高一数学对数运算及对数函数精编试题解析
新教材高中数学第4章对数运算与对数函数2 1对数的运算性质巩固练习含解析北师大版必修第一册
2.1对数的运算性质课后训练·巩固提升1.log242+log243+log244等于()A.1B.2C.24D.12242+log243+log244=log24(2×3×4)=log2424=1.故选A.2.化简12log612-2log6√2的结果为()A.6√2B.12√2C.log6√3D.12=log6√12-log62=log6√122=log6√3.故选C.3.方程(lg x)2+(lg 2+lg 3)lg x+lg 2lg 3=0的两根的积x1x2等于()A.lg 2+lg 3B.lg 2lg 3C.16D.-6lg x1+lg x2=-(lg2+lg3),∴lg(x1x2)=-lg6=lg6-1=lg16,∴x1x2=16.故选C.4.21+12log25的值等于()A.2+√5B.2√5C.2+√52D.1+√521+12log25=2×212log25=2×2log2√5=2√5,选B.5.已知a=log32,那么log38-2log36用a表示为()A.a-2B.5a-2+a)2 D.3a-a2-1log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2.6.已知a 23=49(a>0),则lo g23a=.a 23=49,∴a2=64729,∴a=827=(23)3,∴lo g23a=lo g23(23)3=3.7.计算(lg 14-lg25)÷100-12= .14-lg25)÷100-12=(lg 1100)÷10-1=-2×10=-20.208.lg 0.01+log 216的值是 ..01+log 216=lg 1100+log 224=-2+4=2.(lg x )2+lg x 5-6=0.(lg x )2+5lg x-6=0,即(lg x+6)(lg x-1)=0,所以lg x=-6或lg x=1,解得x=10-6或x=10.经检验x=10-6和x=10都是原方程的解,所以原方程的解为x=10-6或x=10.1.计算log 3√2743+lg 25+lg 4+7log 72的值为( ) A.-14B.4C.-154D.154=log 3√274-log 33+lg52+lg22+2=14log 333-1+2lg5+2lg2+2=34-1+2+2=154.2.已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x<4时,f (x )=f (x+1),则f (2+log 23)=( ) A.124 B.112 C.18 D.382+log 23<2+log 24=4,3+log 23>3+log 22=4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23)=(12)3+log 23=(12)3·12log 23=18×13=124.3.若lg a ,lg b 是方程2x 2-4x+1=0的两个实根,则(lg a b )2的值为( ) A.2B.12C.4D.14a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a lg b=22-4×12=2.4.若lg 2=a ,lg 3=b ,则用a ,b 表示lg √45= .√45=12lg45=12lg(5×9)=12lg5+12lg9=12(1-lg2)+lg3=-12lg2+lg3+12=-12a+b+12. -12a+b+125.已知2x =9,log 283=y ,则x+2y 的值为 .2x =9,得log 29=x ,所以x+2y=log 29+2log 283=log 29+log 2649=log 264=6.6.求下列各式的值:(1)log 535+2log 5√2-log 515-log 514; (2)〖(1-log 63)2+log 62·log 618〗÷log 64;(3)lg 5(lg 8+lg 1 000)+(lg 2√3)2+lg 0.06+lg 16.原式=log 535+log 52-log 515-log 514=log 535×215×14=log 535014=log 525=2. (2)原式=[(log 663)2+log 62·log 6362]÷log 64=〖(log 62)2+log 62(log 636-log 62)〗÷log 64=〖(log 62)2+2log 62-(log 62)2〗÷log 64=2log 62÷log 64=log 64÷log 64=1.(3)原式=lg5(3lg2+3)+3(lg2)2+lg 6100-lg6=lg5(3lg2+3)+3(lg2)2+lg6-2-lg6=3·lg5·lg2+3lg5+3·(lg2)2-2=3lg2(lg2+lg5)+3lg5-2=3lg2+3lg5-2=3(lg2+lg5)-2=3-2=1. f (x )=x 2+(lg a+2)x+lg b ,f (-1)=-2,方程f (x )=2x 至多有一个实根,求实数a ,b 的值.f (-1)=-2得,1-(lg a+2)+lg b=-2,所以lg b a =-1=lg 110,所以b a =110,即a=10b.又因为方程f (x )=2x 至多有一个实根,即方程x 2+(lg a )x+lg b=0至多有一个实根,所以(lg a )2-4lg b ≤0,即〖lg(10b )〗2-4lg b ≤0,所以(1-lg b )2≤0,所以lg b=1,b=10,从而a=100. 故实数a ,b 的值分别为100,10.a>1,若对于任意的x ∈〖a ,2a 〗,都有y ∈〖a ,a 2〗满足方程log a x+log a y=3,求a 的取值范围.log a x+log a y=3,∴log a (xy )=3.∴xy=a 3.∴y=a 3x . ∵函数y=a 3x (a>1)在(0,+∞)上是减函数,又当x=a 时,y=a 2,当x=2a 时,y=a 32a =a 22,∴[a 22,a 2]⊆〖a ,a 2〗.∴a 22≥a.又a>1,∴a ≥2.∴a的取值范围为〖2,+∞).。
高一 对数与对数函数知识点+例题+练习 含答案
1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质a >10<a <1图象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0当0<x <1时,y <0 (4)当x >1时,y >0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ )1.(2015·湖南改编)设函数f (x )=ln(1+x )-ln(1-x ),则有关f (x )的性质判断正确的是________(填序号).①奇函数,且在(0,1)上是增函数; ②奇函数,且在(0,1)上是减函数; ③偶函数,且在(0,1)上是增函数; ④偶函数,且在(0,1)上是减函数. 答案 ①解析 易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x=ln ⎝ ⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数.2.设a =log 1312,b =log 1323,c =log 343,则a ,b ,c 的大小关系是________.答案 c <b <a解析 ∵a =log 1312=log 32,b =log 1323=log 332,c =log 343.log 3x 是定义域上的增函数,2>32>43,∴c <b <a .3.函数f (x )=lg(|x |-1)的大致图象是________.(填图象序号)答案 ②解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R .又当x >1时,函数单调递增,所以只有②正确.4.(2015·浙江)若a =log 43,则2a +2-a =________. 答案4 33解析 2a+2-a =4log 32+4log 32-=3log log 322+=3+33=4 33. 5.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,34∪(1,+∞) 解析 当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,34∪(1,+∞).题型一 对数式的运算例1 (1)设2a =5b =m ,且1a +1b =2,则m =________.(2)lg 5+lg 20的值是________. 答案 (1)10 (2)1解析 (1)∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. ∴m =10.(2)原式=lg 100=lg 10=1.思维升华 在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1)计算:(1-log 63)2+log 62·log 618log 64=________.(2)已知log a 2=m ,log a 3=n ,则a 2m +n =________. 答案 (1)1 (2)12 解析 (1)原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.(2)∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =(a m )2·a n =22×3=12.题型二 对数函数的图象及应用例2 (1)函数y =2log 4(1-x )的图象大致是________.(填序号)(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是____________.答案 (1)③ (2)(22,1) 解析 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除①、②; 又函数y =2log 4(1-x )在定义域内单调递减,排除④.故③正确.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝⎛⎦⎤0,12上的图象, 可知f ⎝⎛⎭⎫12<g ⎝⎛⎭⎫12, 即2<log a 12,则a >22,所以a 的取值范围为⎝⎛⎭⎫22,1. 思维升华 应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图象可能是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是____________. 答案 (1)② (2)(10,12)解析 (1)∵lg a +lg b =0,∴ab =1,∵g (x )=-log b x 的定义域是(0,+∞),故排除①. 若a >1,则0<b <1,此时f (x )=a x 是增函数,g (x )=-log b x 是增函数,②符合,排除④.若0<a <1,则b >1,g (x )=-log b x 是减函数,排除③,故填②.(2)作出f (x )的大致图象(图略).由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c ,则-lg a =lg b =-12c +6,∴lg a +lg b =0,∴ab =1,∴abc =c .由图知10<c <12,∴abc ∈(10,12).题型三 对数函数的性质及应用命题点1 比较对数值的大小例3 设a =log 36,b =log 510,c =log 714,则a ,b ,c 的大小关系为__________. 答案 a >b >c解析 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c . 命题点2 解对数不等式例4 若log a (a 2+1)<log a 2a <0,则a 的取值范围是__________. 答案 (12,1)解析 由题意得a >0,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈(12,1).命题点3 和对数函数有关的复合函数 例5 已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由. 解 (1)∵a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. ∴3-2a >0.∴a <32.又a >0且a ≠1,∴a ∈(0,1)∪⎝⎛⎭⎫1,32. (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数. ∵f (x )在区间[1,2]上为减函数,∴y =log a t 为增函数,∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎨⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.思维升华 在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(1)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为____________.(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为__________. (3)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是__________________.答案 (1)c >a >b (2)[1,2) (3)(-1,0)∪(1,+∞) 解析 (1)∵3<2<3,1<2<5,3>2,∴log 33<log 32<log 33,log 51<log 52<log 55,log 23>log 22, ∴12<a <1,0<b <12,c >1,∴c >a >b . (2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).(3)由题意可得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎪⎨⎪⎧a <0,log 12(-a )>log 2(-a ),解得a >1或-1<a <0.2.比较指数式、对数式的大小典例 (1)设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是__________. (2)设a =log 2π,b =log 12π,c =π-2,则a ,b ,c 的大小关系为____________.(3)已知324log 0.3log 3.4log 3.6155()5,=,=,=a b c 则a ,b ,c 大小关系为__________.