把管内一段空气封住,水银柱的上表面与玻璃管管口相平.此时外界大气压强为p0=75cmHg,环境温度为t=27℃,现使玻璃管内空气的温度逐渐升高,为使水银柱刚好全部溢出,求温度最低要达到多少开?该温度下空气柱的长度是多少?(假设空气为理想气体)分析与解答此题如果把水银柱刚好全部溢出作为末态,则据气体状态方程,有p0V0/T0=pV/T,即100×75/300=75×100/T,得T=300K.显然,此解不合理,那么应该如何分析呢?设升温后,管内剩下水银柱长度为x,据p0V0/T0=p1V1/T1,得100×75/300=(75+x)(100-x)/T,即T=(1/25)(-x2+25x+7500).上式为温度T与水银柱长度x的函数关系,当x=-25/(2×(-1))=12.5时,有Tm=306.25K.以x为横坐标,T为纵坐标,作T-x图象帮助理解,T-x图象如图1乙所示.从图象分析可以发现,对应T=300K,x有两个值,即x1=25cm,x2=0,表明先升温至T=306.25K后,不需要再加热升温,水银能随气体自动膨胀全部溢出.类型二、倒转溢出水银例2 一端开口、一端封闭且长为L的均匀直玻璃管,内有一段长为h的水银柱封闭了一段空气柱,如图2甲所示.当玻璃管的开口端向上竖直放置时,封闭的空气柱长为a,当缓慢地转动玻璃管,使其开口端竖直向下时,水银不流出,则管中水银柱长度h必须满足什么条件?(设大气压强p0=H水银柱高).分析与解答玻璃管的开口竖直向上时,如图2甲所示.当玻璃管开口转到竖直向下时,水银的一端刚好到达管口而没有流出作为水银不流出的临界状态,如图2乙所示.对甲图,有p1=(H+h),V1=aS.对乙图,有p2=(H-h),V2=(L-h)S.若p1V1=p2V2,水银刚好不溢出;若p1V1>p2V2,说明p2和V2的值均小,V2变大,水银要外流.水银流出后,p2的值也增大,故当p1V1>p2V2时,水银要外流.若p1V1<p2V2,说明V2的值大了,水银上升,将远离管口,V2值变小,p2不变,水银不会流出.综上所述,要使水银不外流,则需p1V1≤p2V2.所以(H+h)aS≤(H-h)(L-h)S,化简得h2-(H+L+a)h+H(L-a)≥0,令h2-(H+L+a)h+H(L-a)=0,得,令y=h2-(H+L+a)h+H(L-a),作出关于y-h的函数图象如图2丙所示,其中,.当y≥0时,有h≤h1或h≥h2,其中要求h+a<L,若题中H、L、a为具体数值,则一定要对结果进行合理取舍.类型三、滴加溢出水银例3一端封闭的玻璃管开口向上,管内有一段高为h的水银柱将一定量的空气封闭在管中,空气柱的长度为L,这时水银柱上面刚好与管口相平.如果实验时大气压为H水银柱,问管中空气柱长度满足什么条件时,继续向内滴加水银,则水银不会流出管口?分析与解答如图3所示,若滴加水银后管内水银柱的高度增加Δh,对封闭的气体来说,压强增加Δh水银柱高,其体积就相应减小,设其体积压缩ΔL·S.当Δh>ΔL时,水银将外流;当Δh<ΔL时,水银不会外流;当Δh=ΔL时,这是水银刚好不外流的临界条件.设水银刚好不外流时,滴加Δh高度的水银柱.于是有p1=(H+h),V1=LS,p2=(H+h+Δh),V2=(L-Δh)S.由玻意耳定律p1V1=p2V2,得(H+h)LS=(H+h+Δh)(L-Δh)S,整理得L=H+h+Δh,又∵ Δh>0,∴ L>H+h.类型四、吸取溢出水银例4粗细均匀的玻璃管长L=90cm,下端封闭,上端开口,竖直放置,如图4所示.有一段高度h=8cm的水银柱把部分气体封闭在玻璃管内,水银面与管口相平,此时p0=76cmHg.现用吸管从管口缓慢地向外吸出水银.讨论为不使气体膨胀过大导致水银外溢,吸出水银柱的长度应满足的条件.分析与解答若吸取水银后管内水银柱的高度减小,对封闭的气体来说,压强减小x(cmHg),其体积就相应增加,设其体积增加y长气柱,显然x=y,是水银刚好不外流的临界条件.设吸取x(cm)长的水银柱后,气体长为(82+y)cm,则初态p1=84cmHg,V1=82·S,末态p2=(84-x)cmHg,V2=(82+y)S,据玻意耳定律p1V1=p2V2,得84×82=(84-x)× (82+y),得y=(84×82)/(84-x)-82,①由题意知y≤x,②即(84×82)/(84-x)≤x,整理得x(2-x)≥0,∵ x>0,∴ x≤2cm.故最多只能吸取2cm长水银柱.