《多边形的内角和》教学设计与说明

合集下载

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

苏教版数学四年下册《多边形的内角和》说课稿及反思(共三篇)

苏教版数学四年下册《多边形的内角和》说课稿及反思(共三篇)

《多边形的内角和》说课稿及反思(一)一、说教材本课是在学生学过角的度量、三角形的特征和分类等知识的基础上,借助三角形内角和等于180°推导出多边形内角和等于(n-2)×180°。

四年级学生从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。

从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白、深入浅出地分析。

二、说教学目标1.掌握多边形内角和的计算方法,并能用内角和知识解决有关多边形的计算问题;通过多边形内角和公式的推导,培养学生探索与归纳的能力。

2.经历探索多边形内角和的过程,多角度、全方位考虑问题,培养学生对简单数学结论的探究方法,进而运用掌握的理论知识解决实际问题,进一步培养学生的数学推理能力,初步形成一定的推理思维。

3.通过经历数学知识的形成过程,体验转化、类比等数学思想方法的应用,体验猜想得到证实的成就感。

三、教学重难点重点:探究多边形的内角和公式。

难点:理解多边形的内角和公式。

四、说教学过程板块一、情境导入师:同学们,一个三角形的内角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生思考并作答,并由教师评价。

师:那么一个多边形的内角和是多少呢?我们能不能算出来呢?这就是本节课我们要研究的问题。

【设计意图:先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想】板块二、探究新知师:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?生1:我是先量出每个角的度数,再求和,结果是360°。

生2:我是把四边形的对角线连接,分成2个三角形,算出内角和是180°×2=360°。

多边形的内角和教学教案

多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。

1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。

由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。

这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

《多边形的内角和》数学教案

《多边形的内角和》数学教案

《多边形的内角和》数学教案标题:《多边形的内角和》数学教案一、教学目标:1. 知识与技能:让学生理解并掌握多边形的内角和定理,能够熟练地运用公式求解多边形的内角和。

2. 过程与方法:通过探究、观察、归纳等活动,培养学生的分析问题和解决问题的能力,提高他们的逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、敢于质疑的精神。

二、教学重点与难点:1. 重点:理解和掌握多边形的内角和定理,能熟练运用公式进行计算。

2. 难点:引导学生从特殊到一般,通过观察、思考、归纳出多边形的内角和公式。

三、教学过程:(一)导入新课教师出示一组图形(三角形、四边形、五边形等),提问:“这些图形的内角有什么关系?”引发学生思考,并引入本节课的主题——多边形的内角和。

(二)新知讲解1. 引导学生观察三角形的内角和,发现其内角和为180度。

然后引导学生尝试找出四边形、五边形的内角和,从而引出多边形的内角和公式:n边形的内角和=(n-2)*180度。

2. 教师讲解多边形的内角和公式的推导过程,强调这是从特殊到一般的推理过程。

(三)实践应用设计一系列的练习题,让学生运用多边形的内角和公式解决实际问题,巩固所学知识。

(四)课堂小结师生共同回顾本节课的内容,总结多边形的内角和公式及其推导过程,强化学生的记忆。

(五)作业布置布置一些有关多边形的内角和的习题,供学生在课后自我检测和复习。

四、教学反思:在教学过程中,要注重引导学生自主探究,让他们在实践中发现问题、提出问题、解决问题。

同时,也要注意培养学生的逻辑思维能力和创新精神,使他们在学习中体验到成功的喜悦,增强学习数学的信心和兴趣。

《多边形的内角和》优秀教学设计

《多边形的内角和》优秀教学设计

《多边形的内角和》优秀教学设计《多边形的内角和》优秀教学设计作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。

我们该怎么去写教学设计呢?以下是店铺整理的《多边形的内角和》优秀教学设计,希望对大家有所帮助。

学情分析:学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。

针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:多边形的内角和公式。

教学难点:探索多边形的内角和定理的推导教学过程:一、创设情境,导入新课1、请看:我身后的建筑物是什么?─水立方。

我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知1、多边形的内角和问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。

如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?预设回答:三角形的内角和360°。

四边形的内角和360°知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?预设回答:能,可以引对角线,将多边形分成几个三角形。