思维点拨 (1)可根据幂函数y =x 0.5的单调性或比商法确定a ,b 的大小关系,然后利用中间值比较a ,c 大小.(2)a ,b 均为对数式,可化为同底,再利用中间变量和c 比较.(3)化为同底的指数式.解析 (1)根据幂函数y =x 0.5的单调性, 可得0.30.5<0.50.5<10.5=1,即b <a <1;根据对数函数y =log 0.3x 的单调性,可得log 0.30.2>log 0.30.3=1,即c >1.所以b <a <c . (2)∵a =log 2π>log 22=1,b =log 12π=log 21π<log 21=0,0<c =1π2<1,∴b <c <a .(3)c =(15)3log 0.3=53log 0.3-=5310log 3.方法一 在同一坐标系中分别作出函数y =log 2x ,y =log 3x ,y =log 4x 的图象,如图所示.由图象知:log 23.4>log 3103>log 43.6.方法二 ∵log 3103>log 33=1,且103<3.4,∴log 3103<log 33.4<log 23.4.∵log 43.6<log 44=1,log 3103>1,∴log 43.6<log 3103.∴log 23.4>log 3103>log 43.6.由于y =5x 为增函数, ∴52log 3.4>5310log 3>54log 3.6.即52log 3.4>(15)3log 0.3 >54log 3.6,故a >c >b . 答案 (1)b <a <c (2)a >c >b (3)a >c >b温馨提醒 (1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.[方法与技巧]1.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0. 2.对数函数的定义域及单调性在对数式中,真数必须是大于0的,所以对数函数y =log a x 的定义域应为(0,+∞).对数函数的单调性和a 的值有关,因而,在研究对数函数的单调性时,要按0<a <1和a >1进行分类讨论.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性. 4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定. [失误与防范]1.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N *,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.A 组 专项基础训练 (时间:40分钟)1.已知log 7[log 3(log 2x )]=0,那么x 12-=________.答案24解析 由条件知,log 3(log 2x )=1,∴log 2x =3, ∴x =8,∴x12-=24. 2.已知x =ln π,y =log 52,z =e 12-,则x ,y ,z 的大小关系为____________.答案 y <z <x解析 ∵x =ln π>ln e ,∴x >1. ∵y =log 52<log 55,∴0<y <12.∵z =e12-=1e >14=12,∴12<z <1.综上可得,y <z <x .3.已知函数f (x )=⎩⎪⎨⎪⎧3x +1, x ≤0,log 2x , x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是__________.答案 (-1,0]∪(2,+∞)解析 当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,综上所述:-1<x ≤0或x >2.4.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是__________. 答案 (-1,0)解析 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x 1-x,定义域为(-1,1). 由f (x )<0,可得0<1+x 1-x<1,∴-1<x <0. 5.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=________.答案 -1解析 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 245)=-(224log 5+15)=-1. 6.(2015·安徽)lg 52+2lg 2-⎝⎛⎭⎫12-1=________. 答案 -1解析 lg 52+2lg 2-⎝⎛⎭⎫12-1=lg 52+lg 22-2 =lg ⎝⎛⎭⎫52×4-2=1-2=-1.7.设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=_____________________. 答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32.8.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是_____________________________________.答案 (1,2]解析 由题意f (x )的图象如右图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2. 9.已知函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,求a 的取值范围.解 函数y =log 12(x 2-ax +a )是由函数y =log 12t 和t =x 2-ax +a 复合而成.因为函数y =log 12t 在区间(0,+∞)上单调递减,而函数t =x 2-ax +a 在区间(-∞,a 2)上单调递减,又因为函数y =log 12(x 2-ax +a )在区间(-∞,2)上是增函数,所以⎩⎪⎨⎪⎧ 2≤a 2,(2)2-2a +a ≥0,解得⎩⎪⎨⎪⎧ a ≥22,a ≤2(2+1),即22≤a ≤2(2+1).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域;(2)求f (x )在区间[0,32]上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧ 1+x >0,3-x >0,得x ∈(-1,3), ∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在[0,32]上的最大值是f (1)=log 24=2. B 组 专项能力提升(时间:20分钟)11.(2015·陕西改编)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则p 、q 、r 的大小关系是____________.答案 p =r <q解析 ∵0<a <b ,∴a +b 2>ab , 又∵f (x )=ln x 在(0,+∞)上为增函数,∴f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p , 故p =r <q .12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫12,f (2)的大小关系是______________.答案 f (12)<f (13)<f (2) 解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x 2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|, ∴f (12)<f (13)<f (2). 13.若函数f (x )=lg(-x 2+8x -7)在区间(m ,m +1)上是增函数,则m 的取值范围是__________. 答案 [1,3]解析 由题意得⎩⎪⎨⎪⎧m +1≤4,-m 2+8m -7≥0,解得1≤m ≤3, 所以答案应填[1,3].14.已知函数f (x )=ln x 1-x,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是________. 答案 ⎝⎛⎭⎫0,14 解析 由题意可知ln a 1-a +ln b 1-b =0, 即ln ⎝ ⎛⎭⎪⎫a 1-a ×b 1-b =0,从而a 1-a ×b 1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14, 又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14. 15.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)(log a x +2) =12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f (x )取最小值-18时,log a x =-32. 又∵x ∈[2,8],∴a ∈(0,1).∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得.若12(log a 2+32)2-18=1,则a =2-13, 此时f (x )取得最小值时,x =1332(2)=--2∉[2,8],舍去.若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值时,x=(12)32=22∈[2,8],符合题意,∴a=12.。
高中数学必修第一册第4章第8讲对数运算与对数函数(含详细解析)
对数运算与对数函数1下列指数式与对数式互化不正确的一组是( )A . e °= 1 与 ln1 = 0 C . Iog 39= 2 与一 3 1 D . Iog 77= 1 与 7 = 7 2.若 xlog 23= 1,则 3x +9x的值为( ) 6C . 2) lg2- lg3 C .—) B .D . A . 3 B .3. 若2X = 3,则x 等于( A . Iog 32 B .4. 下列等式中一定正确的是( A . _C . _ — — x 的最大整数”,如[-2] =- 2, [ - 1. 5.已知符号[X ]表示“不超过 [log 2-]+[log 厂]+[log 厂]+[log 21]+[Iog 22]+[Iog 23]+[log 24]的值为( A . - 1 B . - 2C . 06. 下列函数是对数函数的是( )A . y = Iog 3 (x+1)B . y = log a (2x ) (a > 0,且 a 丰 1)C . y = InxD .>,且27. 函数f (x ) = ( a +a - 5) log a x 为对数函数,则f (一)等于( A . 3B . - 3C . - log 36&对数式log (a -2) (5 - a )中实数a 的取值范围是()A . (-R, 5)B . (2, 5)C . (2, 3)U( 3, 5)D . (2, +^)=-2, [2.5] = 2,则 ) D . 1)D . - log 389.函数y --------------- 的定义域为()B . [1 , + a)C . [0, -]D . (-a, 0)U(-, +m )214.已知函数f (x )= lg (ax - 2x+a )的值域为R ,则实数a 的取值范围为()A . [ - 1 , 1]B . [0 , 1]C . (-a,- 1)U( 1, +a)D . ( 1 , +a)215. 已知函数f (x )= log a (x+2) +3的图象恒过定点(m , n ),且函数g (x )= mx - 2bx+n 在[1 , + a)上单调递减,则实数 b 的取值范围是()C . (1 , 2)U ( 2, +a ) 10•如图所示曲线是对数函数D . (1, 2)U [3 , +a)y = log a x 的图象,已知a 的取值为,-),则相应11.若A.a vb vc B . b v c v a12.设a = log 43, -0 1b = log 86,c = 0.5 ,则( A .a >b >c B . b > a > c D. , , ,—,则( )C.a v c vb D . b v a v c)C .c > a > bD . c > b > a R ,则 k 的取值范围()A . (0, 一)图象C 1, C 2, C 3, C 4中的a 的值依次为(B .A . [1 , + a)B . [ — 1 , + a)C . (-a,- 1 )D . (-a, 1 )16. 已知定义域为 R 的偶函数f(x )在(0]上是减函数,且>2的解集为( )A .,—B . (2, +C .,- —D .,-17.-—;-a18.已知4 : =8,2 = 9 = 6,且一 — ,贝U a+b = X 49, -tH m 人 占 At TlZ Z —\log 535,则 log 535= 19.设 35 = 右用含x 的形式表示 20. __________________________________________________ 已知 2lg f x -2y )= Igx+lgy ,则—___________________________________________________________ .221. _______________________________________________________ 函数y _ (x +2x - 3)的单调递减区间是 ____________________________________________________ .222. _________________________________________________________________ 若函数y = log a (x - ax+1 )有最小值,则 a 的取值范围是 ____________________________________ . 23. ________________________________________________________________ 已知函数f (x )= lg|x - 1|,下列命题中所有正确的序号是 _______________________________________ .(1)函数f (x )的定义域和值域均为R ;(2) 函数f (x )在(-R,1)单调递减,在(1, +8)单调递增;(3) 函数f (x )的图象关于y 轴对称; (4) 函数f (x+1)为偶函数; (5) 若 f (a )> 0 则 a v 0 或 a > 2. 24. 已知函数 (3 - ax ) (0且a ^± 1)在[0 , 2]上是减函数,则实数范围是 ______________ .25. 若函数f(x )= loga(x - 1)( a > 0且a 丰1)的值域为R ,则实数a 的取值范围是2 226. 函数y =( x ) x +5在2< x < 4时的值域为 ___________ .2,则不等式f(log 4x )a 的取值27. 若24a= 12.将下列各式用a的代数式表示(1)log242; (2) log243.28. 计算下列各式的值:29. 计算下列各式:(只写出结果)(1) —___________(2) Iog23?log34?log45?log52= _______(3) 一(4) = =______(5) 已知:Igx+lgy = 2lg (2x—3y),则30. 已知f( x)= 1+log2x (1 w x w 4),求g (x)= f (x) +f ( x2)的值域.x x+131. 已知函数f (x)= log2 (- 4 +5?2 - 16).(1 )求f (x)的定义域;(2)求f (x)在区间[2 , log27]上的值域.32. 已知函数一(I)若函数f (x)是R上的奇函数,求a的值;(H)若函数f (x)的定义域是一切实数,求a的取值范围;(川)若函数f (x)在区间[0 , 1]上的最大值与最小值的差不小于2,求实数a的取值范围.33.设为奇函数,a为常数.(1)确定a的值(2)求证:f ( 乂)是(1, + 上的增函数m取值> - 恒成立,求实数(3)若对于区间[3 , 4]上的每一个x值,不等式范围.34.已知f (x)是定义在[-1, 1]上的奇函数,且f (1) = 1,若a, b€[ - 1, 1],且a+b^ 0,有---------- > 恒成立.(1)判断f (x)在[-1, 1]上的单调性,并证明你的结论;(2)解不等式 f (Iog2x)v f (Iog43x)的解集;m的取值(3)若f(x)w m2- 2am+1 对所有的x€[ - 1, 1], a €[ - 1, 1]恒成立,求实数范围.。