类型五、直角弯管内水银柱移动例5 两端开口且足够长的U型管内径均匀,向两侧注入水银,将一定质量的理想气体封闭在管中的水平部分,气柱及水银柱长度如图5所示,大气压强为76cmHg,此时封闭气体温度是15℃,当气柱温度缓慢地升至327分析与解答先假设升温时,左边部分水银刚好全部挤入左侧管内,那么左、右两边管内水银面均升高4cm,气柱长度为18cm,此时两管水银面相平,计算此时对应的温度,再与327℃比较,看是否满足条件.对封闭的气体有初态p1=96cmHg,V1=10S,T1=288K,末态p2=100cmHg,V2=18S,T2=?据p1V1/T1=p2V2/T2,得(96×10)/288=(100×18)/T2,得T2=540K<600K.可见假设不成立.故必有部分气柱进入左侧管内,此时p3=p2=100cmHg.对封闭气体有初态p1=96cmHg,V1=10S,T1=288K,末态p3=100cmHg,V3=?,T3=600K,据p1V1/T1=p3V3/T3,得96×10S/288=100×V3/600,得V3=20S.由于左、右管均开口,且气柱两端与水银分界面处压强均为p3=100cmHg.故只能是左管内水银面升高6cm,右管内水银面升高4cm.则左右两管里水银柱上表面高度差Δh为2cm.类型六、与弹簧相连问题例6 如图6所示,长为2L的圆筒形气缸可沿动摩擦因数为μ的水平面滑动,在气缸中央有一个面积为S的活塞,气缸内气体的温度为T0,压强为p0(大气压强也为p0).在墙壁与活塞之间装有劲度系数为k的弹簧.当活塞处在图中位置时,弹簧恰在原长位置.今加温使气缸内气体体积增加一倍,问气体的温度应达多少?(气缸内壁光滑,活塞和气缸总质量为m)分析与解答本题是气体性质和力学综合题,仔细分析可以发现,摩擦因数大小不同,会出现不同的结果.当气体受热膨胀时气缸始终静止不动是一种结果;在膨胀过程中气缸发生移动将得到另一种结果,下面分两种情况进行讨论.(1)在μmg>kL的情况下,气缸始终处于静止状态.活塞平衡条件为(p-p0)S=kL,据理想气体状态方程,有p0·SL/T0=p·2LS/T,所以T=2T0(1+kL/p0S).(2)在μmg<kL的情况下,整个过程分两个阶段:a.在静摩擦力达到最大值之前,气缸处于静止状态.连结活塞的弹簧被压缩,设压缩量为x时气缸将开始移动,则有kx=μmg,即x=μmg/k,①活塞平衡条件为(p-p0)S=μmg,②式中p为此时的压强,设此时的温度为T′,则据气体状态方程,有p0SL/T0=pS(L+x)/T′,③联立①、②、③式,得T′=(1+μmg/p0S)(1+μmg/kL)T0.④。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理临界问题总结
物理常见临界条件有哪些呢?正在备考的同学们赶紧来看看高中物理知识点物理常见临界条件汇总。

下面是小编为您整理的作文,希望对您有所帮助。

高中物理临界问题总结 1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。

2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。

由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。

在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。

因此,先分析临界条件
物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。

现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是
A.处为拉力,为拉力
B.处为拉力,为推力
C.处为推力,为拉力
D.处为推力,为推力
解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb =
当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的速度vvb时,杆对小球有向上推力,故选A、B正确
评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。

相关文档
最新文档