北师大版四年级下册《多边形的内角和》教学设计

北师大版四年级下册《多边形的内角和》教学设计

北师大版四年级下册《多边形的内角和》教学设计一、教学目标1. 让学生了解什么是多边形的内角和。

2. 帮助学生掌握计算多边形的内角和的方法。

3. 培养学生的观察和推理能力。

二、教学准备1. 教材:北师大版四年级下册《数学》课本。

2. 教具:黑板、白板、多边形拼图、尺子、挂图。

三、教学过程步骤一:导入新知1. 引导学生回顾上一节课研究的图形的基本概念和性质。

2. 提出问题:“多边形的内角和是什么?”并引导学生思考回答。

步骤二:概念讲解1. 使用挂图或黑板上的多边形图形,示范给学生看,并引导他们观察多边形的角。

2. 讲解多边形的内角和是指多边形内所有角的和,并强调内角和的计算方法。

步骤三:教学练1. 让学生拿出尺子,根据课本上的示例,测量多边形的各个内角。

2. 让学生围绕多边形的内角和进行小组讨论,尝试总结出计算多边形内角和的规律,并在白板上展示他们的思路与答案。

步骤四:巩固与拓展1. 在课堂上给学生出示一些多边形的图形,并让他们根据已学内容计算出多边形的内角和。

2. 鼓励学生提出自己的问题,带领学生进行拓展思考,例如:是否所有多边形的内角和都相等,等等。

四、教学总结通过本节课的研究,学生们可以了解到多边形的内角和的概念并掌握计算方法。

同时,通过实际测量和思考,他们也能培养观察和推理能力。

在巩固与拓展环节,学生们还可以进一步探索多边形的性质,拓宽对图形的认识。

五、教学反思本节课的设计在概念讲解和实际测量结合的基础上,由学生提出问题和进行小组讨论,旨在培养学生的自主研究能力和团队合作能力。

在巩固与拓展环节可以适当增加一些拓展问题,更好地激发学生的思维,提高课堂互动性和趣味性。

以上是本节课的教学设计,希望能够对您有所帮助!。

《多边形的内角和》教案

《多边形的内角和》教案

《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容:1. 多边形的内角和的概念。

2. 多边形内角和的计算规律。

三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。

难点:发现并证明多边形内角和的计算规律。

四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。

2. 利用几何画板软件,直观展示多边形的内角和。

3. 分组讨论,合作学习,培养学生的团队协作能力。

五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。

2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。

3. 探究活动:引导学生观察、思考多边形内角和的计算规律。

4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。

5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。

6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。

7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。

8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。

9. 课后作业:布置一些课后作业,巩固所学知识。

10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。

六、教学评价:1. 评价学生对多边形内角和概念的理解程度。

2. 评价学生是否能运用多边形内角和计算规律解决实际问题。

3. 评价学生在小组讨论中的参与程度及团队协作能力。

七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。

2. 课堂观察学生参与度,了解学生对教学内容的兴趣。

3. 听取学生对教学过程的建议和意见,以便改进教学方法。

八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】

多边形的内角和教学教案【优秀4篇】多边形的内角和教案篇一[教学目标]知识与技能:1.会用多边形公式进行计算。

2.理解多边形外角和公式。

过程与方法:经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

情感态度与价值观:让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点与关键]教学重点:多边形的内角和。

的应用。

教学难点:探索多边形的内角和与外角和公式过程。

教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

[教学方法]本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

[教学过程:](一)探索多边形的内角和活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?多边形边数分成三角形的个数图形内角和计算规律三角形31180°(3-2)·180°四边形4五边形5六边形6七边形7。

n边形n活动3:把一个五边形分成几个三角形,还有其他的分法吗?总结多边形的内角和公式一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

巩固练习:看谁求得又快又准!(抢答)例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?(点评:四边形的一组对角互补,另一组对角也互补。

)(二)探索多边形的外角和活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。

五边形的外角和等于多少?分析:(1)任何一个外角同于他相邻的内角有什系?(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?(3)上述总和与五边形的内角和、外角和有什么关系?解:五边形的外角和=______________-五边形的内角和活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。

《多边形的内角和》(教案)2023-2024学年数学四年级下册

《多边形的内角和》(教案)2023-2024学年数学四年级下册

教案:《多边形的内角和》一、教学目标1. 让学生理解多边形的内角和的概念,掌握多边形内角和的计算方法。

2. 培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和空间想象力。

3. 培养学生合作学习、自主探究的学习习惯,激发学生对数学学科的兴趣。

二、教学内容1. 多边形的内角和的概念2. 多边形内角和的计算方法3. 应用多边形内角和解决实际问题三、教学重点与难点1. 教学重点:多边形内角和的计算方法2. 教学难点:应用多边形内角和解决实际问题四、教学过程1. 导入新课通过展示一些多边形图片,引导学生观察多边形的特征,激发学生对多边形内角和的兴趣。

提出问题:“这些多边形都是由直线段组成的,那么这些多边形的内角和是多少呢?”2. 探究多边形内角和的计算方法(1)引导学生通过观察、画图等方式,发现多边形内角和与边数之间的关系。

(2)教师引导学生总结多边形内角和的计算公式:(n-2)×180°,其中n 表示多边形的边数。

(3)举例说明多边形内角和的计算方法,如:三角形的内角和为(3-2)×180°=180°,四边形的内角和为(4-2)×180°=360°。

3. 应用多边形内角和解决实际问题(1)教师出示一些实际问题,如:一个五角星的五个角的总和是多少度?一个正六边形的内角和是多少度?(2)学生分组讨论,运用多边形内角和的计算方法解决问题。

