多边形的内角和教学设计人教版

合集下载

多边形内角和教学设计3篇

多边形内角和教学设计3篇

多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。

(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

(2)通过变式练习,培养学生动手、动脑的实践能力。

3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。

先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。

由此激发学生自己要设计,怎样设计的求知欲。

然后提出具体问题。

2、复习提问,知识巩固。

(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。

3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。

结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

多边形的内角和教学教案

多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。

1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。

由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。

这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

人教版八年级上册11.3.2多边形的内角和课程设计

人教版八年级上册11.3.2多边形的内角和课程设计

人教版八年级上册11.3.2多边形的内角和课程设计一、背景介绍本课程是人教版初中数学八年级上册第11章《平面图形的初步认识》中的第3节“多边形的内角和”中的第2个知识点。

在前面的课程中,学生已经学会了什么是多边形、多边形的分类以及计算多边形的周长等基本概念和知识。

在这一节课中,学生将学习计算任意多边形的内角和的方法。

二、教学目标知识目标1.能够理解多边形的内角和公式及其推导过程;2.能够根据多边形的边数和类型计算其内角和;3.能够用所学知识解决实际问题。

技能目标1.培养学生的逻辑思维和抽象思维能力;2.培养学生的计算能力和解决实际问题的能力;3.提高学生的数学素养和综合应用能力。

情感目标1.培养学生对数学的兴趣和热爱;2.培养学生的自学能力和自信心;3.培养学生的团队合作精神和集体荣誉感。

三、教学重点和难点教学重点1.理解多边形的内角和公式及其推导过程;2.能够根据多边形的边数和类型计算其内角和。

教学难点1.能够用所学知识解决实际问题;2.能够提高学生的数学素养和综合应用能力。

四、教学方法本节课程采用课堂讲解和示范演练相结合的方法。

首先教师讲解内角和公式的推导过程和应用方法,然后通过几个例题演示如何计算内角和,最后让学生在小组中自行解决实际问题并进行展示和讨论。

五、教学内容和步骤教学内容本课程的主要内容包括以下几个部分:1.多边形的内角和公式及其推导过程;2.根据不同的多边形类型计算内角和的方法;3.实际问题的解决及其应用。

教学步骤步骤1:导入教师通过引入实际问题,引起学生的兴趣和注意,提出本节课程的主要内容和目标。

步骤2:知识讲解教师通过示例和实例,讲解多边形的内角和公式及其推导过程,并介绍不同类型多边形内角和的计算方法。

步骤3:演示练习教师通过几个例题,演示如何计算内角和,帮助学生理解公式和计算方法。

步骤4:小组讨论学生分组进行实际问题的解决,并在小组中展示和讨论结果,加深对所学知识的理解和应用。

多边形的内角和-人教版八年级数学上册教案

多边形的内角和-人教版八年级数学上册教案

多边形的内角和-人教版八年级数学上册教案1. 教学目标1.1 知识与技能:•掌握任意多边形内角和的计算方法;•运用多边形内角和计算方法解决实际问题。

1.2 过程与方法:•通过示例和练习,培养学生运用一定数学推理方法来解决问题的能力;•引导学生学会采用多种角度来组织知识体系的方法。

1.3 情感态度与价值观:•培养学生对于多边形的认识和理解,帮助学生发现身边的多边形;•强化学生数学知识的应用能力和解决问题的意识。

2. 教学重点和难点2.1 教学重点:•掌握任意多边形内角和的计算方法;•运用多边形内角和计算方法解决实际问题。

2.2 教学难点:•完全掌握任意多边形内角和的计算方法;•能够准确运用多边形内角和计算方法解决实际问题。

3. 教学过程3.1 概念讲解多边形是由三条以上的线段围成的,每条线段的两个端点称为多边形的顶点,相邻两个顶点之间的线段称为多边形的边。

多边形的内角是由两条相邻边所夹的角。

3.2 外部引入现在有一个三角形,三角形的一条边上有一个点P,如图所示。

请大家思考一下,这个三角形三个内角的度数加起来是多少度?P/ \\/ \\/ \\/_______\\A B3.3 自主学习3.3.1 学生自主探究现在请大家手工画一下一个三角形,然后用画个尺和直尺来测量三角形的每个内角,算一下三角形三个内角的度数加起来是多少度?3.3.2 回归整合学生把自己算的结果与其他同学的结果进行比较,看看谁算得最准确。

3.4 归纳提取请大家把自己算得最准确的结果告诉大家,并从自己的计算方法入手,试着总结一下计算任意多边形内角和的方法。

3.5 拓展延伸在熟悉三角形的基础上,请大家手工画一下一个四边形,然后测量每个内角,算一下四边形四个内角的度数加起来是多少度?3.6 练习巩固•现在请大家手工画一下一个五边形,然后算一下五边形五个内角的度数加起来是多少度?•现在请大家手工画一下一个六边形,然后算一下六边形六个内角的度数加起来是多少度?4. 教学反思本节课通过概念讲解、自主学习、归纳提取、拓展延伸和练习巩固等方式,帮助学生掌握了任意多边形内角和的计算方法,并能够运用多边形内角和计算方法解决实际问题。