高一数学对数函数经典题及详细答案
高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。
D、3a-a2/2答案:A。
解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。
解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。
解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。
4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。
解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。
高一数学同步练习——对数函数练习题及解答解析
对数资料(1) 对数与对数函数测试题一、 选择题: 1.已知3a=5b= A ,且a 1+b1= 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x= lg(10a)+lga1,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2) lg x +lg3·lg2 = 0的两根,则x 1x 2的值是( ). (A).lg3·lg2 (B).lg6 (C).6 (D).61 4.若log a (a 2+1)<log a 2a <0,那么a 的取值范围是( ). (A).(0,1) (B).(0,21) (C).(21,1) (D).(1,+∞) 5. 已知x =31log 121+31log 151,则x 的值属于区间( ).(A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lgba )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a= 4b= 6c,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ).(A).20 (B).19 (C).21 (D).22 10.若log 7[ log 3( log 2x)] = 0,则x 21为( ).(A).321 (B).331 (C).21 (D).42 11.若0<a <1,函数y = log a [1-(21)x]在定义域上是( ). (A).增函数且y >0 (B).增函数且y <0 (C).减函数且y >0 (D).减函数且y <012.已知不等式log a (1-21+x )>0的解集是(-∞,-2),则a 的取值范围是( ). (A).0<a <21 (B).21<a <1 (C).0<a <1 (D).a >1 二、 填空题13.若lg2 = a ,lg3 = b ,则lg 54=_____________. 14.已知a = log 7.00.8,b = log 1.10.9,c = 1.19.0,则a ,b ,c 的大小关系是_______________.15.log12-(3+22) = ____________.16.设函数)(x f = 2x(x ≤0)的反函数为y =)(1x f -,则函数y =)12(1--x f 的定义域为________.三、 解答题17.已知lgx = a ,lgy = b ,lgz = c ,且有a +b +c = 0,求xcb 11+·yac 11+·xba 11+的值.18.要使方程x 2+px +q = 0的两根a 、b 满足lg(a +b) = lga +lgb ,试确定p 和q 应满足的关系. 19.设a ,b 为正数,且a 2-2ab -9b 2= 0,求lg(a 2+ab -6b 2)-lg(a 2+4ab +15b 2)的值. 20.已知log 2[ log 21( log 2x)] = log 3[ log 31( log 3y)] = log 5[ log 51( log 5z)] = 0,试比较x 、y 、z 的大小.21.已知a >1,)(x f = log a (a -a x).⑴ 求)(x f 的定义域、值域; ⑵判断函数)(x f 的单调性 ,并证明; ⑶解不等式:)2(21--x f>)(x f .22.已知)(x f = log 21[ax2+2(ab)x -bx2+1],其中a >0,b >0,求使)(x f <0的x 的取值范围.参考答案:一、选择题:1.(B).2.(B). 3.(D).4.(C).5.(D).6.(C).7.(B).8.(A). 9.(A).10.(D).11.(C).12.(D). 提示:1.∵3a+5b= A ,∴a = log 3A ,b = log 5A ,∴a 1+b1= log A 3+log A 5 = log A 15 = 2,∴A =15,故选(B).2.10x= lg(10 a)+lga 1= lg(10a ·a1) = lg10 = 1,所以 x = 0,故选(B). 3.由lg x 1+lg x 2=-(lg3+lg2),即lg x 1x 2= lg 61,所以x 1x 2=61,故选(D).4.∵当a ≠1时,a 2+1>2a ,所以0<a <1,又log a 2a <0,∴2a >1,即a >21,综合得21<a <1,所以选(C). 5.x = log 3121+log 3151= log 31(21×51) = log 31101= log 310,∵9<10<27,∴ 2<log 310<3,故选(D).6.由已知lga +lgb = 2,lga ·lgb =21,又(lg ba )2= (lga -lgb)2= (lga +lgb)2-4lga ·lgb = 2,故选(C).7.设3a= 4b= 6c= k ,则a = log 3k ,b= log 4k ,c = log 6k ,从而c 1= log k 6 = log k 3+21log k 4 =a 1+b 21,故c 2=a 2+b1,所以选(B). 8.由函数y = log 5.0(ax 2+2x +1)的值域为R ,则函数u(x) = ax 2+2x +1应取遍所有正实数,当a = 0时,u(x) = 2x +1在x >-21时能取遍所有正实数; 当a ≠0时,必有⎩⎨⎧≥-=∆.44,0a >a ⇒0<a ≤1.所以0≤a ≤1,故选(A).9.∵lga = lg(27×811×510) = 7lg2+11lg8+10lg5 = 7 lg2+11×3lg2+10(lg10-lg2) = 30lg2+10≈19.03,∴a = 1003.19,即a 有20位,也就是M = 20,故选(A).10.由于log 3( log 2x) = 1,则log 2x = 3,所以x = 8,因此 x 21-= 821-=81=221=42,故选(D). 11.根据u(x) = (21)x 为减函数,而(21)x >0,即1-(21)x <1,所以y = log a [1-(21)x]在定义域上是减函数且y >0,故选(C). 12.由-∞<x <-2知,1-21+x >1,所以a >1,故选(D). 二、填空题13.21a +23b 14.b <a <c . 15.-2. 16.21<x ≤1 提示: 13.lg 54=21lg(2×33) =21( lg2+3lg3) =21a +23b . 14.0<a = log 7.00.8<log 7.00.7 = 1,b = log 1.10.9<0,c = 1.19.0>1.10= 1,故b <a <c .15.∵3+22= (2+1)2,而(2-1)(2+1) = 1,即2+1= (2-1)1-,∴log 12-(3+22) =log 12-(2-1)2-=-2.16.)(1x f-= log 2x (0<x ≤1=,y =)12(1--x f 的定义域为0<2x -1≤1,即21<x ≤1为所求函数的定义域. 三。
高中数学对数与对数函数知识点及例题讲解
对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象a <11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算)1.求下列各式的值. (1)355log +212log 1505log -145log ; (2)log 2125×log 318×log 519.练习题 1.计算:lg 12-lg 58+lg12.5-log 89·log 278;2.log 535+212log -log 5150-log 514; 3.log 2125×log 318×log 519.4. 3991log log 4log 32+-. 5. 4lg 2lg 5lg 22+-221(6).log 24lg log lg 2log 32+-- 7.2lg 2lg3111lg 0.36lg823+++例2.已知实数x 、y 、z 满足3x =4y =6z>1. (1)求证:2x +1y =2z; (2)试比较3x 、4y 、6z 的大小.练习题.已知log 189=a ,18b=5,用a 、b 表示log 3645.题型二:(对数函数定义域值域问题)例1.已知函数()22log 1x f x x -=-的定义域为集合A ,关于x 的不等式22a a x--<的解集为B ,若A B ⊆,求实数a 的取值范围.2.设函数22log (22)y ax x =-+定义域为A .(1)若A R =,求实数a 的取值范围;(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.练习题1.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域2 求函数y =2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及其单调性)例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x-1. (1)求f(x)在[-1,0)上的解析式; (2)求f(12log 24)的值.2. 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;(Ⅲ)若(2)()f m f m -<,求m 的取值范围.练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a >1时,求使f(x)>0的x 的取值范围2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12()log f x x =.(1)求函数()f x 的解析式; (2)解不等式2(1)2f x ->-;3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;(Ⅲ)若(1)1f a -<-,求a 的取值范围.题型4(函数图像问题)例题1.函数f (x )=|log 2x |的图象是C D2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫⎪⎝⎭, 求证:a·b=1,2a b+>1.练习题:1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a -=11log )(,记)()(2)(x g x f x F += (1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围.2.已知函数f(x)=log 4(4x+1)+kx(k∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23x a a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于题型五:函数方程1方程lg x +lg (x +3)=1的解x =___________________.2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数).(Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.5.已知函数221log log (28).242x xy x =⋅⋅≤≤ (Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.已知函数是定义在上的奇函数,且当时,,则= .【答案】.【解析】,且函数是定义在上的奇函数,且当时,,.【考点】函数的奇偶性.2.对于任意实数x,符号表示不超过x的最大整数,例如,;,那么的值为.【答案】857.【解析】由题意可设,则,;为增函数,当时,,则,时,;当时,同理,时,;时,;时,;时,;时,;【考点】对数的性质、归纳推理.3..【答案】【解析】.【考点】指数式与对数式的运算.4.已知函数是定义在R上的偶函数,且在区间单调递增. 若实数满足, 则的取值范围是( )A.B.C.D.【答案】D【解析】因为函数是定义在R上的偶函数,又因为.所以由可得.区间单调递增且为偶函数.所以.故选D.【考点】1.对数的运算.2.函数的奇偶性、单调性.3.数形结合的数学思想.5.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.6.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式7.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算8. .【答案】1【解析】对数的运算性质,故.【考点】对数的运算性质.9.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算10.设,则使函数的定义域为R且为奇函数的所有的值为()A.-1,3B.-1,1C.1,3D.-1,1,3【答案】C【解析】根据题意定义域为R得,时,函数定义域为[0,+∞)所以不可能是奇函数,所以排除A,B,D选项.所以的值为1,3.故选C.【考点】本题考查幂函数的知识点,当指数为正,负时的函数图像走向.11.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算12.已知函数(1)判断函数的奇偶性,并说明理由。