(3)小组汇报解题过程和结果,教师点评并总结。

4. 课堂小结教师引导学生回顾本节课所学内容,总结多边形内角和的概念、计算方法以及应用。

5. 课后作业(课后自主完成)(1)请同学们画出一个正七边形,并计算出它的内角和。

(2)请同学们找出生活中的多边形,测量并计算出它们的内角和。

五、教学反思本节课通过引导学生观察、探究、讨论,使学生掌握了多边形内角和的计算方法,并能够运用所学知识解决实际问题。

《多边形的内角和》教案

《多边形的内角和》教案
(2)运用内角和定理解决复杂问题:在实际问题中,多边形的形状和内角度数可能较为复杂,如何运用内角和定理求解成为难点。
举例:一个多边形的部分内角度数已知,且存在未知角度,如何运用内角和定理求解未知角度;或给出多边形内角和及部分内角度数,求出多边形的边数。
(3)内角和定理与多边形性质的关系:理解多边形内角和定理与多边形性质(如对角线、外角和等)之间的关系,提高学生几何思维的深度。
五、教学反思
在《多边形的内角和》这节课的教学过程中,我发现学生们对多边形内角和的概念和计算方法掌握得还算不错。但在教学过程中,我也注意到几个问题需要反思和改进。
首先,关于导入新课的部分,我通过提出与生活相关的问题来激发学生的兴趣,这个方法效果不错,学生们都很积极参与。但在实际操作中,我发现有些学生对问题的理解不够深入,导致后续学习过程中对内角和定理的理解不够透彻。因此,在今后的教学中,我需要更加注重引导学生从生活实例中发现问题,培养他们的观察能力和思考能力。
3.重点难点解析:在讲授过程中,我会特别强调多边形内角和定理及其推导过程这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形内角和相关的实际问题,如已知多边形内角和求解边数等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠和剪裁多边形,验证内角和定理的正确性。
本节课将结合教材内容,注重培养学生的逻辑思维能力和实际操作能力,使学生在掌握多边形内角和定理的基础上,能够灵活运用所学知识解决实际问题。
二、核心素养目标
《多边形的内角和》核心素养目标:
1.培养学生的几何直观和空间观念,通过探究多边形的内角和定理,让学生理解几何图形的内在联系,提高空间想象能力。

多边形的内角和教学设计及说课稿

多边形的内角和教学设计及说课稿

多边形的内角和教学设计及说课稿这是多边形的内角和教学设计及说课稿,是优秀的数学教案文章,供老师家长们参考学习。

多边形的内角和教学设计及说课稿第1篇一、教学任务分析1、教学目标定位根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。

因此,确定如下教学目标:(1).知识技能目标让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。

2、教学重、难点定位教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析1、教材的地位与作用本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。

本节课作为第七章第三节,起着承上启下的作用。

在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。

因此多边形的边、内角、内角和等等都可以同三角形类比。

通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。

而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析学生对三角形的知识都已经掌握。

让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。

由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。

《多边形的内角和》教学设计

《多边形的内角和》教学设计

《多边形的内角和》教学设计一、内容和内容解析1.内容多边形的内角和.2.内容解析本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360_deg;如果把六边形换成n边形可以得到同样的结果:n 边形的外角和等于360_deg;.本节课的教学重点是:多边形的内角和与多边形的外角和公式.二、目标和目标解析1. 教学目标(1)了解多边形的内角、外角等概念.(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.2. 教学目标解析(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.三、教学问题诊断分析对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)_times;180_deg;,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.本节课的教学难点:多边形的内角和定理的推导.四、教学过程设计1.复习导入我们已经证明了三角形的内角和为180_deg;,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360_deg;,现在你能利用三角形的内角和定理证明吗?2.多边形的内角和如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD 的内角和+△BDC的内角和=2_times;180_deg;=360_deg;.类似地,你能知道五边形、六边形_hellip;n边形的内角和是多少度吗?观察下面的图形,填空:五边形六边形从五边形一个顶点出发可以引条对角线,它们将五边形分成个三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引条对角线,它们将六边形分成个三角形,六边形的内角和等于 ;从n边形一个顶点出发,可以引条对角线,它们将n边形分成个三角形,n 边形的内角和等于 .n边形的内角和等于(n-2)_middot;180_deg;从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形._there4;五边形的内角和为5_times;180_deg;-2_times;180_deg;=(5-2)_times;180_deg;=540_deg;.图1 图2分法二:如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形._there4;五边形的内角和为(5-1)_times;180_deg;-180_deg;=(5-2)_times;180_deg;=540_deg;.如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)_times;180_deg;.3.例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,_ang;A+_ang;C=180_deg;,求_ang;B与_ang;D的关系.分析:_ang;A、_ang;B、_ang;C、_ang;D有什么关系?解:∵_ang;A+_ang;B+_ang;C+_ang;D=(4-2)_times;180_deg;=360_deg;又_ang;A+_ang;C=180_deg;_there4;_ang;B+_ang;D= 360_deg;-(_ang;A+_ang;C)=180_deg;这就是说,如果四边形一组对角互补,那么另一组对角也互补.例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知_ang;1,_ang;2,_ang;3,_ang;4,_ang;5,_ang;6分别为六边形ABCDEF的外角,求_ang;1+_ang;2+_ang;3+_ang;4+_ang;5+_ang;6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:∵_ang;1+_ang;BAF=180_deg; _ang;2+_ang;AB C=180_deg;_ang;3+_ang;BCD=180_deg;_ang;4+_ang;CDE=180_deg; _ang;5+_ang;DEF=180_deg;_ang;6+_ang;EFA=180_deg;_there4;_ang;1+_ang;BAF+_ang;2+_ang;ABC+_ang;3+_ang;BCD+_ang;4+_ang ;CDE+_ang;5+_ang;DEF+_ang;6+_ang;EFA=6_times;180_deg;又∵_ang;BAF+_ang;ABC+_ang;BCD+_ang;CDE+_ang;DEF+_ang;EFA=(6-2)_times;18 0_deg;=4_times;180_deg;_there4;_ang;1+_ang;2+_ang;3+_ang;4+_ang;5+_ang;6=2_times;180_deg;= 360_deg;这就是说,六边形形的外角和为360_deg;.如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360_deg;.对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360_deg;.4.课堂练习课本24页练习1、2、3题.5.课堂小结n边形的内角和是多少度?n边形的外角和是多少度?6.布置作业:教科书习题11.3第1,3,5,7,10题.五、目标检测设计1.十边形的内角和为( ).A.1 260_deg;B.1 440_deg;C.1 620_deg;D.1 800_deg;【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.2.一个多边形每个外角都是60_deg;,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.3.一个多边形的内角和等于1 440_deg;,则它的边数为__________.【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.4. 如图,在四边形ABCD中,_ang;1,_ang;2分别是_ang;BCD和_ang;BAD的邻补角,且_ang;B+_ang;ADC=140_deg;,则_ang;1+_ang;2等于( ).A.140_deg;B.40_deg;C.260_deg;D.不能确定【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.。