人教版八年级数学上册教学设计:11.3.2多边形的内角和

人教版八年级数学上册教学设计:11.3.2多边形的内角和
3.组织学生进行互评,让学生在评价他人作业的过程中,加深对知识点的理解。
(五)总结归纳,500字
1.让学生复述多边形内角和的计算公式,巩固记忆。
2.引导学生总结本节课所学内容,归纳解题方法和技巧。
3.提醒学生多边形内角和在实际生活中的应用,培养学生的实用主义观念。
4.布置课后作业,让学生在课后进一步巩固所学知学效果,针对学生的掌握情况,调整教学方法。
2.学生反思:回顾自己的学习过程,总结学习方法和经验,提高学习效率。
二、学情分析
八年级的学生已经具备了一定的数学基础和逻辑思维能力,对多边形的基本概念和性质有了初步的了解。在此基础上,他们对多边形的内角和这一概念充满好奇心,但可能对如何运用定理解决问题感到困惑。因此,在教学过程中,应注重以下方面:
2.练习巩固:布置相关练习题,让学生独立完成,巩固所学知识。
3.实际应用:提出实际问题,让学生运用多边形内角和定理解决问题。
四、总结与拓展
1.回顾本节课所学内容,让学生复述多边形内角和的概念及计算公式。
2.拓展思考:引导学生思考多边形外角和与内角和之间的关系。
3.布置作业:结合教材课后习题,布置适量的作业。
2.培养学生勇于探索、积极思考的精神,增强学生面对困难的勇气和信心。
3.引导学生认识到数学知识在实际生活中的应用价值,培养学生的实用主义观念。
一、导入新课
1.复习上一节课的知识点:多边形的定义、性质及分类。
2.提问:同学们,我们已经学习了多边形的基本概念,那么你们知道多边形的内角和是多少吗?
二、探究多边形的内角和
五、作业布置
为了巩固本节课所学知识,提高学生的实际应用能力,特布置以下作业:
1.请同学们完成教材课后习题第1、2、3题,以加深对多边形内角和计算公式的理解。

人教版八年级数学上册多边形的内角和教学设计

人教版八年级数学上册多边形的内角和教学设计
4.例题讲解:教师选取典型例题,讲解如何运用多边形内角和公式解决实际问题。
(三)学生小组讨论
1.教学活动:教师将学生分成小组,每组讨论以下问题:
a.多边形内角和公式的推导过程是怎样的?
b.如何运用多边形内角和公式解决实际问题?
c.多边形内角和性质在生活中的应用实例。
2.小组讨论:学生积极思考,互相交流,共同解决问题。
a.选择一个生活中的多边形物品,测量其内角度数,并计算出其内角和,与理论值进行比较,分析可能的原因。
b.探究多边形内角和与边数之间的关系,尝试总结规律,并用文字或图形进行说明。
3.开放性作业:
a.结合本节课所学知识,设计一道与多边形内角和相关的实际问题,并给出解题步骤。
b.搜集生活中的多边形实例,分析其内角和的特点,探讨多边形内角和在实际应用中的作用。
人教版八年级数学上册多边形的内角和教学设计
一、教学目标
(一)知识与技能
1.理解多边形的内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质,解决实际问题,如计算多边形的未知角度,判断多边形的类型等。
3.能够运用多边形内角和的性质,推导出多边形对角线的数量关系,并应用于实际问题的解答。
3.教师指导:教师巡回指导,解答学生的疑问,引导学生深入探讨。
(四)课堂练习
1.教学活动:教师发放课堂练习题,让学生独立完成。
2.练习内容:练习题包括基础题和提高题,涵盖多边形内角和的各种应用场景。
3.学生解答:学生在规定时间内完成练习题,教师及时给予反馈。
4.解答讨论:教师选取部分学生的解答进行展示,组织学生讨论解题思路和方法。
4.提出问题:教师提出问题:“那么,对于任意多边形,它的内角和是否有规律可循呢?这节课我们就来探讨这个问题。”

11.3.2多边形的内角和 教案 2022—2023学年人教版数学八年级上册

11.3.2多边形的内角和 教案 2022—2023学年人教版数学八年级上册

11.3.2 多边形的内角和教案一、教学目标1.理解多边形的内角的概念;2.掌握计算多边形内角和的方法;3.运用多边形的内角和定理解决相关问题。

二、教学重点1.多边形内角的概念;2.多边形内角和的计算方法。

三、教学难点1.运用多边形的内角和定理解决相关问题。

四、教学准备1.教学课件;2.多边形模型。

五、教学步骤步骤一:导入1.引导学生回顾多边形的定义,并思考多边形的内角是什么;2.提问:在平面内选择一点,连接这个点与多边形的每个顶点,能组成什么图形?步骤二:引入1.出示一个五边形的图形,引导学生观察多边形内角的特点;2.提问:五边形的内角和是多少?步骤三:讲解1.引导学生观察一个三角形和一个四边形的内角和;2.讲解多边形内角和的计算方法,并列举相关的公式;3.出示几个多边形的示例,指导学生计算多边形的内角和。