2024年新高一数学初升高衔接《对数及其运算》含答案解析
第16讲 对数及其运算模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解对数的概念,掌握对数的基本性质;2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程;3.理解对数的运算性质,能用换底公式将一般对数转化成自然对数或常用对数;4.会运用运算性质进行一些简单的化简与证明.知识点 1 对数的概念与性质1、对数的概念:如果x a N =(0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2、常用对数与自然对数名称定义记法常用对数以10为底的对数叫做常用对数lg 自然对数以无理数 2.71828e =⋅⋅⋅为底的对数称为自然对数ln3、对数的性质(1)当0a >,且1a ≠时,x a N =⇔log a x N =;(2)负数和0没有对数,即0>N ;(3)特殊值:1的对数是0,即log 1a =0(0a >,且1a ≠);底数的对数是1,即log 1a a =(0a >,且1a ≠);(4)对数恒等式:log a N a N =;(5)log ba ab =.知识点 2 对数的运算性质及应用1、运算性质:0>a ,且1≠a ,0,0>>N M (1)N M MN a a a log log )(log +=;(2)N M NMa a alog log log -=;(3)M n M a na log log =2、换底公式(1)换底公式:abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).(2)可用换底公式证明以下结论:①ab b a log 1log =; ②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b n mb a ma n log log =; ⑤b b a alog log 1-=.知识点 3 对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式.2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式xyza b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y za b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解.考点一:对数的概念及辨析例1.(23-24高一上·全国·专题练习)(多选)下列选项中错误的是( )A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做自然对数D .以e 为底的对数叫做常用对数【变式1-1】(23-24高一上·贵州贵阳·月考)使式子(31)log (2)x x --有意义的x 的取值范围是( )A .2x >B .123x <<C .123x <<且23x ≠D .2x <,【变式1-2】(23-24高一上·吉林延边·期中)在对数式()()3log 5a b a -=-中,实数a 的取值范围是( )A .()(),35,-∞⋃+∞B .()3,5C .()3,4D .()()3,44,5【变式1-3】(22-23高一上·江苏宿迁·期中)在下列四个命题中,正确的是( )A .若M N =则log log a a M N =;B .若log log a a M N =,则M N =;C .22log log a a M N =,则M N =;D .若M N =,则22log log a a M N =.考点二:对数式与指数式互化例2.(23-24高一上·新疆乌鲁木齐·期末)将3log 0.81x =化成指数式可表示为( )A .30.81x =B .0.813x =C .0.813x=D .30.81x=【变式2-1】(23-24高一上·黑龙江哈尔滨·期中)将328=化为对数式正确的是( )A .2log 38=B .2log 83=C .8log 23=D .3log 28=【变式2-2】(23-24高一上·江苏连云港·期中)已知)4x =,则x =( )A .2-B .0C .2D .4【变式2-3】(23-24高一上·江西宁冈·期中)(多选)下列指数式与对数式的互化,正确的一组是( )A .0e 1=与ln1=0B .131273-=与2711log 33=-C .2log 42=与1242=D .5log 5=1与155=考点三:利用对数性质解对数方程例3.(23-24高一·江苏·假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-【变式3-1】23-24高一上·山东烟台·月考)方程()3log 941xx -=+的实数解为.【变式3-2】(23-24高一上·广东深圳·期中)已知a ,b 是方程22(ln )3ln 10x x -+=的两个实数根,则log log a b b a +=.【变式3-3】(23-24高一上·全国·练习)已知a ,b 是方程3273log log 433x x +=-的两个根,试给出关于a ,b 的一个结论.考点四:利用对数运算性质化简例4.(23-24高一下·云南昆明·期中)下列等式正确的是( )A .22(lg5)2lg2(lg2)1+-=B .335log 5log 2log 93⋅⋅=C.ln 2eπ+=D122.535[(0.064)]1-=【变式4-1】(23-24高一下·浙江·期中)化简()2151515155log 91log 3log 5log log 155⎛⎫+-⋅= ⎪⎝⎭.【变式4-2】(23-24高一上·贵州毕节·期末)计算:(1)2+00.5281(log 8log 2)(3)16⋅-;(2)ln3427log 9log 8lg 4lg 25e+⋅++.【变式4-3】(24-25高一上·全国·课后作业)计算:(1)420.5251log log 3log 95+-;(2)()2323223log 2log 3log 2log 3log 3log 2+--.考点五:用已知对数表示其他对数例5.(23-24高一下·江苏盐城·期末)若lg2a =,lg3b =,则用a ,b 表示lg12=( )A .2a bB .2abC .2+a bD .2a b+【变式5-1】(23-24高一上·江苏淮安·期中)已知25a=,则lg 2=( )A .1aa +B .1a a -C .11a +D .1a a -【变式5-2】(23-24高一上·江苏宿迁·期末)已知2log 3a =,27b =,用a ,b 表示42log 56为( )A .3b a b++B .3b a b+C .31b a b +++D .31b a b ++【变式5-3】(23-24高一上·甘肃武威·月考)已知lg2,lg3a b ==,则30log 18=( )A .21a bb +-B .21a b b ++C .21a b b --D .21a b b -+考点六:利用换底公式证明等式例6.(23-24高一上·山东淄博·期末)设a ,b ,c 都是正数,且346a b c ==,那么下列关系正确的是( )A .2a b c+=B .2ac bc ab+=C .1112a b c+=D .112a b c+=【变式6-1】(23-24高一上·全国·随堂练习)求证:28log 643log 64=.【变式6-2】(23-24高一上·全国·随堂练习)设0a >,0b >,0α≠,且1a ≠,1b ≠,利用对数的换底公式证明:(1)1log log a b b aαα=;(2)log log a a b b αββα=.【变式6-3】(23-24高一上·河北石家庄·月考)设000a b a >>≠,,,且11a b ≠≠,,利用对数的换底公式证明:(1)log log a a b b αββα=;(2)1log log a b b aαα=;(3)计算:若2log 32x =,求33x x -+的值.一、单选题1.(23-24高一上·全国·专题练习)在()log 5a b a =-中,实数a 的取值范围是( )A .5a >或a<0B .01a <<或15a <<C .01a <<D .15a <<2.(23-24高一下·湖南株洲·月考)若lg a (0a >)与lgb (0b >)互为相反数,则( )A .1a b +=B .0a b -=C .1ab =D .1ab=3.(23-24高一上·全国·课后作业)将31128⎛⎫= ⎪⎝⎭化为对数式正确的是( )A .121log 38=B .121log 38=C .181log 32=D .311log 28=4.(23-24高一下·陕西西安·月考)1lg 22+=( )A .12B .1C .lg 5D.5.(23-24高一上·北京·月考)若1ab >,则下列等式中正确是的是( )A .()lg lg lg ab a b=+B .lg lg lg a a bb ⎛⎫=- ⎪⎝⎭C .()21lg()lg 2a b a b +=+D .()1lg log 10ab ab =6.(23-24高一上·天津·期末)化简2345log 3log 4log 5log 8⨯⨯⨯的值为( )A .1B .3C .4D .8二、多选题7.(23-24高一上·贵州安顺·期末)下列运算正确的有( )A .lg 2lg 3lg 5+=B .33log 10010log 10=C .4log 545=D .34log 4log 31⋅=8.(23-24高一上·吉林延边·期中)下列命题中正确的是( )A .已知25a=,8log 3b =,则34a b -=259B .222(lg 2)3lg 2lg 5(lg 5)lg 2++-的值为1C .若3log 41x =,则44x x -+的值为103D .若23m n k ==且112m n+=,则k =6三、填空题9.(23-24高一下·上海嘉定·月考)已知2log 3a =,25b =则12log 45= .(用含,a b的式子表示)10.(23-24高一下·云南昆明·期中)若4312,log 12a b ==,则11a b+=.11.(23-24高一上·辽宁沈阳·期末)设m ,n 是方程()23lg lg 10x x -+=的两个实根,则mn =.四、解答题12.(22-23高一上·新疆喀什·期末)求值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭;(2)ln 2145log 2lg 4lg e 2+++.(3)()()48392log 3log 3log 2log 2++13.(23-24高一上·安徽蚌埠·期末)(1)若3515a b ==,求55a b+的值;(2)求值:()()22327lg 5lg 2lg 503π++⨯--.第16讲 对数及其运算模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解对数的概念,掌握对数的基本性质;2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程;3.理解对数的运算性质,能用换底公式将一般对数转化成自然对数或常用对数;4.会运用运算性质进行一些简单的化简与证明.知识点 1 对数的概念与性质1、对数的概念:如果x a N =(0a >且1a ≠),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2、常用对数与自然对数名称定义记法常用对数以10为底的对数叫做常用对数lg自然对数以无理数 2.71828e =⋅⋅⋅为底的对数称为自然对数ln3、对数的性质(1)当0a >,且1a ≠时,x a N =⇔log a x N =;(2)负数和0没有对数,即0>N ;(3)特殊值:1的对数是0,即log 1a =0(0a >,且1a ≠);底数的对数是1,即log 1a a =(0a >,且1a ≠);(4)对数恒等式:log a N a N =;(5)log ba ab =.知识点 2 对数的运算性质及应用1、运算性质:0>a ,且1≠a ,0,0>>N M (1)N M MN a a a log log )(log +=;(2)N M NMa a alog log log -=;(3)M n M a na log log =2、换底公式(1)换底公式:abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0).(2)可用换底公式证明以下结论:①ab b a log 1log =; ②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b n mb a ma n log log =; ⑤b b a alog log 1-=.知识点 3 对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式.2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式xyza b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y za b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解.考点一:对数的概念及辨析例1.(23-24高一上·全国·专题练习)(多选)下列选项中错误的是( )A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做自然对数D .以e 为底的对数叫做常用对数【答案】BCD【解析】对于A :由对数的定义可知:零和负数没有对数.