《多边形的内角和》教学设计与说明

《多边形的内角和》教学设计与说明

多边形的内角和[教学内容]苏教版四年级下册第96页~97页探究多边形内角和计算规律。

[教材简析]这部分内容是一次探索规律的活动,主要引导学生通过观察、操作、归纳、类比等具体活动,发现多边形内角和的计算方法。

多边形内角和是在学生认识了三角形内角和等于180°,了解多边形基本特征的基础上教学的。

通过活动,使学生经历由特殊到一般的学习过程,发现多边形内角和和边数之间的关系,获得计算多边形内角和的一般方法,积累数学活动经验,感悟一些基本的数学思想的方法,体会三角形内角和以及相关数学方法的价值,使学生经历发现数学规律的过程,积累数学活动经验,感悟转化的数学思想。

[教学目标]1.使学生经历提出问题、自主探索、观察分析、归纳概括等活动,了解多边形与它最少能分成三角形个数之间的关系,掌握多边形的内角和与边数之间的关系,掌握多边形的内角和的计算方法,能正确计算多边形的内角和。

2.使学生经历分一分、算一算、比较归纳等探索、发现规律的过程,加深感受探索数学规律的一般方法,积累相应的数学活动经验,提高解决问题的能力,进一步体会转化思想,培养观察、比较、归纳和概括等的思维能力,进一步发展空间观念。

3.使学生主动参与探索规律的活动过程,进一步产生对数学的好奇心,感受数学活动的挑战性和趣味性,增强学好数学的自信心。

[教学重点]探索多边形内角和的规律。

[教学难点]获得规律探究的一般方法。

[教学过程]一、创设情境,提出问题提问:三角形的内角和是多少度?(PPT出示:三角形)引导:我们知道了三角形的内角和是180°,那四边形、五边形、六边形等多边形的内角和各是多少度呢?(ppt出示教材中的图形)其中有没有什么规律呢?这就是我们要研究的问题——多边形的内角和(板书课题)。

我们就从边数较少的简单的图形开始研究不同边数的多边形内角和。

[设计说明:先回顾三角形的内角和再提出探讨四边形、五边形、六边形等多边形的内角和,使得新课导入亲切自然,使学生明确学习任务,激发孩子学习二、尝试交流,探索规律1.尝试解决,形成方法。