步骤四:练习1.分发练习题,让学生独立完成;2.随堂检查并讲解答案。

步骤五:拓展1.出示一个有六个顶点的多边形,引导学生思考多边形的内角和;2.引导学生归纳总结多边形的内角和定理。

六、课堂小结1.概括多边形内角的概念;2.掌握计算多边形内角和的方法;3.运用多边形的内角和定理解决相关问题。

七、布置作业练习册第10页、11页的相关习题。

八、学习反思本节课主要介绍了多边形的内角和的概念和计算方法。

通过观察多边形的特点和推导,学生理解了多边形内角和的计算方法,并通过练习题运用所学知识解决问题。

在教学中,通过引导和讨论,激发了学生的思考和参与,增强了学生的学习兴趣和主动性。

同时,及时的反馈和解答使学生更好地理解了知识点。

整体上,教学效果较好,学生对多边形的内角和有了基本的了解和掌握。

在以后的教学中,可以通过更多的实例引导学生深入理解和应用多边形的内角和定理。

人教版八年级数学上册11.3多边形内角和教学设计

人教版八年级数学上册11.3多边形内角和教学设计
人教版八年级数学上册11.3多边形内角和教学设计
一、教学目标
(一)知识与技能
1.了解多边形的定义,理解多边形内角和的概念。
2.学会推导多边形内角和的计算公式,并能灵活运用。
3.能够运用多边形内角和的知识,解决生活中的实际问题,如平面几何图形的拼接、镶嵌等。
(二)过程与方法
1.在自主探究中,引导学生通过观察、思考、总结,发现多边形内角和的计算规律。
2.对于计算题,要求列出完整的计算过程,注明关键步骤。
3.对于证明题,要求逻辑清晰,推理严谨,表述简洁。
4.对于探究题目,鼓励同学们积极思考,勇于尝试,培养解决问题的能力。
5.请家长协助监督,关注学生的学习进度,鼓励他们独立完成作业。
2.证明:任意凸四边形的内角和为360度。
3.结合生活实际,举例说明多边形内角和在生活中的应用,并简要阐述其原理。
4.自主学习:了解多边形的外角和定理,并尝试推导外角和的计算公式。
5.探究题目:一个凸多边形的每个外角都不小于60度,求证该多边形的边数不超过6。
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁。
3.强调多边形内角和计算公式:内角和= (n-2) × 180°,并解释公式中每个部分的含义。
4.通过示例,展示如何运用多边形内角和计算公式解决实际问题。
(三)学生小组讨论,500字
1.将学生分成若干小组,每组选择一个多边形,尝试运用刚学的内角ቤተ መጻሕፍቲ ባይዱ计算公式求解该多边形的内角和。
2.各小组讨论:如何将多边形分解成若干个三角形,以及如何利用三角形内角和的知识解决多边形内角和的问题。
3.教师巡回指导,参与学生的讨论,给予提示和鼓励,引导学生发现多边形内角和的计算规律。

人教版八年级数学上册11.3《多边形的内角和》教学设计

人教版八年级数学上册11.3《多边形的内角和》教学设计
4.学会将多边形内角和的性质运用到实际问题中,培养学生的几何建模和解决问题的能力。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣,激发学生学习数学的热情,增强学生的自信心和自主学习意识。
2.通过多边形内角和的学习,引导学生发现几何图形中的规律,培养学生对数学美的感知。
3.培养学生勇于探索、善于合作的精神,让学生体会到团队合作的力量。
2.解决实际问题中,如何将多边形内角和的性质灵活运用,培养学生的几何建模和解决问题的能力。
教学设想:
1.创设情境,引入新课
通过展示多边形的实物模型,引导学生观察、思考多边形内角和的特点,激发学生的学习兴趣,为新课的学习做好铺垫。
2.自主探究,合作交流
给学生提供自主探究的时间和空间,鼓励他们通过观察、画图、计算等方法,发现多边形内角和的计算规律。在此基础上,组织学生进行小组讨论,交流各自的想法和发现,共同推导出多边形内角和的计算公式。
人教版八年级数学上册11.3《多边形的内角和》教学设计
一、教学目标
(一)知识与技能
1.理解多边形内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.学会运用多边形内角和的性质解决实际问题,如平面图形的镶嵌、角度分配等。
3.能够运用多边形内角和的性质推导出多边形外角和的性质,理解内外角之间的关系。
(2)思考:如何运用多边形内角和的性质判断一个图形是否为凸多边形?
作业要求:
1.认真完成作业,注意解题过程和书写规范。
2.遇到问题要积极思考,可以与同学讨论,也可以向老师请教。
3.作业完成后,认真检查,确保答案正确。
八年级学生对几何图形有一定的认识和了解,具备基本的几何知识和技能。在此基础上,他们对多边形内角和的概念和性质已有初步的认识,但可能对内角和的计算和应用方面存在一定的困难。因此,在教学过程中,教师应充分了解学生的知识背景和认知特点,注意以下几点:

人教版八年级数学上册11.2.1多边形内角和教学设计

人教版八年级数学上册11.2.1多边形内角和教学设计
-利用信息技术手段,如几何画板、多媒体课件等,进行直观演示,帮助学生形象地理解多边形内角和的性质。
-设计小组合作活动,让学生在讨论、交流中共同解决问题,提高学生的合作能力和解决问题的能力。
2.教学过程:
(1)导入新课:
通过复习已学过的三角形、四边形内角和性质,自然过渡到多边形内角和的学习,激发学生的兴趣和求知欲。
四、教们将通过复习已有知识,引入新课的内容。首先,我会引导学生回顾三角形的内角和定理,让学生知道三角形的内角和总是等于180度。接着,提出问题:“四边形的内角和又是多少呢?”让学生尝试解答,并分享他们的思考过程。然后,我会逐步引导学生从四边形过渡到五边形、六边形等多边形,让学生观察这些多边形的内角和是否有规律可循。
5.思考题:引导学生思考多边形内角和与外角和之间的关系,尝试推导出多边形外角和的计算公式。
作业要求:
1.学生在完成作业时,要注重解题过程的规范性,养成良好的学习习惯。
2.鼓励学生在遇到问题时,积极与同学、老师交流,共同解决问题。
3.家长要关注孩子的学习情况,协助孩子检查作业,培养孩子独立完成作业的能力。
3.设计具有层次性和挑战性的练习题,让学生在解决问题的过程中,逐步提高自己的几何解题能力,形成系统的几何知识体系。
4.引导学生运用多边形内角和的性质进行逆向思维,培养学生解决问题的灵活性和创造性。
(三)情感态度与价值观
1.培养学生对几何图形的兴趣和热爱,激发学生学习数学的热情,增强学生的自信心和成就感。
人教版八年级数学上册11.2.1多边形内角和教学设计
一、教学目标
(一)知识与技能
1.理解多边形内角和的概念,掌握多边形内角和的计算公式,并能运用该公式准确计算各类多边形的内角和。

人教版八年级数学上册11.3.2多边形的内角和教学设计

人教版八年级数学上册11.3.2多边形的内角和教学设计
2.提醒学生注意多边形内角和公式在实际问题中的灵活运用,如判断多边形类型、解决与多边形相关的几何问题等。
3.鼓励学生在课后继续探索多边形的相关性质,发现数学的乐趣。
4.对学生的课堂表现给予积极评价,激发学生学习数学的兴趣和自信心。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和实践操作技能,特布置以下作业:
(四)课堂练习,500字
1.设计梯度性练习题,让学生运用内角和公式计算不同边数的多边形内角和。
2.针对学生的练习情况,给予个别指导和解答。
3.选取部分学生的作业进行展示和评价,鼓励学生积极参与,提高课堂氛围。
(五)总结归纳,500字
1.引导学生总结本节课所学内容,强调多边形内角和的定义、计算公式及其应用。
4.能够运用多边形内角和的知识解决实际生活中的问题,如房屋建筑、城市规划等。
(二)过程与方法
1.引导学生通过观察、分析、归纳多边形内角和的特点,培养学生的观察能力和逻辑思维能力。
2.设计具有启发性的问题,引导学生通过自主探究、合作交流等方式,发现并理解多边形内角和的计算公式。
3.通过典型例题的分析与讲解,使学生掌握解决多边形内角和相关问题的方法与技巧。
5.拓展延伸,激发兴趣
结合教材内容,设计拓展性问题,引导学生运用多边形内角和的知识解决更复杂的问题。同时,鼓励学生进行课外探索,发现更多与多边形相关的有趣现象。
6.课堂小结,巩固成果
在课堂尾声,引导学生总结本节课所学内容,强调多边形内角和的计算公式及其应用。通过课堂小结,帮助学生巩固所学知识,提高学习效果。
1.重点:多边形内角和的计算公式及其应用。
2.难点:理解多边形内角和公式的推导过程,以及如何运用该公式解决实际问题。

人教版八年级上册11.3.2多边形的内角和(教案)

人教版八年级上册11.3.2多边形的内角和(教案)
3.重点难点解析:在讲授过程中,我会特别强调多边形内角和的计算公式(n-2)×180°以及外角和等于360°这两个重点。对于难点部分,比如公式的推导和应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形内角和相关的实际问题,如如何根据部分角度求解多边形的未知角度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《多边形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形内角和的情况?”比如,在设计多边形图案时,我们可能需要知道所有内角的总和。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形内角和的奥秘。
2.提升空间观念:通过实际操作,让学生感知多边形的内角和与外角和的关系,培养学生的空间想象力和直觉思维能力。
3.增强数学应用意识:将多边形内角和定理应用于解决实际问题,提高学生运用数学知识解决实际问题的能力。
4.培养合作交流能力:在小组讨论和分享中,促进学生之间的沟通与合作,增强团队协作能力。
5.激发创新意识:鼓励学生尝试不同的解题方法,培养学生的创新思维和解决问题的多元化策略。
2.教学难点
-理解多边形内角和定理的推导过程,尤其是从三角形的内角和推导到一般多边形的内角和。
-解决与多边形内角和相关的综合应用问题,如已知多边形的部分角度,求其他角度或边数。
-掌握多边形内角和与外角和的关系,并能在实际问题中灵活运用。
举例:
a.难点一:通过动态演示或教具模型,帮助学生理解多边形内角和定理的推导过程,使学生明白从特殊到一般的多边形内角和规律。