故A 正确;对于B :只有符合0a >,且10a N ≠>,,才有log xa a N x N =⇔=,故B 错误;对于C :以10为底的对数叫做常用对数,故C 错误;对于D :以e 为底的对数叫做自然对数,故D 错误.故选:BCD.【变式1-1】(23-24高一上·贵州贵阳·月考)使式子(31)log (2)x x --有意义的x 的取值范围是( )A .2x >B .123x <<C .123x <<且23x ≠D .2x <,【答案】C【解析】由式子(31)log (2)x x --有意义,则满足31031120x x x ->⎧⎪-≠⎨⎪->⎩,解得123x <<且23x ≠.故选:C.【变式1-2】(23-24高一上·吉林延边·期中)在对数式()()3log 5a b a -=-中,实数a 的取值范围是( )A .()(),35,-∞⋃+∞B .()3,5C .()3,4D .()()3,44,5 【答案】D【解析】要使对数式()()3log 5a b a -=-有意义,需满足303150a a a ->⎧⎪-≠⎨⎪->⎩,解得34a <<或45a <<,所以实数a 的取值范围是()()3,44,5 .故选:D.【变式1-3】(22-23高一上·江苏宿迁·期中)在下列四个命题中,正确的是( )A .若M N =则log log a a M N =;B .若log log a a M N =,则M N =;C .22log log a a M N =,则M N =;D .若M N =,则22log log a a M N =.【答案】B【解析】对A ,若0M N =≤,则log ,log a a M N 均无意义,故A 错;对B ,若log log a a M N =,说明0M N =>,则B 项正确;对C ,若22log log a a M N =,则22M N =,不一定能推出M N =,故C 错;对D ,若0M N ==,则22log ,log a a M N 无意义,故D 错.故选:B考点二:对数式与指数式互化例2.(23-24高一上·新疆乌鲁木齐·期末)将3log 0.81x =化成指数式可表示为( )A .30.81x =B .0.813x =C .0.813x=D .30.81x=【答案】A【解析】把对数式3log 0.81x =化成指数式,为30.81x =.故选:A .【变式2-1】(23-24高一上·黑龙江哈尔滨·期中)将328=化为对数式正确的是( )A .2log 38=B .2log 83=C .8log 23=D .3log 28=【答案】B【解析】328=化为对数式为2log 83=,故选:B .【变式2-2】(23-24高一上·江苏连云港·期中)已知)4x =,则x =( )A .2-B .0C .2D .4【答案】C【解析】由)4x =得42x =,即22x x =,又0x >且1x ≠,所以2x =,故选:C .【变式2-3】(23-24高一上·江西宁冈·期中)(多选)下列指数式与对数式的互化,正确的一组是( )A .0e 1=与ln1=0B .131273-=与2711log 33=-C .2log 42=与1242=D .5log 5=1与155=【答案】ABD【解析】根据指数式与对数式的互化公式log Na ab b N =⇔=(0a >且1,0)a N ≠>可知,ABD 正确;对于C ,22log 4242=⇔=,故C 错误.故选:ABD考点三:利用对数性质解对数方程例3.(23-24高一·江苏·假期作业)方程()()2lg 1lg 22x x -=+的根为( )A .3-B .3C .1-或3D .1或3-【答案】B【解析】由()()2lg 1lg 22x x -=+,得2212210220x x x x ⎧-=+⎪->⎨⎪+>⎩,即2223010220x x x x ⎧--=⎪->⎨⎪+>⎩,解得3x =,所以方程()()2lg 1lg 22x x -=+的根为3.故选:B【变式3-1】23-24高一上·山东烟台·月考)方程()3log 941xx -=+的实数解为.【答案】3log 4【解析】由()3log 941x x -=+,得()133log 94log 3x x +-=,所以1943x x +-=,即()23433x x -=⋅,即()()34310x x-+=,所以34x =或31x =-(舍去),所以3log 4x =.故答案为:3log 4.【变式3-2】(23-24高一上·广东深圳·期中)已知a ,b 是方程22(ln )3ln 10x x -+=的两个实数根,则log log a b b a += .【答案】52/2.5【解析】方法一:因为a ,b 是方程()22ln 3ln 10x x -+=的两个实数根,由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=,则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a b a b b a b a a b a b a b a b ++-⋅++=+===-=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t -+=的根为1t =或12t =,不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +=+=+=.故答案为:52.【变式3-3】(23-24高一上·全国·练习)已知a ,b 是方程3273log log 433x x +=-的两个根,试给出关于a ,b 的一个结论 .【答案】1081a b +=(答案不唯一)【解析】根据换底公式有33333log log lo 7g l 343og 32x x +=-,即33114133log log x x ++=-+,令3g 1lo x t +=,则1433t t +=-,解得1t =-或3t =-.所以31log 1x +=-或31log 3x +=-,解得19x =或181x =.故答案为:1081a b +=(答案不唯一)考点四:利用对数运算性质化简例4.(23-24高一下·云南昆明·期中)下列等式正确的是( )A .22(lg5)2lg2(lg2)1+-=B .335log 5log 2log 93⋅⋅=C.ln 2e π+=D122.535[(0.064)]1-=【答案】A【解析】对于A 中,由2222(lg5)2lg2(lg2)(1lg2)2lg2(lg2)1+-=-+-=,所以A 正确;对于B 中,由335lg5lg22lg3log 5log 2log 93lg3lg3lg5⋅⋅=⋅⋅≠,所以B 错误;对于C中,由ln 27e log 825ππ=++-≠,所以C 错误;对于D 中,122.513551515[(0.064)](0.4)122222--=+⨯=+⨯≠,所以D错误.故选:A【变式4-1】(23-24高一下·浙江·期中)化简()2151515155log 91log 3log 5log log 155⎛⎫+-⋅= ⎪⎝⎭.【答案】1【解析】原式()()()()22221515151515151515log 3log 9log 5log 5log 32log 3log 5log 5=+⋅+=+⋅+()21515log 3log 5=+()215log 151==.故答案为:1.【变式4-2】(23-24高一上·贵州毕节·期末)计算:(1)2+00.5281(log 8log 2)(3)16⋅-;(2)ln3427log 9log 8lg 4lg 25e+⋅++.【答案】(1)0;(2)6【解析】(1)原式=1122234937(1()1021644+-=+-=(2)原式=3+log 23⋅log 32+lg100=3+1+2=6.【变式4-3】(24-25高一上·全国·课后作业)计算:(1)420.5251log log 3log 95+-;(2)()2323223log 2log 3log 2log 3log 3log 2+--.【答案】(1)0;(2)2【解析】(1)420.5251log log 3log 95+-22222251log log 95log 3log 4log 0.5=+-2225log log 3log 53=+-225log 35log 103⎛⎫=⨯÷== ⎪⎝⎭;(2)()2323223log 2log 3log 2log 3log 3log 2+--2ln 2ln 3ln 2ln 2ln 3ln 3ln 3ln 2ln 3ln 3ln 2ln 2⎛⎫=+-⋅-⋅ ⎪⎝⎭2222ln 2ln 3ln 2ln 322ln 3ln 2ln 3ln 2⎛⎫⎛⎫⎛⎫⎛⎫=++--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.考点五:用已知对数表示其他对数例5.(23-24高一下·江苏盐城·期末)若lg2a =,lg3b =,则用a ,b 表示lg12=( )A .2a bB .2abC .2+a bD .2a b+【答案】D【解析】由对数运算性质可得()2lg12lg 34lg3lg4lg3lg2lg32lg22a b =⨯=+=+=+=+,故选:D.【变式5-1】(23-24高一上·江苏淮安·期中)已知25a=,则lg 2=( )A .1aa +B .1a a -C .11a +D .1a a -【答案】C 【解析】由25a=得,2lg 51lg 2log 5lg 2lg 2a -===,则1lg 21a =+,故选:C .【变式5-2】(23-24高一上·江苏宿迁·期末)已知2log 3a =,27b =,用a ,b 表示42log 56为( )A .3b a b++B .3b a b+C .31b a b +++D .31b a b ++【答案】C【解析】因为27b =,所以2log 7=b ,2222242222222log 56log 7log 8log 73log 23log 56log log 7742log log log l g 62o ++==+=++31+=++b b a .故选: C.【变式5-3】(23-24高一上·甘肃武威·月考)已知lg2,lg3a b ==,则30log 18=( )A .21a bb +-B .21a b b ++C .21a b b --D .21a b b -+【答案】B 【解析】30lg18lg2lg92log 18lg30lg311a bb ++===++,故选:B.考点六:利用换底公式证明等式例6.(23-24高一上·山东淄博·期末)设a ,b ,c 都是正数,且346a b c ==,那么下列关系正确的是( )A .2a b c +=B .2ac bc ab+=C .1112a b c+=D .112a b c+=【答案】C【解析】由346a b c k ===,得3log a k =,4log b k =,6log c k =,1log 3k a=,1log 4k b =,1log 6k c =,则11log 4log 222k k b ==,根据log 3log 2log 6k k k +=可知,1112a b c+=.故选:C 【变式6-1】(23-24高一上·全国·随堂练习)求证:28log 643log 64=.【答案】证明见解析【解析】左边622log 26log 26===,右边362263log 23log 263==⨯⨯=,所以左边=右边,得证.【变式6-2】(23-24高一上·全国·随堂练习)设0a >,0b >,0α≠,且1a ≠,1b ≠,利用对数的换底公式证明:(1)1log log a b b aαα=;(2)log log a a b b αββα=.【答案】(1)证明见解析;(2)证明见解析【解析】(1)log 1log log log b a b b b b a aααα==,所以等式成立;(2)log log log log log log a a a a a a b b b b a a αββαββαα===,所以等式成立.【变式6-3】(23-24高一上·河北石家庄·月考)设000a b a >>≠,,,且11a b ≠≠,,利用对数的换底公式证明:(1)log log a a b b αββα=;(2)1log log a b b aαα=;(3)计算:若2log 32x =,求33x x -+的值.【答案】(1)证明见解析;(2)证明见解析;(3)174【解析】(1)因为log log log log log a a a a a a b b b b a a αββββα===,所以命题log log a ab b αββα=得证.(2)因为log 1log log log b a a b b b b a aαα==,所以命题1log log ab b a αα=得证.(3)因为2log 32x =,所以22322log 22log 4log 3log 3x ===,故1333log 4log 4log 4117333343444x x---+=+=+=+=,即33x x -+的值为174.一、单选题1.(23-24高一上·全国·专题练习)在()log 5a b a =-中,实数a 的取值范围是( )A .5a >或a<0B .01a <<或15a <<C .01a <<D .15a <<【答案】B【解析】由对数的定义可知5001a a a ->⎧⎪>⎨⎪≠⎩,解得05a <<,且1a ≠,故选:B .2.(23-24高一下·湖南株洲·月考)若lg a (0a >)与lg b (0b >)互为相反数,则( )A .1a b +=B .0a b -=C .1ab =D .1a b=【答案】C【解析】因为lg a (0a >)与lg b (0b >)互为相反数,所以lg lg lg 0a b ab +==,所以1ab =.故选:C.3.(23-24高一上·全国·课后作业)将31128⎛⎫= ⎪⎝⎭化为对数式正确的是( )A .121log 38=B .121log 38=C .181log 32=D .311log 28=【答案】B【解析】31128⎛⎫= ⎪⎝⎭化为对数式:121log 38=,故选:B 4.(23-24高一下·陕西西安·月考)1lg 22+=( )A .12B .1C .lg 5D.【答案】A【解析】11111lg 2lg 2lg 5lg(25)22222+=+=⨯=.故选:A5.(23-24高一上·北京·月考)若1ab >,则下列等式中正确是的是( )A .()lg lg lg ab a b=+B .lg lg lg a a bb ⎛⎫=- ⎪⎝⎭C .()21lg()lg 2a b a b +=+D .()1lg log 10ab ab =【答案】D【解析】当0,0a b <<时,ABC 均不成立,由换底公式知D 正确.故选:D .6.(23-24高一上·天津·期末)化简2345log 3log 4log 5log 8⨯⨯⨯的值为( )A .1B .3C .4D .8【答案】B【解析】由题意可得:2345ln 3ln 4ln 5ln 8ln 83ln 2log 3log 4log 5log 83ln 2ln 3ln 4ln 5ln 2ln 2⨯⨯⨯=⨯⨯⨯===.故选:B.二、多选题7.