多边形的内角和教学设计人教版

多边形的内角和教学设计人教版

多边形的内角和教学设计人教版这是多边形的内角和教学设计人教版,是优秀的数学教案文章,供老师家长们参考学习。

多边形的内角和教学设计人教版第1篇教学目标知识与技能掌握多边形内角和公式及外角和定理,并能应用.过程与方法1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.情感态度价值观通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.重点多种方法探索多边形内角和公式难点多边形内角和公式的推导教学流程安排活动流程活动内容和目的活动1学生自主探索四边形内角和活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法活动3探索n边形内角和公式活动4师生共同研究递推法确定n边形内角和公式活动5多边形内角和公式的应用活动6小结作业从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.加深对转化思想方法的理解, 训练发散思维、培养创新能力.通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.学生提高动手实操能力、突破“添”的思维局限综合运用新旧知识解决问题.回顾本节内容,培养学生的归纳概括能力.反思总结,巩固提高.课前准备教具学具补充材料教师用三角尺剪刀复印材料三角形纸片教学过程设计问题与情景师生行为设计意图[活动1、2]问题1.三角形的内角和是多少?与形状有关吗?问题2.正方形、长方形的内角和是多少?由此你能猜想任意凸四边形内角和吗?动脑筋、想办法,说明你的猜想是正确的.问题3添加辅助线的目的是什么,方法有没有什么规律呢?学生回答:三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.学生先独立探究,再小组交流讨论.教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.学生汇报结果.①过一个顶点画对角线1条,得到2个三角形,内角和为2×180°;②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;③若在四边形内部任取一点,如图,也可以得到相应的结论;④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)内角和为3×180°-180°;⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.通过回忆三角形的内角和,有助于后续问题的解决.从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.[活动3]问题4怎样求n边形的内角和?(n是大于等于3的整数)学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.特点:内角和都是180°的整数倍.通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.[活动4]每名同学发一张三角形纸片问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发《多边形的内角和》公开课生了怎样的变化问题6由四边形得到五边形呢?依此类推能否猜想n边形内角和公式将三角形去掉一个角可以得到四边形,如图7,四边形内角和为180°+2×180°-180°=2×180°.每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°(严谨的证明应在学习数学归纳法后)学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决[活动5]知道了凸多边形的内角和,它可以解决哪些问题呢?问题6:六边形的外角和等于多少?n边形外角和是多少?学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到6×180°-(6-2)×180°=360°学生思考,回答.n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.利用内角和求外角和,巩固了内角和公式.如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维练习一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .练习.解:(n-2)180=150n,n=12;或360÷(180-150)=12(利用外角和)150°×12=1800°.巩固内角和公式,外角和定理.[活动5]小结下面请同学们总结一下这节课你有哪些收获.学生自己小结,老师再总结.1. 多边形内角和公式(n-2)180°,外角和是360°;2. 由特殊到一般的数学方法、转化思想.学会总结,培养归纳概括能力.作业:课后思考题.一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.作业:解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+xx=(n-2)180-1125∵0∴0<(n-2)180-1125<180解得:∵n是整数,∴n=9.x=(9-2)180-1125=135注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x∵n是整数,∴45+x是180的倍数.又∵0∴45+x=180,x=135,n=9还可以根据内角和的特点,先求出内角和.解法3.设此多边形的内角和为x°,依题意:1125即:180×6+45∵x是多边形内角和的度数∴x是180的倍数∴x=180×7=1260 边数=7+2=9,这个内角=1260°-1125°=135°解法4(极值法).设这是n边形,这个内角为x°,则0令x=0,得:n=,令x=180,得:n=∴多边形的内角和教学设计人教版第2篇一、内容和内容解析《多边形的内角和》优秀教学设计1.内容多边形的内角和.2.内容解析本节课是以三角形的内角和知识为基础,通过组织学生观察、类比、推理等数学活动,引导学生探索多边形的内角和与外角和的公式.通过多种转化方法的探究让学生深刻体验化归思想,以及分类、数形结合的思想,从特殊到一般的认识问题的方法,发展学生合情推理能力和语言表达能力.教材先是通过作对角线探求任意四边形内角和.这个环节,通过自主学习环节的铺垫及学生的现有知识,把未知的四边形内角和转化为已知的三角形内角和来求解,有效地突破本节课的难点.再作对角线探求五边形、六边形的内角和,找规律探求n边形的内角和公式.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.最后通过例题2的处理:得出六边形的外角和为360°如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.本节课的教学重点是:多边形的内角和与多边形的外角和公式.二、目标和目标解析1. 教学目标(1)了解多边形的内角、外角等概念.(2)能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.2. 教学目标解析(1)学生能正确理解多边形的内角、外角等概念,感悟类比方法的价值.(2)引导学生能够从三角形的内角和知识出发,通过观察、类比、推理等数学活动,探索多边形的内角和的公式.通过多种转化方法能深刻体验化归思想,以及分类、数形结合的思想.三、教学问题诊断分析对于多边形的内角和定理的推导是通过作对角线探求五边形、六边形的内角和,通过数据的关系得到边数n与分割三角形个数之间的关系,总结出边数与分割三角形个数是n与n-2的关系,从而得到n边形内角和为(n-2)×180°,体现由特殊到一般的转化思想,显得更加简洁,明了,易懂.这里我增加了一个环节是通过从一个顶点出发作对角线,来达到分割为三角形的目的.从边上、五边形内、外的任意一点出发,与顶点连接,来分割三角形.这个环节我没有直接把方法教授给学生,而是让学生先在学案上自主探索,然后小组合作,探讨,交流,小组汇报展示探索方法.这么做,可以锻炼学生合作交流的能力,同时可以提高语言表达能力.本节课的教学难点:多边形的内角和定理的推导.四、教学过程设计1.复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?2.多边形的内角和如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△ABD的内角和+△BDC的内角和=2×180°=360°.类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?观察下面的图形,填空:五边形六边形从五边形一个顶点出发可以引条对角线,它们将五边形分成个三角形,五边形的内角和等于 ;从六边形一个顶点出发可以引条对角线,它们将六边形分成个三角形,六边形的内角和等于 ;从n边形一个顶点出发,可以引条对角线,它们将n边形分成个三角形,n边形的内角和等于 .n边形的内角和等于(n-2)·180°从上面的.讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求.现在以五边形为例,你还有其它的分法吗?分法一:如图1,在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.∴五边形的内角和为5×180°-2×180°=(5-2)×180°=540°.图1 图2分法二:如图2,在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形.∴五边形的内角和为(5-1)×180°-180°=(5-2)×180°=540°.如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n-2)×180°.3.例题例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD中,∠A+∠C=180°,求∠B与∠D的关系.分析:∠A、∠B、∠C、∠D有什么关系?解:∵∠A+∠B+∠C+∠D=(4-2)×180°=360°又∠A+∠C=180°∴∠B+∠D= 360°-(∠A+∠C)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补.例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角,求∠1+∠2+∠3+∠4+∠5+∠6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:∵∠1+∠BAF=180° ∠2+∠ABC=180° ∠3+∠BCD=180°∠4+∠CDE=180° ∠5+∠DEF=180° ∠6+∠EFA=180°∴∠1+∠BAF+∠2+∠ABC+∠3+∠BCD+∠4+∠CDE+∠5+∠DEF+∠6+∠EFA=6×180°又∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠EFA=(6-2)×180°=4×180°∴∠1+∠2+∠3+∠4+∠5+∠6=2×180°=360°这就是说,六边形形的外角和为360°.如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°.对此,我们也可以这样来理解.如图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.4.课堂练习课本24页练习1、2、3题.5.课堂小结n边形的内角和是多少度?n边形的外角和是多少度?6.布置作业:教科书习题11.3第1,3,5,7,10题.五、目标检测设计1.十边形的内角和为( ).A.1 260°B.1 440°C.1 620°D.1 800°【设计意图】考查学生对多边形内角和公式掌握程度,要特别注意对公式的理解记忆.2.一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是_______度,外角和是__________度.【设计意图】考查学生能否灵活运用多边形的内角和与外角和公式,要注意审题.3.一个多边形的内角和等于1 440°,则它的边数为__________.【设计意图】本题是告诉内角和求边数,主要考查多边形内角和公式的整体运用.4. 如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140°B.40°C.260°D.不能确定【设计意图】考查四边形的内角和与邻补角问题,解题时需要综合考虑,或许有更好的方法.多边形的内角和教学设计人教版第3篇教学建议1.教材分析(1)知识结构:(2)重点和难点分析:重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