多边形的内角和(教案)-四年级下册数学人教版

多边形的内角和(教案)-四年级下册数学人教版

教案:多边形的内角和课程:四年级下册数学教材版本:人教版教学目标:1. 让学生理解多边形的概念,并能识别常见的多边形。

2. 引导学生探究多边形的内角和,并总结出计算多边形内角和的方法。

3. 培养学生的观察能力、推理能力和合作精神。

教学重点:1. 多边形的概念和特征2. 多边形内角和的计算方法教学难点:1. 多边形内角和的计算方法2. 应用多边形内角和的知识解决实际问题教学准备:1. 课件或黑板2. 多边形的模型或图片3. 练习题教学过程:一、导入1. 引导学生回顾已学的平面图形,如三角形、四边形等。

2. 提问:这些图形有什么共同特点?引发学生对多边形概念的思考。

二、探究多边形的概念和特征1. 通过课件或黑板展示多边形的定义和特征。

2. 引导学生观察多边形的边和角,总结多边形的特征。

3. 学生举例说明常见的多边形,并判断其是否符合多边形的定义。

三、探究多边形的内角和1. 引导学生观察三角形的内角和,并提问:四边形的内角和是多少?2. 学生分组讨论,探究四边形内角和的计算方法。

3. 各小组汇报讨论结果,教师引导学生总结出多边形内角和的计算方法。

四、巩固练习1. 学生独立完成练习题,巩固多边形内角和的计算方法。

2. 教师巡回指导,解答学生的疑问。

五、拓展应用1. 出示一些实际生活中的多边形,引导学生运用内角和的知识解决问题。

2. 学生分组讨论,提出解决方案。

六、课堂小结1. 回顾本节课所学内容,让学生总结多边形的概念、特征和内角和的计算方法。

2. 强调多边形内角和在实际生活中的应用。

教学反思:本节课通过引导学生观察、探究和讨论,使学生掌握了多边形的概念、特征和内角和的计算方法。

在教学过程中,要注意激发学生的学习兴趣,培养学生的观察能力、推理能力和合作精神。

同时,要注重理论与实践相结合,让学生在实际生活中运用所学知识解决问题。

在今后的教学中,可以进一步拓展多边形的相关知识,如多边形的面积、周长等,以提高学生的综合运用能力。

多边形的内角和教学设计人教版

多边形的内角和教学设计人教版

多边形的内角和教学设计人教版这是多边形的内角和教学设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

多边形的内角和教学设计人教版第1篇教学目标知识与技能掌握多边形内角和公式及外角和定理,并能应用.过程与方法1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.情感态度价值观通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.重点多种方法探索多边形内角和公式难点多边形内角和公式的推导教学流程安排活动流程活动内容和目的活动1学生自主探索四边形内角和活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法活动3探索n边形内角和公式活动4师生共同研究递推法确定n边形内角和公式活动5多边形内角和公式的应用活动6小结作业从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.加深对转化思想方法的理解, 训练发散思维、培养创新能力.通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.学生提高动手实操能力、突破“添”的思维局限综合运用新旧知识解决问题.回顾本节内容,培养学生的归纳概括能力.反思总结,巩固提高.课前准备教具学具补充材料教师用三角尺剪刀复印材料三角形纸片教学过程设计问题与情景师生行为设计意图[活动1、2]问题1.三角形的内角和是多少?与形状有关吗?问题2.正方形、长方形的内角和是多少?由此你能猜想任意凸四边形内角和吗?动脑筋、想办法,说明你的猜想是正确的.问题3添加辅助线的目的是什么,方法有没有什么规律呢?学生回答:三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.学生先独立探究,再小组交流讨论.教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.学生汇报结果.①过一个顶点画对角线1条,得到2个三角形,内角和为2×180°;②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;③若在四边形内部任取一点,如图,也可以得到相应的结论;④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)内角和为3×180°-180°;⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.通过回忆三角形的内角和,有助于后续问题的解决.从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.[活动3]问题4怎样求n边形的内角和?(n是大于等于3的整数)学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.特点:内角和都是180°的整数倍.通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.[活动4]每名同学发一张三角形纸片问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发《多边形的内角和》公开课生了怎样的变化问题6由四边形得到五边形呢?依此类推能否猜想n边形内角和公式将三角形去掉一个角可以得到四边形,如图7,四边形内角和为180°+2×180°-180°=2×180°.每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°(严谨的证明应在学习数学归纳法后)学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决[活动5]知道了凸多边形的内角和,它可以解决哪些问题呢?问题6:六边形的外角和等于多少?n边形外角和是多少?学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到6×180°-(6-2)×180°=360°学生思考,回答.n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.利用内角和求外角和,巩固了内角和公式.如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维练习一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .练习.解:(n-2)180=150n,n=12;或360÷(180-150)=12(利用外角和)150°×12=1800°.巩固内角和公式,外角和定理.[活动5]小结下面请同学们总结一下这节课你有哪些收获.学生自己小结,老师再总结.1. 多边形内角和公式(n-2)180°,外角和是360°;2. 由特殊到一般的数学方法、转化思想.学会总结,培养归纳概括能力.作业:课后思考题.一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.