(23-24高一上·贵州安顺·期末)下列运算正确的有( )A .lg 2lg 3lg 5+=B .33log 10010log 10=C .4log 545=D .34log 4log 31⋅=【答案】CD【解析】对A ,lg 2lg 3lg 6+=,故A 错误;对B ,33log 1002log 10=,故B 错误;对C ,4log 545=正确;对D ,34log 4log 31⋅=正确.故选:CD8.(23-24高一上·吉林延边·期中)下列命题中正确的是( )A .已知25a=,8log 3b =,则34a b -=259B .222(lg 2)3lg 2lg 5(lg 5)lg 2++-的值为1C .若3log 41x =,则44x x -+的值为103D .若23m n k ==且112m n+=,则k =6【答案】ABC 【解析】因为25a=,则2log 5a =,且821log 3log 33b ==,则22253log 5log 3log 3a b -=-=则()22252log 253log 9332542229a b a b--====,故A 正确;()()222(lg 2)3lg 2lg 5(lg 5)lg 22lg 2lg 5lg 2lg 5lg 22lg 2lg 5lg 2++-=++-=+-lg 2lg 51=+=,故B 正确;由3log 41x =可得431log 3log 4x ==,则44log 3log 31104444333x x --+=+=+=,故C 正确;因为23m n k ==,则23log ,log m k n k ==,则11log 2,log 3k k m n==,所以11log 2log 3log 62k k k m n+=+==,所以k =D 错误;故选:ABC 三、填空题9.(23-24高一下·上海嘉定·月考)已知2log 3a =,25b =则12log 45=.(用含,a b的式子表示)【答案】22a b a ++【解析】因为25b =,所以2log 5b =,又2log 3a =,所以()()2222122222log 59log 45log 5log 9log 45log 12log 34log 3log 4⨯+===⨯+222222log 52log 3log 32log 2a ba ++=++=.故答案为:22a b a ++10.(23-24高一下·云南昆明·期中)若4312,log 12ab ==,则11a b +=.【答案】1【解析】因为312a =,所以3log 12a =,所以121212341111log 3log 4log 121log 12log 12a b +=+=+==.故答案为:1.11.(23-24高一上·辽宁沈阳·期末)设m ,n 是方程()23lg lg 10x x -+=的两个实根,则mn =.【答案】1000【解析】()23lg lg 10x x -+=,即()2lg 3lg 10x x -+=,设lg t x =,由题意lg lg m n ,是方程2310t t -+=的两个根,由根与系数关系得lg lg 3m n +=,即lg 3mn =,所以1000mn =.故答案为:1000.四、解答题12.(22-23高一上·新疆喀什·期末)求值:(1)0113410.027167-⎛⎫-+ ⎪⎝⎭;(2)ln 2145log 2lg 4lg e 2+++.(3)()()48392log 3log 3log 2log 2++【答案】(1)53-;(2)52;(3)2【解析】(1)()()()111113443344410.027160.32147--⎛⎫⎡⎤-+=-+- ⎪⎣⎦⎝⎭10521433=-+-=-(2)2ln 221245log 2lg 4lg e log 2lg 2lg 5lg 222-+++=++-+13352lg 2lg 5lg 22lg 2lg 512222=-++-+=++=+=(3)()()()()232483932232log 3log 3log 2log 22log 3log 3log 2log 2++=++223311log 3log 3log 2log 232⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭2343log 3log 2232⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭13.(23-24高一上·安徽蚌埠·期末)(1)若3515a b ==,求55a b+的值;(2)求值:()()22327lg 5lg 2lg 503π++⨯--.【答案】(1)5;(2)13π-【解析】(1)因为3515a b ==,所以35log 15,log 15==a b ,3551,1lo 1g 15l g 1o 1a b ==,则()()15151535551155log 3log 55log 355log 15log 15a b ⎛⎫+=+=+=⨯= ⎪⎝⎭;(2)()()()()()22223331027lg 5lg 2lg 503π3lg 5lglg 105π35++⨯--=++⨯⨯-+()()()()()22223lg 51lg 51lg 5π312πlg 51lg 513π=++-⨯+-+=-++-=-.。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.已知函数,且,则使成立的的取值范围是().A.B.C.D.【答案】C【解析】,且,,即,,则,即.【考点】对数不等式.2.定义在上的函数满足,则的值为_____.【答案】.【解析】由题意,得,,,,;即是周期函数,且,所以.【考点】函数的周期性.3.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.4.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.函数的定义域为A.B.C.D.【答案】A【解析】要使函数有意义,必须:解得:所以函数的定义域是所以,应选A.【考点】1、函数定义域的求法;2、对数函数.7.函数的定义域为___________.【答案】【解析】因为依题意可得,解得.所以填.本小题的关键是考察了两个知识点.一是偶次方根的被开方数要大于或等于零,另一个就是对数函数的真数要大于零.取这两个的解集的公共部分即可得结论.【考点】1.对数知识.2.根式的知识.8.函数y =2+(x-1)的图象必过定点, 点的坐标为_________.【答案】【解析】令,则,此时,故原函数过定点.【考点】对数函数的图像性质,对数函数横过定点(1,0).9.若函数是幂函数,且满足,则的值等于 .【答案】【解析】可设,则有,即,解得,所以函数的解析式为,故,所以所求的值为.【考点】1.幂函数;2.对数的运算.10.已知函数若函数有3个零点,则实数的取值范围是_______________.【解析】将函数的图像向左移动一个单位,可得函数在区间上为单调递增函数且,因为二次函数在上单调递增且,在上单调递减且,故若函数有3个零点,即函数与函数的图像有3个交点,所以所求的取值范围为.【考点】1.对数函数;2.二次函数;3.分段函数;4.函数的零点.11.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.12.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.13.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2),②f(x1x2)=f(x1)+f(x2),③,④,当f(x)=lnx时,上述结论中正确结论的序号是_____________.【答案】②④.【解析】把函数代入结论①②:,,结合对数的运算法则,知②正确,①错误;③说明时,,从而为减函数,但函数是增函数,故③错误;④等价于,当且时,上式显然成立.故④也是正确的.【考点】1、对数的运算法则;2、对数函数的性质;3、基本不等式.14.计算:= .【答案】【解析】解.【考点】对数的运算.15.如果,那么的最小值是()A.4B.C.9D.18【解析】∵,∴mn=81,∴,当且仅当m=n=9时“=”成立,故选D【考点】本题考查了对数的运算及基本不等式的运用点评:熟练掌握对数的运算法则及基本不等式的运用是解决此类问题的关键,属基础题16.求(lg2)2+lg2·lg50+lg25的值.【答案】2【解析】原式=(lg2)2+lg2·(lg2+2lg5)+2lg5 2分=2(lg2)2+2lg2·lg5+2lg5 4分=2lg2(lg2+lg5)+2lg5 6分=2lg2+2lg5 8分=2(lg2+lg5) 10分=2. 12分【考点】本题考查了对数的运算点评:熟练掌握对数的运算法则是解决此类问题的关键,属基础题17.(本小题满分12分)设关于x的方程=0.(Ⅰ) 如果b=1,求实数x的值;(Ⅱ) 如果且,求实数b的取值范围.【答案】(Ⅰ) . (Ⅱ) 。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.下列区间中,函数在其上为减函数的是().A.(-∞,1]B.C.D.【答案】D【解析】当时,,在区间上为减函数,当时,在区间上是增函数.【考点】函数的单调性.2.函数=的值域为.【答案】【解析】由于,因此,因此的值域为【考点】与对数函数有关的值域.3.函数的单调减区间为 .【答案】【解析】由题意可得函数的定义域为,又在其定义域上为增函数,的减区间即为的减区间,故的减区间为.故答案为.【考点】复合函数的单调性.4.已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.【答案】(1);(2).【解析】解题思路:(1)利用对数式的真数为正数,列出不等式组,求不等式的解集即可;(2)不等式有解,即,先求出的最大值,再求的范围即可.规律总结:1.求函数的定义域时要注意以下几点:①分式中分母不为零;②偶次方根被开方数非负;③对数式中,真数大于零,底数为大于零且不等于1的实数;④中,底数不为零;要注意区别以下两条:;.试题解析:(1)须满足,∴,∴所求函数的定义域为.说明:如果直接由,得到定义域,不得分.但不再影响后面的得分. (2)∵不等式有解,∴令,由于,∴∴的最大值为∴实数的取值范围为 .说明:也可以结合的是偶函数和单调性,求得的最大值,参照给分.【考点】1.函数的定义域;2.解不等式.5.函数的零点所在区间是()A.B.C.D.【答案】C【解析】解:根据函数的零点存在性定理可以判断,函数在区间内存在零点.【考点】1、对数的运算性质;2、函数的零点存在性定理.6.已知函数(1)求函数的定义域;(2)求函数的零点;(3)若函数的最小值为-4,求a的值.【答案】(1)函数的定义域为;(2的零点是;(3).【解析】(1)函数的定义域是使函数有意义的取值范围,而对数有意义则真数大于0,即;(2)函数的零点等价于方程的根,可先利用对数运算性质进行化简,即,要注意定义域的范围,检验解得的根是否在定义域内;(3)可利用函数的单调性求最值来解参数,由(2)可知,令,在单调递减,则在取最大值时函数的最小值取-4,而,当时,则,.试题解析:21.(普通班)(1)要使函数有意义,则有解之得,所以函数的定义域为.(2)函数可化为由,得,即,,,的零点是.21.(联办班)(1)要使函数有意义:则有,解之得:,所以函数的定义域为:.(2)函数可化为由,得,即,,,的零点是.(3).,,.由,得,.【考点】1、对数函数的定义域;2对数的运算性质;3、函数的零点;4、对数方程的解法;5、复合函数的最值问题;6、二次函数的最值.7.设,用二分法求方程在,内近似解的过程中得则方程的根落在区间()A.B.C.D.不能确定【答案】C.【解析】由题意得,因为f(1.25)<0.f(1.5)>0.所以f(1.25)f(1.5)<0,即有零点定理得在的落在.故选B.【考点】1.函数的零点的判定.2.指数函数值的计算.3.估算的思想.8.设a>0,则()A.1B.2C.3D.4【答案】D【解析】。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.2.已知()A.B.C.D.【答案】【解析】根据对数的运算法则,有.【考点】对数的运算法则.3.已知函数,若对于任意,当时,总有,则区间有可能是( )A.B.C.D.【答案】B【解析】对于任意,当时,总有,是说函数在区间上单调递增.函数是由与复合而成,因为在上单调递增,由复合函数的单调法则:同增异减,可知,只须在上单调递增即可,该二次函数的对称轴为,或,由二次函数的单调性可知在单调递增,所以区间可能是或它的子区间,故选B.【考点】函数的单调性.4.若点在函数的图象上,则函数的值域为()A.B.C.D.【答案】D【解析】因为点在函数的图象上,所以,解得,所以,故选D.【考点】1、对数函数的图象;2、幂函数.5.已知函数(1)求函数的定义域和值域;(2)若有最小值-2,求的值.【答案】(1)的定义域是.当时,值域为;(2)【解析】(1)由对数函数的定义可得,解此不等式组,从而求得函数的定义域;首先对函数解析式进行化归,考虑到对数函数中底数的范围制约着函数单调性,影响到函数的值域,所以需要对底数的范围进行分类讨论,从求出函数的值域;(2)根据(1)中函数值的分布情况,可知只有当时,函数有最小值,所以有,从而解得所求的值.试题解析:(1)依题意得则,, 3分当时,;当时,的定义域是.当时,值域为当时,值域为. 7分(2)因为有最小值-2,由(1)可知且,12分【考点】1.函数的定义域;2.对数函数.6.已知函数(1)判断函数的奇偶性,并说明理由。
(2)若,求使成立的集合。
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。
有分析可知在这两种情况下均为单调函数,所以的值域即为。
解关于m的不等式即可求得m。
所以本问的重点就是讨论单调性求其值域。
试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。
高一数学对数函数经典题及详细答案
∵2 1og2 3 =x, 又∵ x=3, ∴2 1og2 3 =3.】
2 1
log2.56.25+lg +ln e +
1log2 3
=
log2.5 2.52 +
lg10 3 +
lne
1 2
+2 1 2 1og2 3
100
=2+(-3)+
1 2
+2 3=2-3+
1 2
+6=
5
1 2
1
2 的对数也是递
减,所以复合函数是增函数
12.已知函数 y=log 1 (ax2+2x+1)的值域为 R,则实数 a 的取值范围是( )
2
A.a > 1
B.0≤a< 1
C.0<a<1
D.0≤a≤1
答案为:C。
(注:对数函数定义底数则要>0 且≠1 真数>0)∵函数 y=log 1 (ax 2 +2x+1)的值域为 R
(注另解:∵logm9<0,logn9<0,得到 0<m<1,0<n<1;也可化成
lg 9
logm9= lg m ,
lg 9
lg 9 lg 9
logn9= lg n ,则 lg m < lg n <0
由于 lg9 大于 0
1
1
∴ lg m < lg n n<m,0<n<m<1.