多边形的内角和教学设计【优秀15篇】

多边形的内角和教学设计【优秀15篇】

多边形的内角和教学设计【优秀15篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!多边形的内角和教学设计【优秀15篇】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

人教版数学八年级上册11.3.2多边形的内角和教学设计

人教版数学八年级上册11.3.2多边形的内角和教学设计
2.提出问题:引导学生思考多边形内角和与边数之间的关系,激发学生探索欲望。
3.过渡语:回顾已学的三角形、四边形的内角和性质,为新课的学习做好知识铺垫。
(二)讲授新知
1.演示与发现:利用多媒体课件或实物模型,展示多边形的内角和与边数之间的关系,引导学生发现规律。
2.推导公式:通过具体例子(如五边形、六边形等),引导学生总结多边形内角和的计算公式。
4.课后作业:布置适量的课后作业,巩固所学知识,提高学生运用能力。
五、作业布置
1.基础巩固题:完成课本第115页的练习题1、2、3,巩固多边形内角和的计算方法。
-练习题1:求解给定多边形的内角和;
-练习题2:根据多边形的内角和,判断多边形类型;
-练习题3:运用内角和性质解决实际问题。
2.提高拓展题:完成课本第116页的探究题,提高学生运用多边形内角和解决问题的能力。
-探究题:一个多边形的内角和是540度,求该多边形的边数。
3.实践应用题:结合生活中的实例,设计一道运用多边形内角和知识的问题,并解决问题。
-例如:一个正多边形的每个内角是120度,求该多边形的边数。
4.小组合作题:分组讨论,共同完成以下问题。
-讨论题1:多边形内角和与边数之间的关系;
-讨论题2:内角和公式在生活中的应用实例。
-利用多媒体课件或实物模型,帮助学生直观地理解多边形内角和与边数之间的关系。
-设置一些具有挑战性的问题,让学生在解决问题的过程中,逐步掌握内角和公式的运用。
-开展小组讨论,让学生在交流中相互启发,提高解决问题的能力。
四、教学内容与过程
(一)导入新课
1.创设情境:通过展示生活中的多边形实物,如五角星、六边形的地板砖等,引发学生对多边形内角和的好奇心。

《多边形的内角和》教材说明及教学建议

《多边形的内角和》教材说明及教学建议

《多边形的内角和》教材说明及教学建议一、教学目标1.使学生通过观察、操作等具体的活动,探索并发现多边形的内角和与它的边数之间的关系,并用自己能理解的方式表示所发现的规律。

2.使学生经历探索多边形内角和的过程,积累一些探索和发现数学规律的经验,发展空间观念,培养动手操作能力和合情推理能力。

3.使学生在参与探索活动的过程中,进一步产生对数学的好奇心,感受数学活动的挑战性和趣味性,增强学好数学的信心。

二、教材说明和教学建议(一)教材说明这部分内容是一次探索规律的活动,主要引导学生通过观察、操作,归纳、类比等具体的活动,发现多边形内角和的计算方法。

这是在学生认识了三角形内角和等于180°,了解多边形基本特征的基础上教学的。

通过活动,使学生经历由特殊到一般的学习过程,发现多边形的内角和与多边形边数之间的关系,获得计算多边形内角和的一般方法,积累数学活动经验,感悟一些基本的数学思想方法,体会三角形内角和以及相关数学方法的价值,增强学习数学的兴趣和自信心。

教材分四个层次安排学生探索规律的活动。

第一层次,提出问题。

教材由三角形的内角和是180°,直接提出问题“四边形、五边形、六边形……的内角和呢”,以明确本次活动的目标,激发学生参与探索活动的积极性。

第二层次,明确方法。

教材以四边形为例,引导学生想办法求出它的内角和。

由于学生对四边形比较熟悉,且前面多次进行过用三角形拼四边形或把四边形分成两个三角形的活动。

因此,学生容易想到:先把四边形分成两个三角形,再求两个三角形的内角总和的方法,进而实现化未知为已知的目的。

在明确方法后,教材先引导学生讨论:把上面的五边形、六边形各分成几个三角形,就能方便地算出它们的内角和,以明确分割多边形的方法。

这样,通过具体的活动,引导学生发现可以把求多边形内角和问题转化成求若干个三角形内角总和的问题,为后继探索求多边形内角和的规律提供方法上的支持。

第三层次,发现规律。

苏教版四年级下册数学第七单元《多边形的内角和》优秀教案

苏教版四年级下册数学第七单元《多边形的内角和》优秀教案

苏教版四年级下册数学第七单元《多边形的内角和》优秀教案一. 教材分析苏教版四年级下册数学第七单元《多边形的内角和》是小学数学中较为重要的内容,它让学生首次接触并了解多边形的内角和的概念。