作业:解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+xx=(n-2)180-1125∵0∴0<(n-2)180-1125<180解得:∵n是整数,∴n=9.x=(9-2)180-1125=135注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x∵n是整数,∴45+x是180的倍数.又∵0∴45+x=180,x=135,n=9还可以根据内角和的特点,先求出内角和.解法3.设此多边形的内角和为x°,依题意:1125即:180×6+45∵x是多边形内角和的度数∴x是180的倍数∴x=180×7=1260 边数=7+2=9,这个内角=1260°-1125°=135°解法4(极值法).设这是n边形,这个内角为x°,则0令x=0,得:n=,令x=180,得:n=∴多边形的内角和教学设计人教版第2篇一、内容和内容解析《多边形的内角和》优秀教学设计1.内容多边形的内角和.2.内容解析本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360°如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.本节课的教学重点是:多边形的内角和与多边形的外角和公式.二、目标和目标解析1. 教学目标(1)了解多边形的内角、外角等概念.(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.2. 教学目标解析(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.三、教学问题诊断分析对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×180°,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.本节课的教学难点:多边形的内角和定理的推导.四、教学过程设计1.复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?2.多边形的内角和如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?观察下面的图形,填空:五边形六边形从五边形一个顶点出发可以引条对角线,它们将五边形分成个三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引条对角线,它们将六边形分成个三角形,六边形的内角和等于 ;从n边形一个顶点出发,可以引条对角线,它们将n边形分成个三角形,n边形的内角和等于 .n边形的内角和等于(n-2)·180°从上面的.讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.图1 图2分法二:如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.∴五边形的内角和为(5-1)×180°-180°=(5-2)×180°=540°.如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°.3.例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.分析:∠A、∠B、∠C、∠D有什么关系?解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°又∠A+∠C=180°∴∠B+∠D= 360°-(∠A+∠C)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补.例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BCD=180°∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°这就是说,六边形形的外角和为360°.如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.4.课堂练习课本24页练习1、2、3题.5.课堂小结n边形的内角和是多少度?n边形的外角和是多少度?6.布置作业:教科书习题11.3第1,3,5,7,10题.五、目标检测设计1.十边形的内角和为( ).A.1 260°B.1 440°C.1 620°D.1 800°【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.2.一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.3.一个多边形的内角和等于1 440°,则它的边数为__________.【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.4. 如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140°B.40°C.260°D.不能确定【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.多边形的内角和教学设计人教版第3篇教学建议1.教材分析(1)知识结构:(2)重点和难点分析:重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

人教版八年级数学上册11.3多边形内角和教学设计

人教版八年级数学上册11.3多边形内角和教学设计
人教版八年级数学上册11.3多边形内角和教学设计
一、教学目标
(一)知识与技能
1.让学生理解多边形内角和的概念,掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
2.培养学生运用多边形内角和解决实际问题的能力,如:计算多边形中未知角度,判断多边形的类型等。
3.培养学生运用多边形内角和推导多边形外角和的能力,从而加深对多边形性质的理解。
7.教学评价,关注成长
在教学过程中,关注学生的学习态度、合作精神、思维品质等方面的发展。通过课堂问答、作业批改、课后辅导等途径,了解学生的学习情况,给予针对性的指导和鼓励。
四、教学内容与过程
(一)导入新课
1.教师出示一张由多个三角形和四边形组成的不规则多边形图案,引导学生观察并提问:“同学们,你们能计算出这个多边形的内角和吗?”
(三)学生小组讨论
1.教师将学生分成小组,每组发放一张多边形图案,要求计算其内角和。
2.学生在小组内进行讨论,共同解决问题。教师巡回指导,解答学生的疑问。
3.各小组汇报计算结果,分享解题过程和经验。
(四)课堂练习
1.教师出示几道具有实际情境的题目,如计算房屋墙面多边形的内角和、设计园林图案等。
2.学生独立完成练习,巩固多边形内角和的计算方法。
作Hale Waihona Puke 要求:1.学生需独立完成作业,要求字迹清晰,步骤齐全。
2.对于提高题和思考题,鼓励学生进行讨论、合作,发挥团队精神,共同解决问题。
3.家长需关注学生的学习情况,协助学生按时完成作业,并给予适当的指导。
作业批改与反馈:
1.教师应及时批改作业,对学生的作业进行评价,给予鼓励性评语。
2.针对学生的作业情况,教师可进行针对性的辅导,帮助学生克服难点。