【注:换底公式
a,c 均大于零且不等于 1】
A、 1 4
B、4
C、1
答案 B。
) D、4 或 1
∵2log a (M-2N)=log a M+log a N,
∴log a (M-2N) 2 =log a (MN),∴(M-2N) 2 =MN,
高一数学对数与对数函数试题答案及解析
高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。
求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。
把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。
令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。
【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)
一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。
高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)
高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logaabb.N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中0,N0,那么MlogaNloga(MN)M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)④alogaNNnlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)logba【2.2.2】对数函数及其性质(5)对数函数函数名称定义函数对数函数yloga某(a0且a1)叫做对数函数a1y某10a1y某1yloga某yloga某图象O(1,0)O(1,0)某某定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当某1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(某1)loga某0(0某1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近某轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念设函数果对于yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式③将某yf(某)中反解出某f1(y);f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P"(b,a)在反函数yf1(某)的图象上.③若P(a,b)在原函数④一般地,函数yf(某)要有反函数则它必须为单调函数.一、选择题:1.log89的值是log23A.()23B.1C.32D.22.已知某=2+1,则log4(某3-某-6)等于A.()C.0D.32B.54123.已知lg2=a,lg3=b,则lg12等于lg15()A.2ab1abB.a2b1abC.2ab1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某的值为 yA.1B.4()C.1或4C.(C.ln5D.4或-1()5.函数y=log1(2某1)的定义域为2A.(1,+∞)B.[1,+∞)2B.5e1,1]2D.(-∞,1)()D.log5e()y6.已知f(e某)=某,则f(5)等于A.e57.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是yyyABCD8.设集合A{某|某10},B{某|log2某0|},则AB等于A.{某|某1}C.{某|某1}B.{某|某0}D.{某|某1或某1}2O某O某O某O某()9.函数yln某1,某(1,)的反函数为()某1e某1,某(0,)B.y某e1e某1,某(,0)D.y某e1e某1,某(0,)A.y某e1e某1,某(,0)C.y某e1二、填空题:10.计算:log2.56.25+lg11log23+lne+2=10011.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.15.(lgm)0.9≤(lgm)0.8,16.25y8413,14.y=1-2某(某∈R),217.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a扩展阅读:高一数学上册_第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logbaab.(3)常用对数与自然对数:常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e2.71828…).(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:logaMlogaNloga(MN)②减法:logaMlogaNlogMaN③数乘:nlogaMlogaMn(nR)log④aaNN⑤lognnabMblogaM(b0,nR)⑥换底公式:logbNaNloglog(b0,且b1)ba【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数yloga某(a0且a1)叫做对数函数a10a1y某1ylog某1a某yyloga某图象(1,0)OO(1,0)某某定义域(0,)值域R 过定点图象过定点(1,0),即当某1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(0某1)a变化对在第一象限内,a越大图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越小图象越靠高,越靠近y轴④一般地,函数yf(某)要有反函数则它必须为单调函数.图象的影响(6)反函数的概念设函数yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如果对于y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式yf(某)中反解出某f1(y);③将某f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P(b,a)在反函数yf(某)的图象"1③若P(a,b)在原函数上.一、选择题:1.log89log的值是23A.23B.12.已知某=2+1,则log4(某3-某-6)等于A.3B.5243.已知lg2=a,lg3=b,则lg12lg15等于A.2ab1abB.a2b1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某y的值为A.1B.45.函数y=log1(2某1)的定义域为2A.(12,+∞)B.[1,+∞)1)6.已知f(e某)=某,则f(5)等于C.32()C.0()C.()C.1或4C.(12,1]()D.2D.122ab1abD.4或-1)D.(-∞,()A.e5B.5eC.ln5D.log5e7.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是()yyyyABCDO某O某某OO某8.设集合A{某|某210},B{某|lo2某g0|}则,AB等于()A.{某|某1}B.{某|某0}C.{某|某1}D.{某|某1或某1}9.函数yln某1某1,某(1,)的反函数为()A.ye某1e某1,某(0,)B.ye某1e某1,某(0,)C.ye某1e某1e某1,某(,0)D.ye某1,某(,0)二、填空题:10.计算:log2.56.25+lg1100+lne+21log23=(11.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.132,14.y=1-2某(某∈R),15.(lgm)0.9≤(lgm)0.8,16.254y817.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a。
高中对数的运算练习题及讲解
高中对数的运算练习题及讲解# 高中对数运算练习题及讲解## 练习题### 题目一:基础对数运算求值:\[ \log_{2}(8) \]### 题目二:对数的换底公式求值:\[ \log_{10}(100) \]### 题目三:对数的幂运算法则求值:\[ \log_{3}(27) \]### 题目四:对数的乘积法则求值:\[ \log_{5}(25 \times 20) \]### 题目五:对数的商法则求值:\[ \log_{4}(\frac{16}{8}) \]### 题目六:对数的复合运算求值:\[ \log_{2}(\sqrt{8}) \]### 题目七:对数不等式的解法解不等式:\[ 2^{x} < 16 \]### 题目八:对数方程的解法解方程:\[ \log_{3}(x) = 2 \]### 题目九:对数函数的图像分析分析函数:\[ y = \log_{2}(x) \] 的图像特点。
### 题目十:对数函数的实际应用如果一个细菌群体每4小时翻倍一次,求出48小时后细菌的数量,假设初始数量为100。
## 讲解### 基础对数运算对数的基本定义是:如果 \( a^b = c \),那么 \( b = \log_{a}(c) \)。
对于题目一,\( 2^3 = 8 \),所以 \( \log_{2}(8) = 3 \)。
### 对数的换底公式换底公式是 \( \log_{a}(b) = \frac{\log_{c}(b)}{\log_{c}(a)} \)。
对于题目二,\( \log_{10}(100) = 2 \),因为 \( 10^2 = 100 \)。
### 对数的幂运算法则幂运算法则是 \( \log_{a}(a^b) = b \)。
对于题目三,\( 3^3 = 27 \),所以 \( \log_{3}(27) = 3 \)。
### 对数的乘积法则乘积法则是 \( \log_{a}(bc) = \log_{a}(b) + \log_{a}(c) \)。
高一数学对数函数经典题及详细答案
一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选 项中,只有一项是符合题目要求的)答案A oA 、 m 答案Do■/ loga(1+x)=m loga [1/(1-x)]=n•/ 3a =2 ••• a=log 3 2 则:log 3 8-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-22、2log a (M 2N) log a M log a N ,则—的值为( N 1 4 答案B oB 、4 C、 ••• 2log a (M-2N ) =log a M+log a N,• log a (M-2N) 2=log a (MN ,•( M-2N)2 =MN M 2 -4MN+4N 2 =MN -5mn+4n 2=0 (两边同除 n 2) 瞪) 2-5 吟 +4=0,设 2x -5 x+4=0 (x -2*5 x+2:)- 2 + =0(x--9 =0(x- 5)x- 5= 5 3 x= 22 3 2 mn m n又••• 2log a (M 2N) log a M log a N ,看出 M-2N>0 M>0 N>0• m =1即M=N 舍去, 得M=4N 即m =4 •••答案为:3、已知2 .y 1,x0, y 0, 且 log a (1 x)n,则log a y 等于loga(1-x 2)=m-n•/ x 2+y2=1, x>0, y>0,y 2=1- x 2 loga(y 2)=m-n1、已知3a2,那么log 3 8 2log 36用a 表示 是(B 、5a 2C 、3a (1 a)2D 、 3a a 2,loga(1-x)=-n两式相加得: loga [(1+x)(1-x)]=m-n/• 2loga(y)=m-n loga(y)= ; (m-n)4.若x 1 ,x 2是方程lg x + (lg3 + lg2)lgx + lg3 • lg2 = 0 的两根, (A) . lg3 • lg2 (B) (C) 则x 1x 2的值是() 1 6(D)答案D •••方程 lg 2x+ (lg2+lg3 把lgx 看成能用X ,这是二次方程。
对数的运算高中练习题及讲解
对数的运算高中练习题及讲解# 对数的运算高中练习题及讲解## 练习题### 题目1:求值\[ \log_{2}8 - \log_{2}4 \]### 题目2:化简\[ \log_{10}(1000) + \log_{10}(0.1) \]### 题目3:解方程\[ \log_{3}x + \log_{3}2 = 2 \]### 题目4:判断如果 \( \log_{4}16 = b \),求 \( \log_{2}8 \)。