通过学习,学生能理解多边形的内角和与边数之间的关系,掌握多边形内角和的计算方法,为以后学习更为复杂的多边形和几何图形打下基础。

二. 学情分析四年级的学生已经掌握了基本的加减乘除运算,对图形的认知也有了一定的了解。

但是,对于多边形的内角和这一概念,他们可能是初次接触,因此需要通过实例和操作来理解和掌握。

此外,学生可能对于边数较多的多边形内角和的计算存在一定的困难,因此需要通过实践活动来加深理解。

三. 教学目标1.知识与技能:让学生理解多边形的内角和的概念,掌握多边形内角和的计算方法。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作交流、解决问题的能力。

四. 教学重难点1.重点:理解多边形的内角和的概念,掌握多边形内角和的计算方法。

2.难点:对于边数较多的多边形内角和的计算。

五. 教学方法采用问题驱动法、实践活动法、合作交流法等,引导学生通过观察、操作、思考、交流等途径,自主探索并理解多边形的内角和的概念及计算方法。

六. 教学准备1.教师准备:多媒体教学课件、纸质教学课件、练习题等。

2.学生准备:笔记本、尺子、剪刀等。

七. 教学过程导入(5分钟)教师通过多媒体展示不同形状的多边形,引导学生关注多边形的内角。

提问:“你们知道多边形的内角有什么特点吗?”让学生思考并回答。

呈现(10分钟)教师通过纸质教学课件,展示一个四边形的内角和。

引导学生观察并思考:“四边形的内角和是多少?它是如何计算的?”学生回答后,教师进行讲解。

操练(10分钟)教师让学生用剪刀剪出不同边数的多边形,并用尺子量出各个多边形的内角和。

学生在操作过程中,观察并发现多边形内角和与边数之间的关系。

四年级数学下册《多边形的内角和》教案、教学设计

四年级数学下册《多边形的内角和》教案、教学设计
四年级数学下册《多边形的内角和》教案、教学设计
一、教学目标
(一)知识与技能
1.理解多边形的定义,掌握多边形的基本性质,能够识别和描述日常生活中的多边形。
2.掌握多边形内角和的计算公式,能够准确计算出任意多边形的内角和。
3.能够运用多边形内角和的知识解决实际问题,如平面图形的拼接、镶嵌等。
4.培养学生的观察能力、逻辑思维能力和空间想象能力,为今后的数学学习打下坚实基础。
2.趣味问题:提出一个关于多边形内角和的趣味问题:“一个多边形有几个角?这些角加起来的和是多少?”激发学生的好奇心,引发他们对多边形内角和的思考。
3.导入新课:引导学生回顾已学的三角形内角和知识,为新课多边形内角和的学习做好过渡。
(二)讲授新知
1.演示法:利用直观教具,展示一个四边形,引导学生观察并思考如何计算其内角和。通过演示,让学生发现将四边形分割成两个三角形的方法,从而得出四边形内角和的计算方法。
a.任意四边形的内角和都是360°。
b.一个多边形的内角和与其边数成正比。
2.提高拓展题:
(1)已知一个多边形的内角和为900°,求该多边形的边数。
(2)一个多边形的内角和是外角和的两倍,求该多边形的边数。
(3)设计一个多边形,使其内角和为1000°,并说明该多边形的边数。
3.实践应用题:
(1)观察生活中的多边形,选择一个进行测量和计算其内角和,并记录下来。
3.归纳提升:引导学生认识到多边形内角和知识在日常生活中的重要性,激发学生继续探索数学奥秘的兴趣。
五、作业布置
为了巩固本节课所学的多边形内角和知识,提高学生的应用能力,特布置以下作业:
1.基础巩固题:
(1)计算以下多边形的内角和,并简要说明计算过程:

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】

《多边形的内角和》教案【优秀5篇】《多边形的内角和》教案篇一一、素质教育目标(一)知识教学点1.使学生把握四边形的有关概念及四边形的内角和外角和定理。

2.了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力练习点1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2.通过推导四边形内角和定理,对学生渗透化归思想。

3.会根据比较简单的条件画出指定的四边形。

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好。

(四)美育渗透点通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导类比、观察、引导、讲解三、重点·难点·疑点及解决办法1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排2课时五、教具学具预备投影仪、胶片、四边形模型、常用画图工具六、师生互动活动设计教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第2课时七、教学步骤复习提问1.什么叫四边形?四边形的内角和定理是什么?2.如图4-9, 求的度数(打出投影).引入新课前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的内角和
[教学内容]苏教版四年级下册第96页~97页探究多边形内角和计算规律。