人教版数学八年级上册11.3.2多边形的内角和教学设计

人教版数学八年级上册11.3.2多边形的内角和教学设计
2.提出问题:引导学生思考多边形内角和与边数之间的关系,激发学生探索欲望。
3.过渡语:回顾已学的三角形、四边形的内角和性质,为新课的学习做好知识铺垫。
(二)讲授新知
1.演示与发现:利用多媒体课件或实物模型,展示多边形的内角和与边数之间的关系,引导学生发现规律。
2.推导公式:通过具体例子(如五边形、六边形等),引导学生总结多边形内角和的计算公式。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生运用能力。
五、作业布置
1.基础巩固题:完成课本第115页的练习题1、2、3,巩固多边形内角和的计算方法。
-练习题1:求解给定多边形的内角和;
-练习题2:根据多边形的内角和,判断多边形类型;
-练习题3:运用内角和性质解决实际问题。
2.提高拓展题:完成课本第116页的探究题,提高学生运用多边形内角和解决问题的能力。
-探究题:一个多边形的内角和是540度,求该多边形的边数。
3.实践应用题:结合生活中的实例,设计一道运用多边形内角和知识的问题,并解决问题。
-例如:一个正多边形的每个内角是120度,求该多边形的边数。
4.小组合作题:分组讨论,共同完成以下问题。
-讨论题1:多边形内角和与边数之间的关系;
-讨论题2:内角和公式在生活中的应用实例。
-利用多媒体课件或实物模型,帮助学生直观地理解多边形内角和与边数之间的关系。
-设置一些具有挑战性的问题,让学生在解决问题的过程中,逐步掌握内角和公式的运用。
-开展小组讨论,让学生在交流中相互启发,提高解决问题的能力。
四、教学内容与过程
(一)导入新课
1.创设情境:通过展示生活中的多边形实物,如五角星、六边形的地板砖等,引发学生对多边形内角和的好奇心。

最新人教版八年级数学上《多边形的内角和》教学设计

最新人教版八年级数学上《多边形的内角和》教学设计

最新人教版八年级数学上《多边形的内角和》教学设计多边形的内角和》教学设计一、内容和内容解析1.内容本节课的内容是多边形的内角和。

2.内容解析本节课以三角形的内角和为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式。

通过多种转化方法的探究,让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力。

教材先是通过作对角线探求任意四边形内角和。

这个环节,通过自主研究环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点。

接着作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式。

在这里,增加了一个环节,通过从一个顶点出发作对角线,来达到分割为三角形的目的。

从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形。

这个环节没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法。

这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力。

最后,通过例题2的处理,得出六边形的外角和为360°。

如果把六边形换成n边形,可以得到同样的结果:n边形的外角和等于360°。

本节课的教学重点是:多边形的内角和与多边形的外角和公式。

二、目标和目标解析1.教学目标1)了解多边形的内角、外角等概念。

2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算。

2.教学目标解析1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值。

2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式。

通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想。

三、教学问题诊断分析如果一个四边形的一组对角互补,那么另一组对角也互补。

例如,在四边形ABCD中,已知∠A+∠C=180°,求∠B与∠D的关系。

人教版多边形内角和教案

人教版多边形内角和教案

人教版多边形内角和教案《人教版多边形内角和教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习内容分析学习目标描述:掌握多边形的定义多边形的内角和的推理及其应用学习内容分析:首先掌握多边形的定义,其次掌握多边形的边与角的个数的关系最后掌握多边形的内角和公式教学重点:多边形的内角和公式教学难点:多边形的内角和的推理及其应用学生学情分析本班的学生学习积极度较高,其中中等偏上的学生占多数,所以本节内容中最主要的是要掌握多边形内角和的推理。

教学策略设计一、情景导入二、多边形及有关概念三、凸多边形和凹多边形四、正多边形的概念五、课堂练习六、多边形的内角和信息技术运用说明教学过程的基本规律,是人们在长期的教学实践中对体现着教学活动本质特点的客观存在的认识结果,是教学活动成功或失败的最高层面的制约因素,是设计教学、实施教学和评价教学的根据。

因此,实施信息技术与课程教学的整合,必须要考虑如何以信息技术的功能特点使教学活动更符合教学过程的基本规律。

比如按照知识与智力相统一的规律,按照直接经验和间接经验相结合的规律,以信息技术为手段推进两种经验有效结合;以信息技术的应用优化教与学的方法策略;按照智力因素与非智力因素相统一的规律,以信息技术开辟多种途径,满足学习者的多种学习需求;按照教师主导、学生主体相结合的规律,以信息技术的运用充分体现教师在教学中的主导作用和学生在教学中的主体地位等等。

在按照教学过程基本规律实现整合的过程中,要重视发展学生的主体性,重视培养学生的综合素质。

不应只是注重传授知识,而应从终身教育和继续学习的视角,更重视培养学生终身学习的观念和自主探究学习的能力。

教育要着眼于未来,重视每个人一生的发展,关注每个学生潜能的开发、个性的发展,以学生的发展为本,把学生身心全面发展和个性、潜能开发作为核心,培养适应社会发展的有用人才。