### 题目5:证明证明 \( \log_{a}b \cdot \log_{b}a = 1 \)。
## 讲解### 题目1 解析:根据对数的性质,我们可以将 \( \log_{2}8 \) 和 \( \log_{2}4 \) 转换为指数形式,然后进行计算。
\[ \log_{2}8 = 3 \]\[ \log_{2}4 = 2 \]所以:\[ \log_{2}8 - \log_{2}4 = 3 - 2 = 1 \]### 题目2 解析:利用对数的乘法法则,可以将两个对数合并为一个:\[ \log_{10}(1000) + \log_{10}(0.1) = \log_{10}(1000 \times0.1) \]\[ = \log_{10}(100) \]\[ = 2 \]### 题目3 解析:根据对数的加法法则,我们可以将方程简化:\[ \log_{3}x + \log_{3}2 = \log_{3}(2x) \]由于等式右边等于2,我们可以得出:\[ \log_{3}(2x) = 2 \]\[ 3^2 = 2x \]\[ x = \frac{9}{2} \]### 题目4 解析:根据对数的定义,我们可以得出:\[ \log_{4}16 = b \]\[ 4^b = 16 \]\[ b = 2 \]现在我们需要求 \( \log_{2}8 \),由于 \( 8 = 2^3 \),所以:\[ \log_{2}8 = 3 \]### 题目5 解析:设 \( x = \log_{a}b \) 和 \( y = \log_{b}a \),根据对数的定义,我们有:\[ a^x = b \]\[ b^y = a \]将两个等式相乘,我们得到:\[ a^x \cdot b^y = ab \]由于 \( a^x = b \) 和 \( b^y = a \),我们可以将 \( a^x \) 替换为 \( b \),将 \( b^y \) 替换为 \( a \):\[ b \cdot a = ab \]这意味着 \( x \cdot y = 1 \),即:\[ \log_{a}b \cdot \log_{b}a = 1 \]## 结论通过对数的基本运算法则,我们可以解决各种对数问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学对数运算及对数函数一:选择题1.若log 7[log 3(log 2x )]=0,则为( )A .B .C .D .解:∵log 7[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x=3, ∴x=8,∴===.故选D .2.23(log 9)(log 4)⋅=( ) (A )14 (B )12(C ) 2 (D )4 【答案】D 3.的值是( C )A . 12B .C . ﹣12D .解:=log 6(4×9)+2﹣16=﹣12,故选C . 4.实数﹣•+lg4+2lg5的值为( D )A . 25B . 28C . 32D . 33解:﹣•+lg4+2lg5=﹣2×(﹣2)+lg (4×25)=27+4+2=33,故选D .b A . B . C . D .解:∵lg2=a ,10b =3,∴lg3=b ,∴log 125== =.故选C.6.lgx+lgy=2lg(x﹣2y),则的值的集合是()A.{1} B.{2} C.{1,0} D.{2,0} 解:∵lgx+lgy=2lg(x﹣2y),∴lg(x﹣2y)2=lgxy,∴(x﹣2y)2=xy,∴x2﹣5xy+4y2=0,∴﹣5•+4=0,∴=1(舍去)或=4,故=log24=2,故选B.7.已知f(e x)=x,则f(5)等于(D)A.e5B.5e C.l og5e D.l n5 解:∵f(e x)=x,令e x=t,解得x=lnt,∴f(t)=lnt(t>0),∴f(5)=ln5,故选D.8.设,则a,b,c的大小顺序为()A.a>b>c B.a>c>b C.b>a>c D.c<a<b 解:因为,又1.8>1.5>1.44,函数y=2x是增函数,所以a>c>b.故选B.9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)C.2D.﹣2 A.B.﹣解:设log2f(2)=n,则f(2)=2n∴f(x)=x n又∵由幂函数y=f(x)的图象过点∴,故选A.10.若非零实数a、b、c满足,则的值等于()A.1B.2C.3D.4解:∵,∴设=m ,a=log 5m ,b=log 2m ,c=2lgm , ∴==2lgm (log m 5+log m 2) =2lgm •log m 10 =2. 故选B .11.已知f (x )=,则f (log 23)的值是(A )A .B .C . 24D . 12解:∵1<log 23<3∴f (log 23)=f (1+log 23)=f (log 26)==故选:A .12.已知函数f (x )满足:x ≥4,则f (x )=;当x <4时f (x )=f (x+1),则f (2+log 23)A .B .C .D .解:∵3<2+log 23<4,所以f (2+log 23)=f (3+log 23)且3+log 23>4∴f (2+log 23)=f (3+log 23) =故选A .13.若log a <13,则a 的取值范围是 ( ) A .a >1 B .a 20<<3 C .a 2<<13 D .a 20<<3或a >1【答案】D14.函数2()ln(43x )f x =+-x 的单调递减区间是( ) A. 3(,]2-∞ B. 3[,)2+∞ C. 3(1,]2- D. 3[,4)2【答案】D15.已知函数()()x x f a-=2log 1在其定义域上单调递减,则函数()()21log x x g a -=的单调减区间是( )A. (]0,∞-B. ()0,1-C. [)+∞,0D. [)1,0 【答案】B16.已知函数212()log ()f x x ax a =--,在1()2-∞-,上是增函数,则实数a 的取值范围是( )A .[1)-+∞,B .1[1)2-,C .1[1]2-, D .(1]-∞-,【答案】C17.已知函数xa x f =)(0(>a 且1≠a )与函数x x g a log )(=0(>a 且1≠a )的图象有交点,函数)()()(x g x f x +=ϕ在区间]2,1[上的最大值为21,则)(x ϕ在区间]2,1[上的最小值为( ) A. 21-; B. 21; C. 45; D. 43-. 【答案】D 18.当102x <≤时,4log xa x <,则a 的取值范围是 ( ) A .(0,22) B .(22,1) C .(1,2) D .(2,2) 【答案】B二:填空题19.若5a =2,b=log 53,则53a ﹣2b= .解:∵5a =2,b=log 53, ∴5b =3, 53a ﹣2b =(5a )3÷(5b )2 =23÷32 =,故答案为:.20.求值:= .解:==+2+2 =.故答案为:.21.设=.解:∵2a =5b =t , ∴a=log 2t ,b=log 5t , ∴===log t 2+log t 5=log t 10=3, ∴t 3=10, ∴t=.故答案为:. 22.方程的解为.解:当x ≤0时,无解 当x >0时,(2x )2﹣2•2x ﹣1=0 解得:即x=故答案为:23.若函数23()log log 2f x a x b x =++,且()52012f =,则(2012)f 的值为 _ . 【答案】-124.函数y 20.5(43)x x -㏒________. 【答案】31{|10}44x x x <≤-≤<或25.已知函数21()log ()2a f x ax x =-+(01a a >≠且)在[1,2]上恒正,则实数a 的取值范围为 . 【答案】153(,)(,)282+∞ 三:解答题 26.计算.解:=+﹣102×10lg2=9﹣2﹣100×2 =193.27.若2()f x x x b =-+,且22(log )log [()]2(1)f a b f a a ==≠,. (1)求2(log )f x 的最小值及对应的x 值;(2)若不等式2(log )(1)f x f >的解集记为A ,不等式2log [()](1)f x f <的解集记为B ,求A B .解:(1) ∵ 2()f x x x b =-+∴ 2222(log )log log f a a a b b =-+=,∴ 22log 1log 0a a ==或 ∴ a = 2或a = 1(舍)又 ∵ 2222log [()]log ()log (2)2f a a a b b =-+=+= ∴ 24b += ∴ b = 2∴ 2()2f x x x =-+,22222217(log )log log 2(log )24f x x x x =-+=-+ ∴ 当21log 22x x =,即2(log )f x 的最小值为74(2) 由2222(log )(1)log log 22f x f x x >-+>得 ∴ 22log (log 1)0x x ->∴ 22log 0log 1x x <>或 ∴ 012x x <<>或,即{|012}A x x x =<<>或 由222log [()](1)log (2)2f x f x x <-+<得 ∴ 202412x x x <-+<-<<解得 ∴ {|12}B x x =-<< ∴ {|01}AB x x =<<28.设函数22()log (4)log (2)f x x x =⋅,144x ≤≤, 若x t 2log =,求t 取值范围;(2)求()f x 的最值,并给出最值时对应的x 的值。
解:(1)441,log 2≤≤=x x t 即22≤≤-t(2)()2log 3log 222++=x x x fx t 2log =∴令,则,41232322-⎪⎭⎫⎝⎛+=++=t t t y2322,23log 23-=-=-=∴x x t 即当时,()41min -=x f当()12,42max ===x f x t 时即29.已知函数f(x)=log a [(a 1-2)x+1]在区间[1,2]上恒为正,求实数a 的取值范围.解:∵f(x)=log a [(a 1-2)x+1]在[1,2]上恒正,(1)当a >1时,真数μ=(a 1-2)x+1>1,∴(a 1-2)x >0,∴a 1-2>0即a <21 (舍) .(2)当0<a <1时,0<μ<1∴⎪⎪⎩⎪⎪⎨⎧<+->+-11)21(01)21(x ax a要使①式当x ∈[1,2]恒成立,则101,(2)110210,(2)2103a a a a⎧<<-⋅+>⎧⎪⎪⎪⇒⎨⎨<<⎪⎪-⋅+>⎩⎪⎩∴0<a <32. 要使②式成立,则(a 1-2)x <0,只要a 1-2<0,∴a 1<2 ,∴a >21.综上21<a <32.30.已知函数)421(log )(5.0a x f xx ⋅++=;(1)若0=a ,求)(x f 的值域;(2)在(1)的条件下,判断)(x f 的单调性;① ②(3)当]1,(-∞∈x 时)(x f 有意义求实a 的范围。
解:(1)若0=a ,)0,()(,121),)(21(log )(5.0-∞∈∴>+∈+=∴x f R x x f xx 的值域; (2),121),21(log )(5.0>+=+=xx t x f 令或用定义法说明。
(3)]1,(-∞∈x 时,)421(log )(5.0a x f xx ⋅++=有意义,]1,(-∞∈∴x 时,0421>⋅++a x x31.已知函数1()log 1amxf x x -=-(0,1,1)a a m >≠≠是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明; (3)当(,2)x n a ∈-时,函数()f x 的值域是(1,)+∞,求实数a 与n 的值 解:(1)由已知条件得()()0f x f x -+=对定义域中的x 均成立. ∴11log log 011aa mx mxx x +-+=--- 即11111mx mxx x +-⋅=--- ∴22211m x x -=-对定义域中的x 均成立.即1m =(舍去)或1m =-.(2)由(1)得1()log 1axf x x +=- 设11221111x x t x x x +-+===+---, ∴当121x x >>时,211212122()2211(1)(1)x x t t x x x x --=-=---- ∴12t t <.当1a >时,12log log a a t t <,即12()()f x f x <.∴ 当1a >时,()f x 在(1,)+∞上是减函数. ∴ 同理当01a <<时,()f x 在(1,)+∞上是增函数.∴ (3)函数()f x 的定义域为(1,)(,1)+∞⋃-∞-,∴①21n a <-≤-,∴01a <<. ∴()f x 在(,2)n a -为增函数,要使值域为(1,)+∞,则1log 1121a n n a +⎧=⎪-⎨⎪-=-⎩(无解) ②12n a ≤<-, ∴3a >.∴()f x 在(,2)n a -为减函数,要使()f x 的值域为(1,)+∞, 则11log 13a n a a =⎧⎪-⎨=⎪-⎩∴2a =+1n =.32.已知函数)(x f 是定义在()()+∞∞-,00, 上的奇函数, 当0>x 时,x x f 2log )(=.(Ⅰ)求当0<x 时,函数)(x f 的表达式;(Ⅱ)求满足1)1(-<+x f 的x 的取值范围; (Ⅲ)已知对于任意的N k ∈,不等式12+≥k k 恒成立,求证:函数)(x f 的图象与直线x y =没有交点.解:(Ⅰ)当0<x 时,)(log )(2x x f --=.(Ⅱ)()⎩⎨⎧<-->=0)(log )0(log )(22x x x x x f ,∴[]()[]()⎩⎨⎧-<+--->+=⎩⎨⎧<++-->++=+1)1(log )1()1(log 01)1(log )01()1(log )1(2222x x x x x x x x x f因为1)1(-<+x f ,∴⎩⎨⎧-<+->1)1(log 12x x 或[]⎩⎨⎧-<+---<1)1(log 12x x∴3-<x 或211-<<-x . (Ⅲ)根据对称性,只要证明函数)(x f 的图象与直线x y =在()+∞∈,0x 上无交点即可。