[教材简析]
这部分内容是一次探索规律的活动,主要引导学生通过观察、操作、归纳、类比等具体活动,发现多边形内角和的计算方法。

多边形内角和是在学生认识了三角形内角和等于180°,了解多边形基本特征的基础上教学的。

通过活动,使学生经历由特殊到一般的学习过程,发现多边形内角和和边数之间的关系,获得计算多边形内角和的一般方法,积累数学活动经验,感悟一些基本的数学思想的方法,体会三角形内角和以及相关数学方法的价值,使学生经历发现数学规律的过程,积累数学活动经验,感悟转化的数学思想。

[教学目标]
1.使学生经历提出问题、自主探索、观察分析、归纳概括等活动,了解多边形与它最少能分成三角形个数之间的关系,掌握多边形的内角和与边数之间的关系,掌握多边形的内角和的计算方法,能正确计算多边形的内角和。

2.使学生经历分一分、算一算、比较归纳等探索、发现规律的过程,加深感受探索数学规律的一般方法,积累相应的数学活动经验,提高解决问题的能力,进一步体会转化思想,培养观察、比较、归纳和概括等的思维能力,进一步发展空间观念。

3.使学生主动参与探索规律的活动过程,进一步产生对数学的好奇心,感受数学活动的挑战性和趣味性,增强学好数学的自信心。

[教学重点]探索多边形内角和的规律。

[教学难点]获得规律探究的一般方法。

[教学过程]
一、创设情境,提出问题
提问:三角形的内角和是多少度?(PPT出示:三角形)
引导:我们知道了三角形的内角和是180°,那四边形、五边形、六边形等多边形的内角和各是多少度呢?(ppt出示教材中的图形)其中有没有什么规律呢?这就是我们要研究的问题——多边形的内角和(板书课题)。

我们就从边数较少的简单的图形开始研究不同边数的多边形内角和。

[设计说明:先回顾三角形的内角和再提出探讨四边形、五边形、六边形等多边形的内角和,使得新课导入亲切自然,使学生明确学习任务,激发孩子学习
的兴趣。

]
二、尝试交流,探索规律
1.尝试解决,形成方法。

引导:我们怎样能知道这个四边形的内角和?自己先想一想,再和同桌交流自己的方法。

交流:你是怎样求这个四边形的内角和的?
交流,明确:
(1)可以量出每个角的度数,再求和。

(2)把四个角撕下拼一拼,拼成了一个周角。

(3)分成两个三角形,算出内角和是360°.
提问:比较不同的方法,哪种比较简便?这是什么方法?
指出:把四边形分成两个三角形,利用三角形的内角和是180°算出四边形的内角和。

这种方法叫转化,这样的方法合理、简单、方便。

引导:想一想,你有什么好办法解决五边形、六边形内角和的问题呢?
[设计说明:鼓励学生独立思考,尝试用自已方法探索四边形的内角和,再通过小组合作交流,比较,选择合适的就解决问题的方法,体验最优化的数学思想。

]
2.应用方法,继续探究。

(1)引导:我们可以把五边形、六边形分成三角形再计算内角和。

请你任意画一个五边形和一个六边形,想想怎样分成三角形计算它们内角和比较简便。

学生独立操作,教师行间巡视、指导。

交流:你是怎样分的?
引导比较,发现要从一点出发依次连接不同点分成三角形,才能比较简便计算内角和。

(2)引导:用这样的方法分一分,算一算五边形和六边形的内角和各是多少度?
学生探索、计算,教师巡视。

交流:五边形和六边形各分成几个三角形?内角和各是多少度?(板书算式)填写课本第97页表格。

3.合作交流,自主探索。

我们已经知道了四边形、五边形、六边形的内角和。

你觉得还可以用哪些多
边形来研究?
请同学们在方格纸中任意画出一个多边形,自己分一分、试一试。

得出结果后,填写在表格里。

学生自主探索,教师巡视、指导。

交流分法和算法,教师依次板书填表。

4.观察发现,归纳结论。

1.请大家观察比较表格,比较多边形的边数和分成的三角形个数,联系计算多边形内角和的方法,看看你能不能有什么发现,在小组里交流下。

交流,明确:
(1)分成三角形的个数比边数少2。

(2)多边形的内角和等于分成三角形的个数乘180°。

引导:你发现多边形内角和与边数之间有什么规律?你能用一个式子表示多边形内角和的计算方法吗?尝试写一写。

交流:你是怎样表示的?
小结:多边形的内角和=(边数-2)×180°
如果用字母n表示多边形的边数,用字母A表示多边形内角和,这个十式子可以怎样写?(A=(n-2)×180°)
2.提问:你能很快说出十二边形的内角和吗?二十边形呢?
学生尝试列式计算。

交流:你是怎样想的?
三、回顾总结,交流体会
1.谈话:我们是怎样探索和发现多边形内角和规律的?在探索过程中,你有那些体会?和同桌说一说。

交流,明确:
(1)多边形的内角和可以根据三角形的内角和推算出来的。

(2)从简单的问题想起、有序思考,是探索规律的有效方法。

(3)可以把新问题转化成能够解决的问题。

2.拓展延伸:一个多边形的内角和是1800°,它是几边形呢?
[设计说明:让学生回顾探索和发现多边形的内角和规律的过程,使学生体会探索规律的一般方法,启迪学生的数学思维,提高学生分析问题和解决问题的能力。

]
四、板书设计
多边形的内角和
从简单的问题想起、有序思考。

把新问题转化成能够解决的问题。

多边形内角和=(边数-2)×180°。

相关文档
最新文档