人教版多边形内角和教案这篇文章共2241字。

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】《多边形的内角和》教案篇一一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。

2.了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2.通过推导四边形内角和定理,对学生渗透化归思想。

3.会根据比较简单的条件画出指定的四边形。

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。

(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的内角和》教学设计
当涂江心初中秦本斌
一、教材分析:
本节课的教学内容是八年级下册§.多边形的内角和,这节课是在学习了三角形内角和公式之后进行的。

多边形的内角和公式是以三角形为基础,通过对四边形、五边形、六边形……的观察、分割成三角形、进行交流、探究、猜想、最后验证而获得多边形的内角和公式。

渗透给学生由特殊到一般的化归数学思想。

本节课也是三角形有关知识的拓展,学习时应注意与三角形有关知识的密切类比。

进一步提高了学生对几何公式探究的严密逻辑推理能力和确定性。

二、学生任务分析:充分利用教科书提供的教材和活动,联系生活实际,鼓励学生经历观察、分割操
作、推理、探究交流等活动,帮助学生树立科学的态度,发展学生对多边形图形的想象能力,培养学生的推理能力、有条理的表达能力和归纳思想,增强学生学习数学的信心和体验知识推理过程的乐趣,以实现新课标的教学理念。

教学过程中应鼓励学生多思考,可采用多种方法求得,以提高学生发散思维的能力。

三、教学目标分析:
1、知识技能:().了解多边形的内角和公式。

().主动探索、归纳多边形内角和公式,并运
用于解决计算问题。

().学会同学间相互交流、合作,体会转化、类比思想,培养发散思维。

2、教学过程与方法:()、通过类比、推理等数学活动,探索多边形的内角和公式,感受数学思考过程的条
理性,发展推理能力和语言表达能力。

()、通过把多边形转化为三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识方法。

()、通过探索多边形的内角和公式,让学生逐步从实验几何过渡到论证几何。

3、情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以
及数学结论的确定性,提高学生学习数学的信心和兴趣。

四、教学重难点及处理:
1重点:探索多边形内角和公式。

2、难点:探索多边形内角和时,如何把多边形转化成三角形
3、处理:充分利用多媒体辅助本节课的教学。

五、教学准备:
1教师准备:制作好多媒体课件。

2学生准备:提前预习,笔、草稿纸、刻度尺等。

六、教学过程实录及分析:
七、教学设计理念:
着力于学生能力的提高,不同的人在数学上得到不同的发展,培养学生积极思考探究的精神,渗透给学生由特殊到一般的化归数学思想和发散性思维,进一步加强同学间的充分合作与交流。

八、教学反思:
本节课通过多媒体辅助教学对于同学们理解新知起了很大作用,在探求新知结论的推导过程中,集中体现了数学化归思想的应用。

四边形内角和公式的探究图片和多边形的内角和公式推导过程的列表,使学生更加深刻地体会到定理:边形的内角和等于()*(为不小于的整数)的确定性。

引导学生通过观察、分割操作、交流、思考,培养他们发现新知的能力,通过不断地发现问题、
提出问题、分析问题和解决问题,更增强了学生参与教学活动的意识,使学生在快乐中获得了新的数学知识。

这正是新课标的一种教学理念。

人生最大的幸福,莫过于连一分钟都无法休息零碎的时间实在可以成就大事业珍惜时间可以使生命变的更有价值时间象奔腾澎湃的急湍,它一去无返,毫不流连一个人越知道时间的价值,
就越感到失时的痛苦得到时间,就是得到一切用经济学的眼光来看,时间就是一种财富时间一点一滴凋谢,犹如蜡烛漫漫燃尽我总是感觉到时间的巨轮在我背后奔驰,日益迫近夜晚给老人带
来平静,给年轻人带来希望不浪费时间,每时每刻都做些有用的事,戒掉一切不必要的行为时间乃是万物中最宝贵的东西,但如果浪费了,那就是最大的浪费我的产业多么美,多么广,多么
宽,时间是我的财产,我的田地是时间时间就是性命,无端的空耗别人的时间,知识是取之不尽,用之不竭的。

只有最大限度地挖掘它,才能体会到学习的乐趣。

新想法常常瞬息即逝,必须集
中精力,牢记在心,及时捕获。

每天早晨睁开眼睛,深吸一口气,给自己一个微笑,然后说:“在这美妙的一天,我又要获得多少知识啊!”不要为这个世界而惊叹,要让这个世界为你而惊叹!如
果说学习有捷径可走,那也一定是勤奋。

学习犹如农民耕作,汗水滋润了种子,汗水浇灌了幼苗,没有人瞬间奉送给你一个丰收。

藏书再多,倘若不读,只是一种癖好;读书再多,倘若不用,
只能成为空谈。

学习好似一片沃土,只要辛勤耕耘,定会有累累的硕果;如若懒于劳作,当别人跳起丰收之舞时,你已是后悔莫及了。

不渴望能够一跃千里,只希望每天能够前进一步,学习的
成功与失败原因是多方面的,要首先从自己身上找原因,才能受到鼓舞,找出努力的方向。

相关文档
最新文档